МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САНКТ – ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ РАСТИТЕЛЬНЫХ ПОЛИМЕРОВ»

Кафедра теплосиловых установок и тепловых двигателей

Определение вязкости турбинных масел

Методические указания к лабораторной работе по дисциплине «Нагнетатели и тепловые двигатели»

УДК 621.1(07)

Определение вязкости турбинных масел; методические указания к лабораторной работе по дисциплине «Нагнетатели и тепловые двигатели» / сост.: П.Н.Коновалов, Э.Р.Алиев; СПбГТУРП – СПб., 2013, - 11 с.

Приводится теоретическое обоснование необходимости измерения вязкости турбинных масел, излагается порядок измерения вязкости, описано устройство вискозиметра и термостата.

Настоящие методические указания предназначены для студентов очной и заочной форм обучения по направлению 140100.62 — «Теплоэнергетика и теплотехника».

Рецензент : зав. кафедрой промышленной теплоэнергетики СПбГТУРП, д-р техн. наук, профессор В.А.Суслов

Подготовлены и рекомендованы к печати кафедрой тепловых установок и тепловых двигателей СПбГТУРП (протокол № 6 от 02.04.2013г.).

Утверждены к изданию методической комиссией факультета промышленной энергетики СПбГТУРП (протокол № 8 от 09.04.2013г.).

© Санкт - Петербургский государственный технологический университет растительных полимеров, 2013

Лабораторная работа

Цель работы: получение студентами навыков в работе с вискозиметрами и термостатами.

1. Теоретическая часть

В системах смазки и регулирования паротурбинных установок применяют турбинные масла марок: Т-22, Тп-22, Тп-22с, Т-30, Т-46, ТСКП-46. Они относятся к высококачественным дистиллятным маслам.

Эксплуатационные свойства масел характеризуются:

- вязкостью, которая при температуре масла +50 °C должна быть в пределах $43,5...48 \text{ мм}^2/\text{с}$ (сантистоксов);
 - температурой застывания не выше -10^{0} C;
- температурой вспышки, которая в открытом тигле должна быть не ниже +195 $^{0}\mathrm{C};$
 - кислотным числом в мг КОН на 1 г масла -0.3...0.55;
 - зольностью не выше 0,03 %.

В масле должны отсутствовать: вода, водорастворимые кислоты и щелочи, механические примеси.

В процессе эксплуатации масло «стареет», изменяются его химические и физические свойства. В масле увеличивается содержание водорастворимых кислот и щелочей. Они повышают коррозионную активность масла. Содержание воды в масле недопустимо, её наличие приводит к образованию эмульсии с высоким содержанием воздуха, что способствует окислению масла и возрастанию его коррозионной активности.

Присутствие воздуха является причиной того, что масло становится сжимаемой жидкостью. В связи с этим появляется пульсация золотников системы автоматического регулирования, управления и защиты, уменьшается скорость звука, а значит - скорость гидравлического импульса в указанной

системе. Кроме того, уменьшается давление масла за масляным насосом, что обусловливает срыв работы насоса, ухудшается несущая способность масляного клина в подшипниках. Основным источником обводнения масла являются утечки пара из концевых уплотнений, проникающие в картеры подшипников.

Все указанные эксплуатационные факторы влияют на плотность и вязкость масла. Изменение вязкости масла может привести к разрушению подшипниковых опор турбины, а значит - к её аварии, к нарушению работы систем управления и защиты, что способствует отказу турбины. Поэтому изменение вязкости масла является одним из основных диагностических признаков, характеризующих состояние системы маслоснабжения паротурбинной установки, позволяющим принять решение о замене масла.

Вязкость нефтепродуктов, в том числе турбинных масел, определяется с помощью вискозиметров при заданной температуре. Установка и точное поддержание заданной температуры осуществляется применением термостата.

Термостат LT - 910

- -погрешность поддержания температуры в диапазоне от +10 до +100 °C не более ± 0.01 °C;
- диапазон задаваемых температур от -30 до +155 °C;
- номинальное напряжение питания 220 В;
- общая потребляемая мощность не более 1500 Вт;
- количество мест под вискозиметры 3;
- объем рабочей жидкости (воды) 14 литров.

Термостат состоит из погружного термостата и ванны. Ванна представляет собой емкость из нержавеющей стали со стеклянными окнами для наблюдения за вискозиметрами, установленными в ванну. На крышке ванны расположены три гнезда для вискозиметров, закрытые крышками и имеющие держатели вискозиметров. Также на крышке ванны имеется отверстие-штуцер для пароотвода и отверстие для установки контрольного термометра (при необходимости). В нижней части ванны расположен кран для слива рабочей жидкости.

На панели управления термостатом расположены следующие органы индикации и управления:

А. Пятиразрядный дисплей, предназначенный для отображения текущей и заданной температуры, значений настроек, служебных параметров и кодов.

Б. Светодиодные индикаторы, сигнализирующие о следующих событиях:

- недостаточный уровень рабочей жидкости (воды);

- включение нагревательного элемента;

<u> . выключение перемешивающего устройства.</u>

В. Клавиши:

- перемещение курсора и выбор разряда;

- увеличение или уменьшение значения цифры разряда;

- подтверждение ввода параметра;

-включение/выключение рабочего режима при включенном электропитании

Г. Выключатель электропитания.

Внимание! После выключения термостата выключателем электропитания повторное включение допускается не ранее, чем через 15-20 с.

Вискозиметр ВПЖ -1

Вискозиметр капиллярный стеклянный с висячим уровнем (см. рис. 1) состоит из измерительного резервуара 3, ограниченного двумя кольцевыми .отметками М1 и М2. Резервуар 3 переходит в капилляр 2 и резервуар 1, который в свою очередь соединен с изогнутой трубкой 5 и трубкой 7.

Трубка 7 имеет резервуар 8 с двумя отметками M3 и M4, указывающими пределы наполнения вискозиметра испытуемой жидкостью.

Жидкость из резервуара 3 по капилляру 2 стекает в резервуар 1 по стенкам последнего, образуя у нижнего конца капилляра «висячий уровень».

Измерение вязкости при помощи капиллярного вискозиметра основано на определении времени истечения через капилляр определенного объема жидкости из измерительного резервуара.

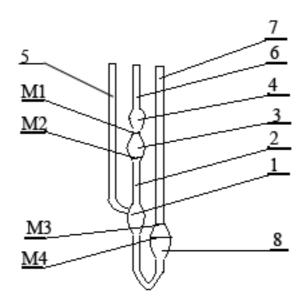


Рис.1

2. Порядок проведения лабораторной работы.

- 2.1. Перед началом работы проверьте уровень воды в ванне термостата. Он должен быть на 2-4 см выше резервуара 4 вискозиметра.
- 2.2. Включите термостат при помощи выключателя электропитания. При этом включается нагреватель и мешалка термостата, а на дисплее, после кратковременного сообщения «start», появляется текущее значение температуры воды.

2.3.	Для	просмот	ра задані	юго зна	ичения	темпе	ратуры	нес	обход	димо
одно	време	но нажат	ь и удержи	вать нажа	атыми кл	тавиши	1	и	↓ .	
Задаг	ное	значение	температу	ры до	лжно б	быть р	равно -	+70	0 C.	При
необ	ходим	ости от	гкорректир	уйте за	аданное	знач	нение	тем	пера	гуры
следующим образом.										

Нажмите клавишу . При этом на дисплее появится ранее заданное значение температуры и начнет мигать младший (правый) разряд. Для ввода нового значения выберите нужный разряд клавишами , . переход к следующему разряду выполняйте клавишами

2.4. Дождитесь установления заданной температуры, контролируя текущее значение на дисплее. В процессе разогрева светодиодный индикатор нагревателя постоянно светится красным цветом. При достижении заданной температуры нагреватель переходит в импульсный режим, при этом индикатор светится попеременно красным и зеленым цветом.

Светодиодный индикатор работы мешалки светится либо зеленым цветом(мешалка работает), либо красным цветом (мешалка выключена).

- 2.5. Турбинное масло залейте в вискозиметр через трубку 7 так, чтобы уровень его установился между отметками М3 и М4. Вискозиметр выдержите при температуре измерения в течение примерно 15 мин.
- 2.6. С помощью резиновой груши, при закрытых кранах, турбинное масло засасывается выше отметки М1, примерно до половины резервуара 4.
- 2.7. Далее откройте кран на трубке 6 и измеряйте время понижения уровня в трубке 6 от отметки М1 до отметки М2. При этом обращайте внимание на то, чтобы к моменту подхода уровня масла к отметке М1 в резервуаре 1 образовался «висячий уровень», а в капилляре не было пузырьков воздуха.

2.8. Вязкость вычисляйте по формуле:

$$V = - T K ,$$

$$9,807$$

где:

V – кинематическая вязкость жидкости mm^2/c ;

Т – время истечения жидкости с;

K - постоянная вискозиметра mm^2/c^2 ;

g – ускорение свободного падения в месте измерения m/c^2

- 2.9. Повторите указанное в п.п. 2.4 2.8.
- 2.10. Установите значение заданной температуры воды в термостате +90 $^{\circ}$ C (см.п. 2.3).
 - 2.11 Проведите измерения по п.п. 2.5 2.8 дважды.

3. Отчетность

В результате проведения настоящей лабораторной работы студенты оформляют отчет, в котором должна быть приведена следующая заполненная таблица.

№	Испыту-	Заданная	Время	Постоянная	Вязкость	Среднее
п/п	емая	темпера-	истечения	вискозиметра	жидкости	значение
	жидкость	тура	жидкости	К	V	вязкости
		°C	Т	MM^2/c^2	mm^2/c	жидкости
			c			V cp.
						мм ² /с
1						
2						
3						
4						

Библиографический список

Костюк А.Г., Фролов В.В., Булкин А.Е., Трухний А.Д. Паровые и газовые турбины для электростанций учебник / под ред. Костюка А.Г.: М.: Издательский дом МЭИ, 2008.

Термостат вискозиметрический LOIP LT-910. Руководство по эксплуатации. Паспорт. ЗАО «Лабораторное оборудование и приборы». СПб., 2008.

Вискозиметр капиллярный стеклянный ВПЖ – 1. Паспорт. ОАО «Дружная горка». Февраль 2009 г.

Содержание

Л	абораторная работа	.3
1.	Теоретическая часть	
2.	Порядок проведения лабораторной работы	6
3.	Отчетность	8

Петр Николаевич Коновалов Эдуард Русланович Алиев

Определение вязкости турбинных масел

Методические указания к лабораторной работе по дисциплине «Нагнетатели и тепловые двигатели»

Редактор Басова В.А.

Техн. Редактор Титова Л.Я. Темплан 2013 г., поз. 18

Подп. к печати 13.03.2013 г. .Формат 60x84/16 Бумага тип № 1 Печать офсетная. Объем 0,5 печ.л., 0,5 уч. — изд. л. Тираж 100 экз. Изд. № 18 Бесплатно. Заказ

Ризограф Санкт – Петербургского государственного технологического университета растительных полимеров, 198095, Санкт – Петербург, ул. Ивана Черных, 4
