МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ ТЕХНОЛОГИЙ И ДИЗАЙНА»

ВЫСШАЯ ШКОЛА ТЕХНОЛОГИИ И ЭНЕРГЕТИКИ

Кафедра теплосиловых установок и тепловых двигателей

НАГНЕТАТЕЛИ И ТЕПЛОВЫЕ ДВИГАТЕЛИ

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ПАРА В КАНАЛЕ СОПЛОВОГО АППАРАТА И УГЛА ОТКЛОНЕНИЯ ПОТОКА ПАРА В КОСОМ СРЕЗЕ

Методические указания к практической работе № 1

> Санкт-Петербург 2019

Нагнетатели и тепловые двигатели. Определение параметров пара в канале соплового аппарата и угла отклонения потока пара в косом срезе: методические указания к практической работе $N_21/$ сост. П.Н. Коновалов, М.С. Липатов; ВШТЭ СПбГУПТД.- СПб., 2019. - 11 с.

В настоящих методических указаниях приводятся исходные данные и алгоритмы по определению угла выхода потока пара из каналов соплового аппарата, угла отклонения потока пара в косом срезе и длины сопловой лопатки с рисунками и таблицами.

Предназначены для обучающихся ИЭиА и ИБФО направления подготовки 13.03.01 «Теплоэнергетика и теплотехника», профили «Промышленная теплоэнергетика» и «Энергетика теплотехнологий».

Рецензенты: зав. кафедрой промышленной теплоэнергетики ВШТЭ СПбГУПТД, канд. техн. наук, доцент С.Н. Смородин; профессор кафедры энергетических установок (не ядерных) ВУНЦ ВМФ «Военно-морская академия», д-р техн. наук В.В. Барановский.

Подготовлены и рекомендованы к печати кафедрой теплосиловых установок и тепловых двигателей ВШТЭ СПбГУПТД (протокол № 5 от 30.01.2019).

Утверждены к изданию методической комиссией Института энергетики и автоматизации ВШТЭ СПбГУПТД (протокол № 5 от 01.02.2019).

Рекомендованы к изданию Редакционно-издательским советом ВШТЭ в качестве методических указаний.

РАСШИРЕНИЕ ПОТОКА ПАРА В МЕЖЛОПАТОЧНОМ КАНАЛЕ СОПЛОВОГО АППАРАТА

Межлопаточные каналы соплового аппарата паровой турбинной ступени предназначены для преобразования потенциальной энергии пара в кинетическую. В указанных каналах происходит расширение пара, т.е. уменьшение давления, увеличение объема, а также увеличивается абсолютная скорость потока пара от значения C_0 на входе в канал до C_1 на выходе из него.

Канал соплового аппарата образован соседними сопловыми лопатками и конструкциями корпуса или диафрагмы турбины. Как правило, канал имеет конфузорную (суживающуюся) форму, ширина канала во входном сечении больше, чем в выходном . *Косым срезом* одиночного канала или решетки называется призматическое пространство с поперечным сечением ABC и высотой, равной высоте (длине) лопатки (рис.1).

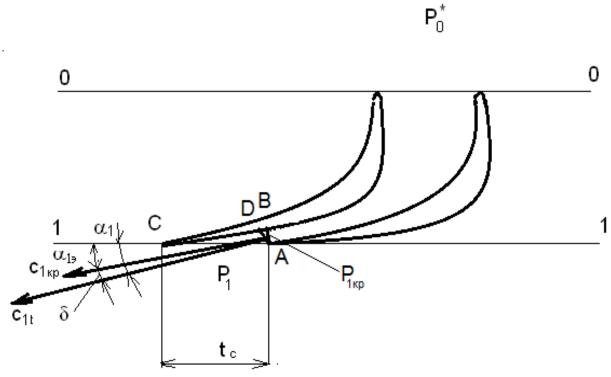


Рис.1. Решетка профилей лопаток соплового аппарата в плоскости u-a: P_0^* - давление пара на входе в канал; P_1 - давление пара за каналом; $P_{1 \text{кp}}$ - давление пара в узком сечении канала AB; α_{19} - эффективный угол выхода потока пара из канала; α_1 - угол выхода потока пара из канала; δ - угол отклонения потока пара в косом срезе; t_c - шаг решетки

Процесс расширения пара в межлопаточном канале соплового аппарата в диаграмме h-s показан на рис. 2.

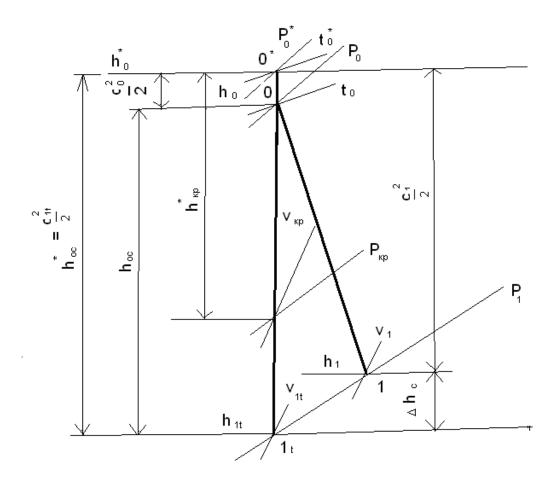


Рис. 2. Процесс расширения пара в канале соплового аппарата

При отсутствии теплообмена с внешней средой и потерь энергии процесс расширения пара в канале соплового аппарата протекает по изоэнтропе $0-1_t$. Из уравнения энергии следует:

$$h_0 + C_0^2/2 = h_{1t} + C_{1t}^2/2$$
 или $h_0 - h_{1t} = C_{1t}^2/2 - C_0^2/2$,

где h_0 — энтальпия пара на входе в сопловый аппарат; h_{1t} - энтальпия пара на выходе из соплового аппарата; C_{1t} — теоретическая абсолютная скорость потока пара на выходе из канала.

Из указанных формул можно получить следующие выражения:

$$h_0 - h_{1t} = h_{0c}$$
; $C_{1t} = (2 \cdot h_{0c} + C_0^2)^{1/2} = (2 \cdot h_{0c}^*)^{1/2}$; $h_{0c}^* = h_{0c} + C_0^2/2$,

где h_{0c} - располагаемый теплоперепад в каналах соплового аппарата; $h_{0c}^{\ *}$ - полный располагаемый теплоперепад в каналах соплового аппарата или располагаемый теплоперепад в каналах соплового аппарата по заторможенным параметрам.

При наличии потерь энергии скорость потока пара на выходе из соплового аппарата будет меньше и равна C_1 . Отношение $C_1/C_{1t} = \phi$ называют коэффициентом скорости сопловой решетки. Потери энергии в каналах соплового аппарата определяются по формуле:

$$\Delta h_c = C_{1t}^2/2 - C_1^2/2 = (C_{1t}^2/2) \times (1 - \varphi^2).$$

Выделившаяся теплота при наличии потерь, связанных с трением, повышает энтальпию пара и она становиться равной

$$h_1 = h_{1t} + \Delta h_c.$$

Действительный процесс расширения пара будет определяться линией 0-1 (рис. 2).

При определенном отношении давлений $\varepsilon_1 = P_1/P_0^*$ в узком сечении канала AB будет иметь место максимальный расход пара, и в этом случае значения параметров пара станут критическими, т.е. $P_1 = P_{1\kappa p}$; $\varepsilon_1 = \varepsilon_{\kappa p}$; $C_1 = C_{\kappa p} = a_{\kappa p}$. Из уравнения сплошности можно получить критическое отношение давлений:

$$\varepsilon_{\kappa p} = P_{1\kappa p}/P_0^* = (2/(\kappa+1))^{\kappa/(\kappa-1)}.$$

Критическое отношение давлений $\varepsilon_{\rm kp}$ зависит только от показателя адиабаты к. Для перегретого пара этот показатель равен к = 1,3, $\varepsilon_{\rm kp}$ = 0,5457; для сухого насыщенного пара к = 1,135, $\varepsilon_{\rm kp}$ = 0,5774; для насыщенного пара со степенью сухости x: к = 1,035 + 0,1х.

Возможны четыре случая расширения пара в косом срезе соплового аппарата.

- 1. Давление пара за косым срезом $P_1 \geq P_{1\kappa p}$ и отношение давлений $\epsilon_1 \geq \epsilon_{\kappa p}$. Расширение пара происходит в суживающейся части межлопаточного канала, абсолютная скорость потока пара на выходе из соплового аппарата C_1 будет меньше критического значения $C_{\kappa p}$ при P_1 больше $P_{1\kappa p}$ и неизменном давлении пара на входе в канал P_0 , при P_1 , равном $P_{1\kappa p}$, $C_1 = C_{\kappa p}$. В области косого среза расширения пара не происходит, не будет отклоняться и поток пара, поэтому угол $\alpha_1 = \alpha_{19}$, угол отклонения $\delta = 0$.
- 2. Давление пара за косым срезом $P_1 < P_{1\kappa p}$ и отношение давлений $\epsilon_1 < \epsilon_{\kappa p}$. Расширение пара в суживающейся части межлопаточного канала будет происходить до давления $P_{1\kappa p}$, а в косом срезе до давления P_1 , которое устанавливается на линии AD. Скорость потока пара в косом срезе увеличится от значения $C_{\kappa p}$ до значения C_1 , которое станет больше скорости звука, поток пара вокруг точки A отклонится в сторону увеличения угла α_1 , т.е. угол

$$\alpha_1 = \alpha_{1} + \delta$$
 и угол отклонения $\delta \neq 0$.

Угол отклонения потока пара в косом срезе δ определяется из уравнения сплошности для сечений AB и AD, где расход пара G равен:

$$\begin{split} G &= \mu_1 \times F_{AB} \times C_{\kappa p} \times \rho_{\kappa p} = \mu_1 \times F_{AD} \times C_{1t} \times \rho_{1t}; \\ F_{AB} &= t_c \times sin\alpha_{19} \times l_c, \ F_{AD} = t_c \times sin(\alpha_{19} + \delta) \times l_c, \end{split}$$

где μ_1 - коэффициент расхода пара в канале; F_{AB} - площадь канала в сечении AB; F_{AD} - площадь канала в сечении AD; $\rho_{\kappa p}$ - критическая плотность пара в сечении AB; ρ_{1t} - плотность пара в конце изоэнтропного процесса расширения в сечении AD. Учитывая вышепоказанные зависимости, синус угла α_1 получают по формуле, которую называют формулой Бэра [1]:

$$\sin \alpha_1 = \sin(\alpha_{19} + \delta) = (C_{KD}/C_{1t}) \times (\rho_{KD}/\rho_{1t}) \times \sin \alpha_{19}$$
.

Угол выхода потока пара $\alpha_1 = \arcsin((C_{\kappa p}/\ C_{1t}) \times (\ \rho_{\kappa p}/\ \rho_{1t}) \times \sin\alpha_{19})$ и угол отклонения потока пара в косом срезе соплового аппарата

$$\delta = \alpha_1 - \alpha_{19}$$
.

При уменьшении давления пара P_1 или ϵ_1 угол отклонения потока пара в косом срезе δ будет тем больше, чем меньше давление P_1 или отношение давлений ϵ_1 .

3. Давление пара за косым срезом $P_1 = P_{1np} < P_{1\kappa p}$ и отношение давлений $\epsilon_1 = \epsilon_{np} < \epsilon_{\kappa p}$. P_{1np} — это предельное или наименьшее давление пара на внешней границе косого среза AC, при котором происходит полное использование косого среза для расширения пара. В этом случае поток пара будет отклоняться в косом срезе на предельный угол δ_{np} . Предельное значение давления пара определяется по формуле:

$$P_{1\pi p} = \epsilon_{\pi p} \times P_0^* = \epsilon_{\kappa p} \times (\sin\alpha_{19})^{2\kappa/(\kappa+1)} \times P_0^* = (2/(\kappa+1))^{\kappa/(\kappa-1)} \times (\sin\alpha_{19})^{2\kappa/(\kappa+1)} \times P_0^*.$$

Синус предельного угла выхода потока пара из канала соплового аппарата $\alpha_{1 n p}$ определяется [2]:

$$\sin \alpha_{1mp} = \sin(\alpha_{19} + \delta_{mp}) = (C_{\kappa p}/C_{1mp}) \times (\rho_{\kappa p}/\rho_{1mp}) \times \sin \alpha_{19}$$

где C_{1tmp} — теоретическая абсолютная скорость потока пара на выходе из косого среза при давлении P_{1mp} ; ρ_{1mp} — предельное значение плотности пара в конце изоэнтропного процесса расширения при давлении P_{1mp} . Угол α_{1mp} выражается как

$$\alpha_{1\pi p} = \arcsin((C_{\kappa p}/C_{1\pi p}) \times (\rho_{\kappa p}/\rho_{1\pi p}) \times \sin\alpha_{19})$$
 и $\delta_{\pi p} = \alpha_{1\pi p}$ - α_{19} .

4. Давление пара за косым срезом P_1 < P_{1np} < P_{1kp} и отношение давлений ε_1 < ε_{np} < ε_{kp} . Расширение потока пара будет происходить за пределами косого среза. В косом срезе картина течения будет аналогична третьему случаю. Окружная составляющая скорости C_1 скорость C_{1u} не меняется при указанном соотношении давлений. Скорость C_{1a} , являющаяся осевой составляющей скорости C_1 , растет за счет расширения потока пара в осевом направлении за косым срезом.

АЛГОРИТМ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПАРА В КАНАЛЕ СОПЛОВОГО АППАРАТА И УГЛА ОТКЛОНЕНИЯ ПОТОКА ПАРА В КОСОМ СРЕЗЕ

Исходные данные:

- 1. Давление пара на входе в межлопаточный канал соплового аппарата P_0 , МПа.
- 2. Температура пара на входе в межлопаточный канал соплового аппарата t_0 , 0 С.
 - 3. Давление пара за косым срезом канала соплового аппарата $-P_1$, МПа.
 - 4. Расход пара через канал соплового аппарата G, кг/с.
 - 5. Шаг сопловой решетки $-t_c$, мм.
- 6. Эффективный угол выхода потока пара из канала соплового аппарата α_{19} , град.
- 7. Абсолютная скорость потока пара на входе в канал соплового аппарата C_0 , м/с.
 - 8. Коэффициент скорости в канале соплового аппарата ф.

Значения исходных параметров выдаются преподавателем обучающимся в соответствии с его вариантом.

Алгоритм расчета

Таблица 1

Наименование величины	Единица	Расчетная	Результаты
	измерения	формула	расчетов
Энтальпия пара на входе в сопловый аппарат, h ₀	кДж/кг	Определяется по P_0 , t_0 (диаграмма hs, программа CATT2)	
Энтальпия пара на входе в сопловый аппарат по заторможенным параметрам, h_0^* Энтальпия пара на выходе из соплового аппарата в конце изоэнтропного процесса расширения, h_{1t}	кДж/кг кДж/кг	$h_0 + C_0^2/2000$ Определяется по P_1 и энтропии s_0 (диаграмма h -s, программа $CATT2$)	

Продолжение табл.1

11	Единица	Расчетная	Результаты
Наименование величины	измерения	формула	расчетов
Располагаемый теплоперепад в	кДж/кг	$h_0 - h_{1t}$	
канале соплового аппарата, h_{0c}			
Полный располагаемый	кДж/кг	h_0^* - h_{1t}	
теплоперепад в канале соплового			
аппарата, h_{0c}^{*}			
Теоретическая абсолютная	м/с	$(2000 \times h_{0c}^*)^{\frac{1}{2}}$	
скорость потока пара на выходе из			
канала, C_{1t}			
Действительная абсолютная	M/C	$C_{1t} \times \varphi$	
скорость потока пара на выходе из			
канала, С1		2	
Потери энергии в каналах соплового	кДж/кг	$(C_{1t}^2/2000) \times$	
аппарата, Δh_c		$(1-\varphi^2)$	
Энтальпия пара на выходе из	кДж/кг	$h_{1t} + \Delta h_c$	
соплового аппарата в конце			
действительного процесса			
расширения, h ₁	3,		
Удельный объем пара в начале	$M^3/K\Gamma$	Определяется	
процесса расширения, v_0		$\prod_{i} P_0, t_0$	
		(диаграмма h-	
		s, программа	
П	/_ 3	CATT2)	
Плотность пара в начале процесса	$\kappa\Gamma/M^3$	$1/v_0$	
расширения, ро	МПа	D to Y	
Давление пара на входе в	Willa	$P_0 + \rho_0 \times (C_0^2/2 \cdot 10^6)$	
межлопаточный канал соплового		$(C_0/2.10)$	
аппарата по заторможенным параметрам, P_0^*			
Удельный объем пара в конце	$M^3/K\Gamma$	Определяется	
изоэнтропного процесса	WI / KI	по Р ₁ и	
расширения, v_{1t}		энтропии s ₀	
Удельный объем пара в конце	$M^3/K\Gamma$	Определяется	
действительного процесса	WI / KI	по Р ₁ и	
расширения, у		энтропии s ₁	
parampenna, vi			
Критическое отношение давлений,	_	$(2/(\kappa+1))^{\kappa/(\kappa-1)}$	
$\varepsilon_{\mathrm{kp}}$			
Критическое давление пара в	МПа	${P_0}^* \times \epsilon_{\kappa p}$	
сечении АВ, Р _{1кр}		, np	
·			

	Единица	Расчетная	Результаты
Наименование величины	измерения	формула	расчетов
Предельное отношение давлений,	измерения		расчетов
	_	$\epsilon_{\kappa p} \times (\sin \alpha_{19})^{2\kappa/(\kappa+1)}$	
	МПа	$P_0^* \times \varepsilon_{np}$	
Предельное значение давления	IVIIIa	$\Gamma_0 \wedge \epsilon_{np}$	
пара в сечении АС, Р _{Іпр}	МПа	$\delta = 0$,	
Давление пара за косым срезом Р ₁	IVIIIa	, and the second	
$\geq P_{1\kappa p}$	МПа	определяется l_c $\delta \neq 0$,	
Парпение пара за кости срезом Р	IVIIIa	определяются δ	
Давление пара за косым срезом P_1 $< P_{1 \text{кp}}$		и 1 _с	
Энтальпия пара в сечении АВ при	кДж/кг	· ·	
	КДЖ/КІ	Определяется по	
критическом давлении $P_{1 kp}$, h_{kp}	$M^3/\kappa\Gamma$	$P_{1 \text{кр}}$ и энтропии	
Удельный объем пара в сечении	M / KI	S ₀	
АВ при критическом давлении		Определяется по	
	{M/C}	$P{1 kp}$ и энтропии	
P _{1kp} , V _{kp}	M/C	S ₀	
Скорость потока пара в сечении		$(2000 \times (h_0^* - h_{KD}))^{1/2}$	
АВ при критическом давлении		$(\Pi_0 - \Pi_{\text{kp}}))$	
P _{1kp} , C _{kp}		$(C / C) \times$	
Синус угла выхода потока пара из	_	$(C_{\kappa p}/C_{1t}) \times (V_{\kappa p}/V_{1t}) \times (V_{\kappa p}/V_$	
канала α_1 , $\sin \alpha_1$	БЮ	$(v_{1t}/v_{kp}) \cdot \sin \alpha_{19}$	
Угол выхода потока пара из	град.	$\arcsin((C_{\kappa p}/C_{1t}) \times (v_{\kappa p}/v_{\kappa p}))$	
канала, α ₁	Брон	$(v_{1t}/v_{\kappa p}) \cdot \sin \alpha_{19})$	
Угол отклонения потока пара в	град.	α_1 - α_{19}	
косом срезе, δ Давление пара за косым срезом P_1	МПа	$\delta \neq 0$,	
	IVIIIa	,	
$= P_{1\pi p} < P_{1\kappa p}$		определяются δ_{np} и l_c	
Энтальпия пара в сечении АС при	кДж/кг	Определяется по	
предельном давлении P_{1np} , h_{1np}	кдж/кі		
предельном давлении г іпр, піпр		$P_{1\pi p}$ и энтропии	
Удельный объем пара в сечении	$M^3/\kappa\Gamma$	s ₀ Определяется по	
АС при предельном давлении P_{1np} ,	WI / KI	P_{1mp} и энтропии	
		• –	
$V_{1\pi p}$. Теоретическая абсолютная	_{M/c}	s ₀ (2000×	
скорость потока пара на выходе из	101/ C	$(2000 imes (h_0^* - h_{1\pi p}))^{1/2}$	
косого среза при давлении $P_{1пр}$,		(110 - 111mp))	
C_{1tmp}			
Синус предельного угла выхода	_	$(C_{\kappa p}/C_{1tmp})\times$	
потока пара из канала соплового	_	$(v_{1np}/v_{kp}) \cdot \sin \alpha_{19}$	
аппарата $\alpha_{1пp}$, $\sin \alpha_{1пp}$		(v Iпр/ v кр) SIII w [э	
Предельный угол выхода потока	град.	$\arctan((C_{\kappa p}/C_{1tmp})\times$	
	т рαд.	$(v_{1np}/v_{kp}) \cdot \sin \alpha_{19}$	
пара из канала, $\alpha_{1пр}$		$(v_{\text{Imp}}, v_{\text{Kp}}, sin \omega_{19})$	

Наименование величины	Единица	Расчетная	Результаты
	измерения	формула	расчетов
Предельный угол отклонения	град.	$\alpha_{1\pi p}$ - α_{19}	
потока пара в косом срезе, $\delta_{\text{пр}}$		_	
Давление пара за косым срезом P ₁ <	МПа	$\delta \neq 0$,	
$P_{1\pi p} < P_{1\kappa p}$		определяются	
		$\delta_{\rm np}$ и $1_{\rm c}$ также,	
		как в случае 3	
Высота (длина) сопловой лопатки, 1с	м (мм)	$G \times v_1$	
		$(C_1 \cdot t_c \cdot \sin \alpha_1)$	

Отчет должен содержать

- 1. Результаты расчета по определению параметров пара в канале соплового аппарата и угла отклонения потока пара в косом срезе.
- 2. Графическое изображение в масштабе процесса расширения пара в межлопаточном канале соплового аппарата на диаграмме h-s.
- 3. Изображение решетки профилей сопловых лопаток в плоскости u-a с показом косого среза, углов α_{19} , α_1 , δ , α_{1np} , δ_{np} , скоростей $C_{\kappa p}$, C_{1t} .

Библиографический список

- 1. Щинников П.А. Проектирование одноцилиндровой конденсационной турбины [Электронный ресурс]: учебное пособие/ П.А. Щинников Электрон. текстовые данные. Новосибирск: Новосибирский государственный технический университет, 2013. 83 с. Режим доступа: http://www.iprbookshop.ru/45147.- ЭБС «IPRbooks».
- 2. Коновалов П.Н. Нагнетатели и тепловые двигатели. Тепловой расчет паровой многоступенчатой противодавленческой турбины: учебнометодическое пособие к выполнению курсовой работы/ П. Н. Коновалов, А.А. Верхоланцев, М.С. Липатов. СПб.: ВШТЭ СПбГУПТД, 2018. 68 с.

КОНОВАЛОВ ПЕТР НИКОЛАЕВИЧ ЛИПАТОВ МАКСИМ СЕРГЕЕВИЧ

НАГНЕТАТЕЛИ И ТЕПЛОВЫЕ ДВИГАТЕЛИ

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ПАРА В КАНАЛЕ СОПЛОВОГО АППАРАТА И УГЛА ОТКЛОНЕНИЯ ПОТОКА ПАРА В КОСОМ СРЕЗЕ

Методические указания к практической работе № 1

Корректор Т.А. Смирнова Техн. редактор Л.Я. Титова

Темплан 2019 г., поз. 3

Подп. к печати 02.02.2019.

Формат 60х84/16.

Бумага тип. № 1.

Печать офсетная.

Объем 0,75 печ.л; 0,75 уч.-изд.л.

Тираж 150 экз.

Изд. № 3. Цена "С" . Заказ №

Ризограф Высшей школы технологии и энергетики СПбГУПТД, 198095, Санкт-Петербург, ул. Ивана Черных, 4.