МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ ТЕХНОЛОГИЙ И ДИЗАЙНА»

ВЫСШАЯ ШКОЛА ТЕХНОЛОГИИ И ЭНЕРГЕТИКИ

Кафедра теплосиловых установок и тепловых двигателей

НАГНЕТАТЕЛИ И ТЕПЛОВЫЕ ДВИГАТЕЛИ

РАСЧЕТ ПРОМЕЖУТОЧНОЙ СТУПЕНИ МНОГОСТУПЕНЧАТОЙ ПАРОВОЙ ТУРБИНЫ

Методические указания к практической работе № 2

> Санкт-Петербург 2019

Нагнетатели и тепловые двигатели. Расчет промежуточной ступени многоступенчатой паровой турбины: методические указания к практической работе №2/ сост. П. Н. Коновалов, М. С. Липатов; ВШТЭ СПбГУПТД.- СПб., 2019.- 24 с.

Приводятся исходные данные и алгоритмы и результаты теплового расчета промежуточной одновенечной ступени паровой турбины с рисунками, графиками и и таблицами.

Предназначены для студентов ИЭиА и ИБФО, обучающихся по направлению подготовки 13.03.01 «Теплоэнергетика и теплотехника», профили «Промышленная теплоэнергетика» и «Энергетика теплотехнологий».

Рецензенты: зав. кафедрой промышленной теплоэнергетики ВШТЭ СПбГУПТД, канд. техн. наук доцент С.Н. Смородин; профессор кафедры энергетических установок (не ядерных) ВУНЦ ВМФ «Военно-морская академия», д-р техн. наук В.В.Барановский.

Подготовлены и рекомендованы к печати кафедрой теплосиловых установок и тепловых двигателей ВШТЭ СПбГУПТД (протокол N2 5 от 30.01.2019).

Утверждены к изданию методической комиссией Института энергетики и автоматизации ВШТЭ СПбГУПТД (протокол № 5 от 01.02.2019).

Рекомендованы к изданию Редакционно-издательским советом ВШТЭ в качестве методических указаний.

© Высшая школа технологии и энергетики СПбГУПТД, 2019

Корректор Т.А. Смирнова Техн. редактор Л.Я. Титова

Темплан 2019 г., поз. 4

Подп. к печати 02.02.2019. Формат 60х84/16. Бумага тип. № 1. Печать офсетная. Объем 1,5 печ.л; 1,5 уч.-изд.л. Тираж 150 экз. Изд. № 4. Цена "С" . Заказ №

Ризограф Высшей школы технологии и энергетики СПбГУПТД, 198095,

Ризограф Высшей школы технологии и энергетики СПоГУПТД, 198095 Санкт-Петербург, ул. Ивана Черных, 4.

общие положения

Тепловой расчет промежуточной ступени многоступенчатой паровой турбины базируется на знаниях, полученных студентами при изучении теории турбинных ступеней в рамках дисциплины: «Нагнетатели и тепловые двигатели в промышленной теплоэнергетике». Расчет может производиться с использованием компьютерной техники (программы Excel, Mathcad и др.), а также калькулятора. При выполнении указанного расчета обучающиеся должны уметь пользоваться h,s-диаграммой для водяного пара, программой САТТ2 или иной аналогичной указанной.

Целью теплового расчета турбинной ступени является получение ее кинематических и геометрических характеристик, относительных КПД и внутренней мощности.

Тепловой расчет ступени производится повенечно методом последовательных приближений. Исходные данные и алгоритм расчета отражены в табл. 1 и 2.

В связи с тем, что ступень является промежуточной в турбине, работающей на перегретом паре, то в ней будут отсутствовать некоторые внутренние потери, например, потери от парциального впуска пара (степень парциальности e=1), потери от влажности пара; абсолютная скорость потока пара на выходе из предыдущей ступени C_{2n} будет равна абсолютной скорости на входе в рассматриваемую ступень C_0 .

В процессе расчета возникает необходимость обоснованного принятия некоторых величин. На основе данных тепловых расчетов проточных частей паровых турбин, справочников, учебников [1] и научно-технической литературы [2] по турбинам принимаются:

- коэффициент скорости в сопловом аппарате $\varphi = 0.95 \div 0.98$;
- коэффициент расхода в сопловом аппарате $\mu_1 = 0.96 \div 0.98$;
- коэффициент расхода в рабочей решетке $\mu_2 = 0.90 \div 0.97$;

- показатель изоэнтропы перегретого пара k = 1,3;
- показатель изоэнтропы перегретого пара k = 1,3;
- хорда профиля сопловой лопатки активной ступени $e_1 = 40 \div 80$ мм; реактивной ступени $e_1 = 20 \div 60$ мм;
- хорда профиля рабочей лопатки $e_2 = 20 \div 60$ мм;
- относительный шаг сопловой решетки $\bar{t}_1 = 0.5 \div 0.9$;
- относительный шаг рабочей решетки $\bar{t}_2 = 0.4 \div 0.75$;
- перекрыша $\Delta l = l_2 l_1 = 3 \div 4$ мм;
- допустимое изгибающее напряжение $[\sigma] = 30 \div 80 M\Pi a$;
- относительное расстояние между диском и диафрагмой $\delta_s = \frac{s}{r} = 0.05$,
- s расстояние между диском и диафрагмой, r средний радиус ступени.

Профили сопловых и рабочих лопаток выбираются из табл. 3. В турбиностроении используются профили, аэродинамически отработанные в МЭИ, ЦКТИ им. И.И. Ползунова, ЦНИИ им. А.Н. Крылова, ЛМЗ. Все профили делятся на три группы:

- профили лопаток сопловых и рабочих решеток, предназначенные для докритических режимов обтекания, число M < 1, обозначаются буквой A;
- профили лопаток сопловых и рабочих решеток, предназначенные для околокритических режимов обтекания, число $M < 1,25 \div 1,3$, обозначаются буквой \mathcal{S} ;
 - профили лопаток рабочих решеток активных ступеней, работающих при сверхзвуковых скоростях на входе в решетку, число $M=1,3\div 1,6$, обозначаются буквой B.

В табл. 3 профили лопаток имеют следующие обозначения: первая буква C- профиль для сопловых и рабочих реактивных лопаток, P- профиль для рабочих активных лопаток; первые две цифры — значение расчетного угла входа потока, последние — значение угла выхода потока из решетки;

последняя буква (A, E, B) обозначает скоростной режим, на который рассчитан профиль.

Профиль лопатки в табл. 3 выбирается в зависимости от чисел Маха $M_{1t}, M_{2t},$ углов входа потока пара в решетку α_0, β_1 и углов выхода α_{1s}, β_2 .

АЛГОРИТМ ТЕПЛОВОГО РАСЧЕТА ПРОМЕЖУТОЧНОЙ СТУПЕНИ МНОГОСТУПЕНЧАТОЙ ТУРБИНЫ

Таблица 1. Исходные данные

Наименование величины	Обозначение	Размерность
Расход пара через ступень	G	кг/
Начальная температура пара Абсолютная скорость потока пара на выходе из предыдущей ступени Эффективный угол выхода потока пара из каналов соплового аппарата	$t_0 \ C_{2n} \ lpha_{1},$	°С м/ /с град.
Степень парциальности	e	-
Начальное давление пара	P_0	МПа
Давление пара за ступенью	P_{κ}	МПа
Степень реактивности	ρ	-

Алгоритм расчета

Наименование величины,	тим расчета	Размер-
обозначение	Способ определения	ность
Энтальпия пара на входе	Определяется по P_0, t_0	кДж/кг
в сопловый аппарат, h_0		, ,
Энтальпия пара в конце	Определяется по P_{κ} и	
изоэнтропного процесса	s_0 Энтропии s_0	кДж/кг
расширения в ступени, h'_{2t}	F 2 20	
Энтальпия пара на входе	C_2^2	
в сопловый аппарат по	$h_0 + \frac{C_{2n}^2}{2000}$	кДж/кг
заторможенным параметрам, h_0^*		
Располагаемый теплоперепад в		та Пата/тап
ступени, h_{0T}	$h_0 - h_{2t}$	кДж/кг
Полный располагаемый	*	кДж/кг
теплоперепад в ступени, h_{0T}^*	$h_0^* - h_{2t}$	кудж/кі
Фиктивная скорость потока пара в		
ступени, C_{ϕ}	$\sqrt{2000\cdot h_{0T}^*}$	м/с
Оптимальное отношение	$\varphi \cdot \cos \alpha_1$	
скоростей, $x_{\phi onm}$	$\frac{\varphi \cdot \cos \alpha_1}{2 \cdot \sqrt{1-\rho}}$	-
Окружная скорость, U	$C_{_{m{\Phi}}} \cdot x_{_{m{\phi}onm}}$	м/с
Частота вращения ротора, п	3000	об/мин
Средний диаметр ступени, д	$U \cdot 60/$	M
Теоретическая абсолютная	$U \cdot 60 / (\pi \cdot n)$ $C_{\phi} \cdot \sqrt{1-\rho}$	25/0
скорость пара на выходе из	$C_{\phi} \cdot \sqrt{1-\rho}$	м/с
соплового аппарата, C_{1t}		
Полный располагаемый	(1) 1*	кДж/кг
теплоперепад в сопловом аппарате,	$\big(1\!-\!\rho\big)\!\cdot\!h_{0T}^*$	кадили
h_{0c}^*		
Энтальпия пара за сопловым	, * , *	кДж/кг
аппаратом, h_{1t}	$\boldsymbol{h}_{0}^{*}-\boldsymbol{h}_{0c}^{*}$, ,
Давление пара за сопловым	Omnoverguezez z zewie 1	МПа
аппаратом, P_1	Определяются в точке 1 _t	
Удельный объем пара за сопловым	(рис.1) по s_0, h_{lt} с	м³/кг
аппаратом, v_{1t}	использованием h, s	0.~
Температура пара за сопловым	диаграммы или программы САТТ2	°C
аппаратом, t_{1t}	CATTZ	
Коэффициент расхода в сопловом	Принимается	
аппарате, μ_1		-

Продолжение табл. 2

Наименование величины,	Способ определения	Размер-
обозначение	_	ность
Выходная площадь	$G \cdot v_{_{1t}} / (\mu_{_{1}} \cdot C_{_{1t}})$	\mathbf{M}^2
межлопаточных каналов соплового	$/(\mu_{l}\cdot C_{lt})$	
аппарата, F_1	_	
Длина сопловой лопатки, l_1	$\frac{F_1}{\pi \cdot d \cdot e \cdot \sin \alpha_{_{1_{2}}}}$	M
Число Маха, M_{1t}	C_{1t} $\sqrt{k \cdot P_1 \cdot v_{1t} \cdot 10^6}$	_
	/ V 1 11	_
Профиль лопатки соплового	Выбирается из табл. 3 по	_
аппарата	$M_{_{1t}}, \alpha_{_0}, \alpha_{_{19}}$; определяются:	
	табличные хорда g_{1m} , ширина	
	решетки B_{1m} , радиус	
	закругления выходной кромки	
	профиля r_{1m} , угол установки	
	профиля α_{v} , относительный	
	шаг решетки \bar{t}_1	
Хорда профиля сопловой лопатки,	Принимается	
θ_1	TIPITIMACTON	м (мм)
Ширина сопловой решетки, B_1	в.	
Implific consider periodic, B_1	$\frac{{\boldsymbol e}_1}{{\boldsymbol e}_{1m}} \cdot B_{1m}$	м (мм)
	- 1 <i>m</i>	
Число сопловых лопаток, z_c	$\pi \cdot d$	
	$\dfrac{\pi \cdot d}{arepsilon_1 \cdot ar{t}_1}$	-
Толщина выходной кромки		v (var)
профиля сопловой лопатки, $\delta_{1\kappa\rho}$	$\frac{e_1}{e_2} \cdot 2 \cdot r_{1m}$	м (мм)
Относительная толщина выходной	δ_{1m} δ .	_
кромки профиля сопловой лопатки,	$rac{\delta_{1\kappa p}}{oldsymbol{arepsilon_1}\cdotar{t}_1\cdot\sinlpha_{12}}$	_
$\bar{\delta}_{1\kappa\rho}$	$o_1 \cdot \iota_1 \cdot \sin \alpha_{1_2}$	
	1. /	-
Относительная длина сопловой		
лопатки, l_1	$ e_1/$ 1/	
Относительная хорда сопловой	$l_1 = /\bar{l}_1$	-
лопатки, \bar{e}_1		
Уточненный коэффициент расхода	$0,9843 - 0,0057 \cdot \overline{e}_1$	-
в сопловом аппарате, μ_{10}		

Наименование величины, обозначение	Способ определения	Размер- ность
Уточненная выходная площадь межлопаточных каналов соплового аппарата, F_{10}	$G \cdot v_{_{1t}} / (\mu_{_{10}} \cdot C_{_{1t}})$	M ²
Уточненная длина сопловой лопатки, l_{10}	$\frac{F_{10}}{\pi \cdot d \cdot e \cdot \sin \alpha_{1\flat}}$	М
Коэффициент динамической вязкости пара, μ_{1n}	Определяется по графику (рис.3)	кг/(м·с)
Число Рейнольдса, R_{e1} Отношение среднего диаметра к высоте лопатки, λ_1	$C_{_{1t}} \cdot oldsymbol{arepsilon_1} \left(\mu_{_{1n}} \cdot oldsymbol{v}_{_{1t}} ight) \ rac{d}{l_1}$	- -
Уточненный коэффициент скорости в сопловом аппарате, φ_0	Для $\alpha_{19} = 9^0 \div 11^0$: $\lambda_1 > 10 \varphi_0 = 0.973 - 0.0111 \cdot \overline{e}_1;$	-
	$\lambda_1 < 10$ $\varphi_0 = 0.97 - 0.01542 \cdot \overline{e}_1;$ для $\alpha_{19} = 12^0 \div 20^0$:	-
	$\lambda_1 > 10 \varphi_0 = 0.98 - 8.74 \cdot 10^{-3} \cdot \overline{e}_1;$ $\lambda_1 < 10 \varphi_0 = 0.9773 - 1.196 \cdot 10^{-2} \cdot \overline{e}_1$	-
Абсолютная скорость пара на выходе из соплового аппарата, C_1	$C_{1t} \cdot \varphi_0$	м/с
Относительная скорость пара на входе в рабочую решетку, W_1	$C_1 \cdot \sqrt{1 + \left(\frac{U}{C_1}\right)^2 - 2 \cdot \frac{U}{C_1} \cdot \cos \alpha_{19}}$	м/с
Тангенс угла входа пара в рабочую решетку, $tg \beta_1$	$\frac{\sin \alpha_{19}}{\cos \alpha_{19} - \frac{U}{C_1}}$	-
Угол входа пара в рабочую решетку, β_1	$arctgoldsymbol{eta}_1$	град
Коэффициент потерь энергии в сопловом аппарате, ζ_1	$1-\varphi_0^2$	-
Потери энергии в сопловом аппарате, Δh_c	$h_{0c}^*\cdot {\pmb \zeta}_1$	кДж/кг
Энтальпия пара за сопловым аппаратом, h_1	$h_{1t} + \Delta h_c$	кДж/кг
Располагаемый теплоперепад в рабочей решетке, h_{0p}	$\rho \cdot h_{0T}^*$	кДж/кг
Энтальпия пара за рабочей решеткой, h_{2t}	$h_1 - h_{0p}$	кДж/кг

Наименование величины, обозначение	Способ определения	Размер-
Удельный объем пара за сопловым	Определяются в точке 1	м ³ /кг
аппаратом, v_1 Температура пара за сопловым	(рис.1) по P_1, h_1 с использованием h , s	°C
аппаратом, t_1 Энтропия пара за сопловым аппаратом, s_1	диаграммы или программы САТТ2	<u>кДж</u> кг·К
Давление пара за рабочей решеткой, P_2	Определяются в точке 2_t (рис.1) по s_1, h_{2t} с	МПа
Удельный объем пара за рабочей решеткой, v_{2t}	использованием h, s диаграммы или программы	м ³ /кг
Температура пара за рабочей решеткой, t_{2t}	CATT2	°C
Теоретическая относительная скорость пара на выходе из рабочей решетки, W_{2t}	$\sqrt{2000 \cdot h_{0p} + W_1^2}$	м/с
Число Маха, M_{2t}	W_{2t} $\sqrt{k \cdot P_2 \cdot v_{2t} \cdot 10^6}$	-
Коэффициент расхода в рабочей решетке, μ_2	Принимается	-
Выходная площадь межлопаточных каналов рабочей решетки, F_2	$G \cdot v_{2t} / (\mu_2 \cdot W_{2t})$	M ²
Перекрыша, <i>Δl</i>	Принимается	M (MM)
Длина рабочей лопатки, l_2	$l_{10} + \Delta l$	M (MM)
Синус угла выхода потока пара из рабочей решетки, $\sin \beta_2$	$F_2 / (\pi \cdot d \cdot l_2)$	-
Угол выхода потока пара из рабочей решетки, β_2	$rcsin oldsymbol{eta}_2$	град.
Хорда профиля рабочей лопатки, \mathfrak{s}_2	Принимается, в дальнейшем проверяется по числу Рейнольдса R_{e2} и величине	м (мм)
	изгибающего напряжения σ	<u> </u>

Наименование величины,	Сполоб опродолжи	Размер-
обозначение	Способ определения	ность
Профиль лопатки рабочей	Выбирается из табл. 3 по	-
решетки	M_{2t}, β_1, β_2 ; определяются:	
	табличные хорда \mathfrak{e}_{2m} , ширина	
	решетки B_{2m} , радиус	
	закругления выходной кромки	
	профиля r_{2m} , момент	
	сопротивления профиля $W_{_{\scriptscriptstyle MИН.m}}$,	
	угол установки профиля	
	$eta_{_{y}}$, относительный шаг	
	решетки $ar{t}_2$	
Ширина рабочей решетки, B_2	$rac{oldsymbol{e}_2}{2} \cdot B_{2m}$	м (мм)
Impilita paoo len pemerkii, B_2	\boldsymbol{e}_{2m}	m (mm)
Число рабочих лопаток, z_p	$rac{oldsymbol{arepsilon}_2}{oldsymbol{arepsilon}_{2m}}\cdot B_{2m} \ rac{\pi\cdot d}{\left(oldsymbol{arepsilon}_2\cdotar{t}_2 ight)}$	-
Толщина выходной кромки	$\frac{\theta_2}{2}$, 2. r	
профиля сопловой лопатки, $\delta_{2\kappa p}$	$\frac{\mathbf{g}_2}{\mathbf{g}_{2m}} \cdot 2 \cdot \mathbf{r}_{2m}$	м (мм)
Относительная толщина выходной		
кромки профиля рабочей лопатки,	$\delta_{2\kappa p} / (oldsymbol{arepsilon}_2 \cdot ar{t}_2 \cdot \sin oldsymbol{eta}_2)$	_
$ar{\delta}_{2\kappa p}$	$/(e_2 \cdot t_2 \cdot \sin \rho_2)$	
Относительная длина рабочей	1 /	
лопатки, $ar{l}_2$	$ \begin{array}{c} l_2 \\ \beta_2 \\ $	-
Относительная хорда рабочей	$e_2/=1/$	
лопатки, \bar{e}_2	l_2 l_2	-
Угол поворота потока в рабочей	100 0 0	
решетке, $\Delta \beta$	$180 - \beta_1 - \beta_2$	град.
Уточненный коэффициент расхода	Для $\Delta \beta \le 105$: $0.9725 - 0.0145 \cdot \bar{e}_2$;	-
в рабочей решетке, μ_{20}	для $\Delta\beta = 130^{\circ} \div 106^{\circ}$:	
	$0.9637 + 0.352 \cdot 10^{-3} \cdot (130 - \Delta \beta) -$	
	$-0.0154 \cdot \overline{g}_2;$	
	для $\Delta \beta = 145^{\circ} \div 131^{\circ}$:	
	$0.9557 + 0.533 \cdot 10^{-3} \cdot (145 - \Delta \beta) -$	
Уточненная выходная площадь	$-0.0164 \cdot \overline{e}_2$	${f m}^2$
межлопаточных каналов рабочей	$G\cdot v_{_{2t}} / (\mu_{_{20}}\cdot W_{_{2t}})$	M
решетки, F_{20}	· · · · - ··	

Продолжение табл. 2

Наименование величины, обозначение	Способ определения	Размер- ность
Уточненный синус угла выхода потока пара из рабочей решетки, $\sin \beta_{20}$	$F_{20} / (\pi \cdot d \cdot l_2)$	-
Уточненный угол выхода потока пара из рабочей решетки, β_{20}	$rcsin oldsymbol{eta}_{20}$	град.
Коэффициент динамической вязкости пара, μ_{2n}	Определяется по графику (рис.3) W_{2} , ϵ_{2}	кг/(м·с)
Число Рейнольдса, R_{e2} Отношение среднего диаметра к	$W_{2t} \cdot oldsymbol{arepsilon_2} igg(oldsymbol{\mu_{2n}} \cdot oldsymbol{v_{2t}} ig) \ d igg _{L_2}$	-
высоте лопатки, λ_2 Коэффициент скорости в рабочей решетке, ψ	Определяется по формулам (табл. 4)	-
Относительная скорость пара на выходе из рабочей решетки, W_2	$\psi \cdot W_{2t}$	м/с
Коэффициент потерь энергии в рабочей решетке, ζ_2	$1-\psi^2$	-
Потери энергии в рабочей решетке, Δh_p	$\zeta_{2} \cdot \frac{W_{2t}^{2}}{2000}$	кДж/кг
Абсолютная скорость пара за ступенью, C_2	$U \cdot \sqrt{1 + \left(\frac{W_2}{U}\right)^2 - 2 \cdot \left(\frac{W_2}{U}\right) \cdot \cos \beta_{20}}$	м/с
Тангенс угла направления абсолютной скорости за ступенью, $tg \alpha_2$	$\sin \beta_{20} / \left(\cos \beta_{20} - U / W_2\right)$	-
Угол направления абсолютной скорости за ступенью, α_2	$arctglpha_2$	град.
Окружное усилие, действующее на рабочие лопатки, R_u	$G \cdot (W_1 \cdot \cos \beta_1 + W_2 \cdot \cos \beta_{20})$	Н
Кольцевая площадь рабочих лопаток, $F_{2\kappa}$ Осевое усилие, действующее на	$\pi \cdot d \cdot l_2 \ G \cdot (W_1 \cdot \sin eta_1 - W_2 \cdot \sin eta_{20}) +$	M ²
рабочие лопатки, R_a Равнодействующая от	$+F_{2\kappa} \cdot (P_1 - P_2) \times 10^6$ $\sqrt{R_{\mu}^2 + R_{\mu}^2}$	Н
окружного и осевого усилий, <i>R</i> Момент сопротивления профиля	$egin{aligned} oldsymbol{\sqrt{N_u}} + oldsymbol{N_a} \ oldsymbol{\left(rac{oldsymbol{arepsilon_2}}{oldsymbol{eta_{2m}}} ight)^3} \cdot W_{_{MUH.m}} \end{aligned}$	Н
рабочей лопатки, $W_{_{MUH}}$	$\left(\boldsymbol{\theta}_{2m} \right)$	M ³

Наименование величины,	Способ определения	Размер-
обозначение	спосоо определения	ность
Изгибающее напряжение в	$rac{R \cdot l_2}{2 \cdot z_{_{\mathcal{D}}} \cdot e \cdot W_{_{\mathit{MUH}}}} \cdot 10^{-6}$	МПа
рабочей лопатке, σ	$2 \cdot z_p \cdot e \cdot W_{\scriptscriptstyle MMH}$	
	при $\sigma > < [\sigma]$ изменяется хорда ϵ_2 ,	
	значения σ и R_{e2} заново	
	определяются	
Потери энергии с выходной	$C_2^2 / 2000$	кДж/кг
скоростью, $\Delta h_{\scriptscriptstyle g}$	/ 2000	
Относительный лопаточный	$1 - rac{\Delta h_c + \Delta h_p + \Delta h_s}{{m h}^*}$	_
КПД, η_{on}	$h_{0T}^{^{\circ}}$	
Относительный лопаточный	(111	
КПД, выраженный через скорости, η'_{on}	$\frac{U \cdot \left(W_1 \cdot \cos \beta_1 + W_2 \cdot \cos \beta_{20}\right)}{h_{or}^* \cdot 10^3}$	-
Величина $\Delta \eta_{on}$	01	
Везін інне Мірол	$\left rac{\left \eta_{_{o_{\pi}}} - \eta_{_{o_{\pi}}}' ight }{\eta_{_{o_{\pi}}}} \cdot 100 , ext{если} \Delta \eta_{_{o_{\pi}}} > 1\% , ext{то} ight $	%
	ошибка в расчетах	
Нуста Райман таа п	$\frac{U \cdot d}{2 \cdot \mu_{1n} \cdot v_1}$	-
Число Рейнольдса, R_{eu}		
Коэффициент трения диска, $\kappa_{m\delta}$	Определяется по графику (рис.4)	-
Относительные потери энергии	$\kappa_{m\partial} \cdot \frac{d^2}{F} \cdot x_{\phi onm}^3$	
на трение диска, ζ_{mo}	F_1	-
Относительный внутренний	_	
КПД, выраженный через	$\eta_{\scriptscriptstyle o\scriptscriptstyle A}$ – $\zeta_{\scriptscriptstyle mo}$	-
Потери, η_{oi}	F 1.*	
Потери энергии на трение диска, Δh_{mo}	${m \zeta}_{mo} \cdot {m h}_{0T}^*$	кДж/кг
Энтальпия пара за рабочей	$h_{2t} + \Delta h_p$	TT /
решеткой (в конце	21 · p	кДж/кг
действительного процесса		
расширения, точка 2, рис. 1), h_2		
Энтальпия пара за рабочей		
решеткой, определяющая	$h_2^{} + \Delta h_{_G}^{} + \Delta h_{_{m\partial}}^{}$	кДж/кг
внутренний теплоперепад		, ,
(точка 2', рис. 1), h_2'		
Внутренний теплоперепад, h_i	$h_0^*-h_2'$	кДж/кг

Окончание табл. 2

Наименование величины,	Способ определения	Размер-
обозначение	Спосоо определения	ность
Относительный внутренний	h_i /	-
КПД, η'_{oi}	${\huge/}h_{0T}^*$	
Величина $\Delta\eta_{oi}$	$\left rac{\left \eta_{oi}-\eta_{oi}' ight }{\eta_{oi}}\!\cdot\!100,$ если $\Delta\eta_{oi}>\!1\%,$ то	%
	ошибка в расчетах	
		D
Внутренняя мощность, N_i	$G \cdot h_{_i}$	кВт

Графические изображения в масштабе процессов расширения пара в турбинной ступени и треугольники скоростей должны соответствовать результатам расчетов. Так, например, отношение длины отрезка прямой, характеризующей располагаемый теплоперепад в рабочей решетке, к длине отрезка прямой, характеризующей полный располагаемый теплоперепад в ступени, должно соответствовать заданному значению степени реактивности в ступени ρ .

При построении треугольников скоростей векторы окружных скоростей \overline{U} должны быть параллельны и равны друг другу и линии окружного направления, несоблюдение этого условия означает, что в расчетах допущена ошибка. Входной угол β_1 должен быть больше выходного угла β_2 , при степени реактивности $\rho = 0.04 \div 0.1$, т.е. близкой к нулю, эти углы приблизительно равны.

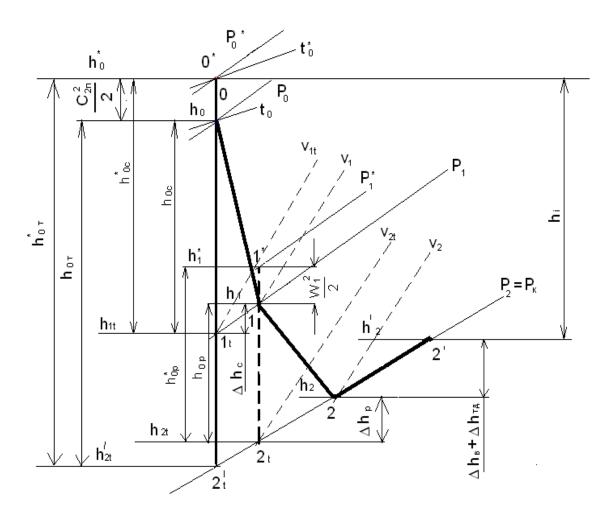


Рис.1. Процессы расширения пара в промежуточной одновенечной турбинной ступени многоступенчатой турбины в h,s – диаграмме

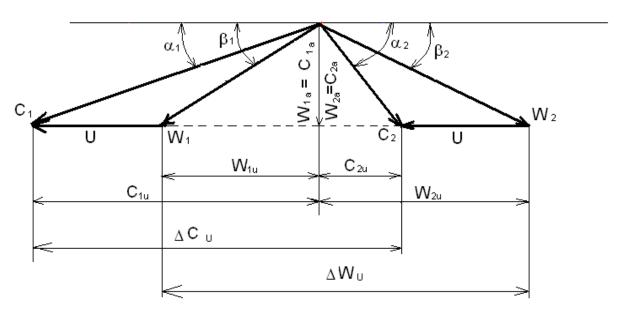


Рис.2. Входной и выходной треугольники скоростей ступени

Тепловой расчет турбинной ступени производится при условии, что отношение скоростей $x_{\phi}=\frac{U}{C_{\phi}}$ является оптимальным, поэтому угол выхода потока пара из ступени в абсолютном движении α_2 по значению должен быть близок к 90° .

Если принятое значение коэффициента скорости φ будет отличаться от уточненного φ_0 больше, чем на 1% $\left(\Delta\varphi=\frac{|\varphi-\varphi_0|}{\varphi}\cdot 100>1\%\right)$, то необходимо со значением φ_0 произвести расчет заново, начиная с определения $x_{\phi onm}$.

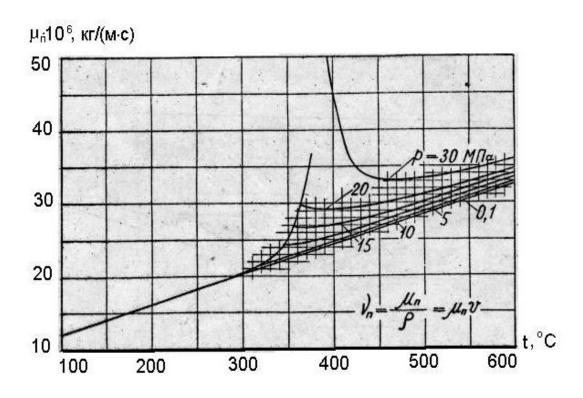


Рис. 3. Изменение коэффициента динамической вязкости пара μ_n от температуры и давления

Характеристики профилей турбинных лопаток МЭИ.

Таблица 3

Обозначение	α_{1} , β_{2} ,	$\alpha_0, \beta_1,$	$\alpha_{_{y}}, \beta_{_{y}},$		M_{1t}, M_{2t}	0 M	R	r 14	f, m^2	W 14 ³
Ооозначение	град.	град.	град.	t	$ \mathbf{n} _{1t}, \mathbf{n} _{2t}$	$\boldsymbol{\beta}_{m}, \boldsymbol{M}$	B_m, M	r_m, M	J, M	$W_{_{MUHM}}$, M^3
C-90-09A	8÷11	70÷120	27÷33	0,72÷0,85	до 0,90	6,06·10 ⁻²	2,94·10 ⁻²	0,028·10 ⁻²	3,45·10 ⁻⁴	0,471·10-6
C-90-12A	10÷14	70-120	31÷36	0,72÷0,87	До 0,85	$6,25\cdot10^{-2}$	3,40·10 ⁻²	0,032·10 ⁻²	4,09·10 ⁻⁴	0,575·10-6
C-90-15A	13÷17	70÷120	36÷42	0,70÷0,85	До 0,85	5,15·10 ⁻²	3,08·10 ⁻²	$0,04\cdot10^{-2}$	3,3.10-4	0,45·10-6
C-90-18A	16÷20	70÷120	41÷46	0,70÷0,80	До 0,85	$4,71\cdot10^{-2}$	3,14·10 ⁻²	$0.03\cdot10^{-2}$	2,72·10 ⁻⁴	0,333·10-6
C-90-22A	20÷24	70÷120	41÷47	0,70÷0,80	До 0,90	4,5·10 ⁻²	3,13·10 ⁻²	0,032·10 ⁻²	2,35·10 ⁻⁴	0,265·10-6
C-90-27A	24-30	70÷120	45÷51	0,65÷0,75	До 0,90	4,5·10 ⁻²	3,28·10 ⁻²	$0,027\cdot10^{-2}$	2,03·10 ⁻⁴	0,195·10-6
C-90-33A	30÷36	70÷120	52÷58	0,62÷0,75	До 0,90	4,5·10 ⁻²	3,56·10 ⁻²	$0,027\cdot10^{-2}$	1,84·10 ⁻⁴	0,163·10-6
C-90-38A	35÷42	70÷120	56÷68	0,60÷0,73	До 0,90	4,5·10 ⁻²	4,0.10-2	$0.03\cdot10^{-2}$	1,75·10 ⁻⁴	0,141·10-6
C-55-15A	12÷18	45÷75	50÷56	0,72÷0,87	До 0,90	4,5·10 ⁻²	3,3·10 ⁻²	$0.03\cdot10^{-2}$	4,41·10 ⁻⁴	0,912·10-6
C-55-20A	17÷23	45÷75	62÷67	0,70÷0,85	До 0,90	$4,15\cdot10^{-2}$	3,5·10 ⁻²	$0.02 \cdot 10^{-2}$	2,15·10 ⁻⁴	0,275·10-6
C-45-25A	21÷28	35÷65	62÷67	0,60÷0,75	До 0,90	4,58·10 ⁻²	4,0.10-2	$0.02 \cdot 10^{-2}$	3,3.10-4	0,536·10-6
C-60-30A	27÷34	45÷85	67÷73	0,52÷0,70	До 0,90	3,46·10 ⁻²	3,3·10 ⁻²	$0.02 \cdot 10^{-2}$	1,49·10 ⁻⁴	0,154·10-6
C-65-20A	17÷23	45÷85	48÷55	0,60÷0,70	До 0,90	4,5·10 ⁻²	3,5·10 ⁻²	$0,022\cdot10^{-2}$	2,26·10 ⁻⁴	0,348·10-6
C-70-25A	22÷28	55÷90	53÷59	0,50÷0,67	До 0,90	4,5·10 ⁻²	3,6·10 ⁻²	0,026·10 ⁻²	1,89·10 ⁻⁴	0,235·10-6
С-90-12Б	10÷14	70÷120	32÷37	0,72÷0,87	0,85÷1,15	5,66·10 ⁻²	3,1·10 ⁻²	$0.028\cdot10^{-2}$	3,31·10 ⁻⁴	0,420·10-6
С-90-15Б	13÷17	70÷120	35÷41	0,70÷0,85	0,85÷1,15	5,2·10 ⁻²	4,0.10-2	0,03·10 ⁻²	3,21·10 ⁻⁴	0,413·10-6
C-90-12B	10÷14	70÷120	39÷43	0,58÷0,68	1,4÷1,8	4,09·10 ⁻²	2,67·10 ⁻²	$0.02 \cdot 10^{-2}$	2,3·10 ⁻⁴	0,324·10-6

Окончание табл.3

Обозначение	$\alpha_{\scriptscriptstyle 19}, \beta_{\scriptscriptstyle 2},$	$\alpha_0, eta_1,$	$\alpha_{y}, \beta_{y},$	-	M_{1t}, M_{2t}	$\mathcal{B}_m^{},\mathcal{M}$	B_m , M	r_m, M	f, M^2	$W_{_{MUHm}}$, M^3
	град.	град.	град.	ı	171 1t , 171 2t	σ_m ,	\mathcal{L}_m , \mathcal{M}	m , 510	f, m	минт, зи
C-90-15B	13÷17	70÷120	38÷42	0,55÷0,65	1,4÷1,7	4,2·10 ⁻²	2,6·10 ⁻²	$0,025\cdot10^{-2}$	2,0.10-4	0,238·10-6
P-23-14A	12÷16	20÷30	77÷82	0,60÷0,75	До 0,95	2,59·10 ⁻²	2,5·10 ⁻²	$0.02 \cdot 10^{-2}$	2,44·10 ⁻⁴	0,39·10-6
P-26-17A	15÷19	23÷35	75÷81	0,60÷0,70	До 0,95	2,57·10 ⁻²	2,07·10 ⁻²	0,02·10 ⁻²	2,07·10 ⁻⁴	0,225·10-6
P-30-21A	19÷24	25÷40	77÷83	0,58÷0,68	До 0,90	2,56·10 ⁻²	2,5·10 ⁻²	0,02·10 ⁻²	1,85·10 ⁻⁴	0,234·10-6
P-35-25A	22÷28	30÷50	76÷82	0,55÷0,65	До 0,85	2,54·10 ⁻²	2,5·10 ⁻²	0,02·10 ⁻²	1,62·10 ⁻⁴	0,168·10-6
P-46-29A	25÷32	44÷60	75÷81	0,45÷0,58	До 0,85	2,56·10 ⁻²	2,5·10 ⁻²	0,015·10 ⁻²	1,22·10 ⁻⁴	0,112·10-6
P-50-33A	30÷36	47÷65	75÷81	0,43÷0,55	До 0,85	2,56·10 ⁻²	2,5·10 ⁻²	0,017·10 ⁻²	1,02·10 ⁻⁴	0,079·10-6
P-60-38A	35÷42	55÷75	72÷78	0,41÷0,51	До 0,85	2,61·10 ⁻²	2,5·10 ⁻²	0,02·10 ⁻²	0,76·10 ⁻⁴	0,035·10-6
Р-23-14Ак	12÷16	20÷30	75÷81	0,60÷0,75	До 0,95	2,59·10 ⁻²	2,5·10 ⁻²	0,02·10 ⁻²	2,35·10 ⁻⁴	0,331·10-6
Р-26-17Ак	15÷19	23÷45	75÷81	0,60÷0,70	До 0,95	2,57·10 ⁻²	2,5·10 ⁻²	0,02·10 ⁻²	1,81·10 ⁻⁴	0,165·10-6
Р-27-17Б	15÷19	23÷45	75÷81	0,57÷0,65	0,8÷1,15	2,54·10 ⁻²	2,5·10 ⁻²	0,02·10 ⁻²	2,06·10 ⁻⁴	0,296·10-6
Р27-17-Вк	15÷19	23÷45	75÷81	0,57÷0,68	0,85÷1,15	2,54·10 ⁻²	2,5·10 ⁻²	0,02·10 ⁻²	1,79·10 ⁻⁴	0,216·10-6
Р-30-21Б	19÷24	25÷40	81÷85	0,55÷0,65	0,85÷1,1	2,01·10 ⁻²	2,0·10 ⁻²	0,016·10 ⁻²	1,11·10 ⁻⁴	0,101·10-6
Р-35-25Б	22÷28	30÷50	82÷87	0,55÷0,65	0,85÷1,1	$2.52 \cdot 10^{-2}$	2,5·10 ⁻²	0,02·10 ⁻²	1,51·10 ⁻⁴	0,159·10-6
P-21-18B	16÷20	19÷24	86÷89	0,60÷0,70	1,3÷1,6	2,0.10-2	2,0·10 ⁻²	0,016·10 ⁻²	$1.16 \cdot 10^{-4}$	0,142·10-6
P-25-22B	20÷24	23÷27	87÷90	0,54÷0,67	1,35÷1,6	2,0·10 ⁻²	2,0·10 ⁻²	0,016·10 ⁻²	0,99·10 ⁻⁴	0,100·10-6

Таблица 4. Определение коэффициента скорости ψ

Угол поворота потока в рабочей решетке, $\Delta \beta$	Отношение среднего диаметра к высоте лопатки, λ_2	Формула
$\Delta \beta \leq 90^{\circ}$	$\lambda_2 > 10$	$\psi = 0.9657 - 0.0031 \cdot \overline{e}_2$
$\Delta \beta \leq 90^{\circ}$	$\lambda_2 < 10$	$\psi = 0.9608 - 0.0045 \cdot \overline{e}_2$
$\Delta\beta = 105^{\circ} \div 91^{\circ}$	$\lambda_2 > 10$	$\psi = 0.96 + 0.38 \cdot 10^{-3} (105 - \Delta \beta) -$
$\Delta\beta = 105^{\circ} \div 91^{\circ}$	$\lambda_2 < 10$	$-(7,3 \cdot 10^{-3} - 0,28 \cdot 10^{-3} \cdot (105 - \Delta\beta)) \cdot \overline{e}_{2}$ $\psi = 0,9562 + 0,2534 \cdot 10^{-3} (105 - \Delta\beta) -$ $-(9,975 \cdot 10^{-3} - 0,3734 \cdot 10^{-3} \cdot (105 - \Delta\beta)) \cdot \overline{e}_{2}$
$\Delta \beta = 130^{\circ} \div 106^{\circ}$	$\lambda_2 > 10$	$\psi = 0.955 + 0.2 \cdot 10^{-3} (130 - \Delta \beta) - (0.011 - 0.148 \cdot 10^{-3} \cdot (130 - \Delta \beta)) \cdot \bar{e}_2$
$\Delta \beta = 130^{\circ} \div 106^{\circ}$	$\lambda_2 < 10$	$\psi = 0.9455 + 0.428 \cdot 10^{-3} (130 - \Delta \beta) - $
$\Delta\beta = 145^{\circ} \div 131^{\circ}$	$\lambda_2 > 10$	$-(0.0128 - 0.114 \cdot 10^{-3} \cdot (130 - \Delta \beta)) \cdot \overline{e}_{2}$ $\psi = 0.9505 + 0.3 \cdot 10^{-3} (145 - \Delta \beta) -$ $-(0.015375 - 2.9175 \cdot 10^{-4} \cdot (145 - \Delta \beta)) \cdot \overline{e}_{2}$
$\Delta \beta = 145^{\circ} \div 131^{\circ}$	$\lambda_2 < 10$	$\psi = 0.9387 + 4.5333 \cdot 10^{-4} (145 - \Delta \beta) - (0.0183 - 3.65 \cdot 10^{-4} \cdot (145 - \Delta \beta)) \cdot \overline{e}_2$

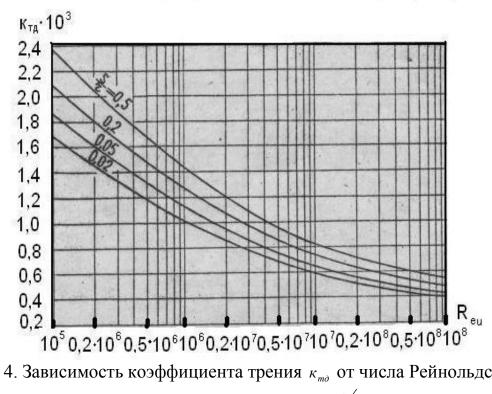


Рис. 4. Зависимость коэффициента трения $\kappa_{m\delta}$ от числа Рейнольдса R_{eu} и относительного зазора $\frac{s}{r}$

Тепловой расчет промежуточной ступени многоступенчатой паровой турбины выполняется студентами по исходным данным, которые выдаются преподавателем. Пример теплового расчета промежуточной ступени многоступенчатой паровой турбины приведен в табл. 5, 6.

Таблица 5 Исходные данные

Обозначение	Размерность	Величина
G	кг/с	80
t_0	°C	350
C_{2n}	м/с	80
$lpha_{\scriptscriptstyle{19}}$	град	16
e	-	1
P_0	МПа	3,75
P_{κ}	МПа	3,0 0,06
ρ	-	0,06

Отчет должен содержать

- 1. Исходные данные, алгоритм и результаты теплового расчета одновенечной турбинной ступени, являющейся промежуточной ступенью многоступенчатой паровой турбины.
- 2. Графическое изображение в масштабе процессов расширения пара в турбинной ступени на диаграмме h-s, входного и выходного треугольников скоростей.
- 3. Изображение решеток профилей сопловых и рабочих лопаток с указанием основных геометрических характеристик, входных и выходных скоростей и углов.

Таблица 6 Алгоритм расчёта

Обозна-	Расчётная формула	Результаты	Единица
чение	т асчетная формула	расчётов	измерения
h_0	Определяется	3098	кДж/кг
	по $P_0, t_0 P_0, t_0$		
h_{2t}'	Определяется	3040	кДж/кг
	no $P_{\kappa}, s_0 P_k, S_0$		
	$h_0^* = h_0^{} + rac{C_{2n}^2}{2000}$		
h_0^*	$n_0 - n_0 + \frac{1}{2000}$	3101	кДж/кг
h_{0T}	$h_{0T} = h_0 - h_{2t}$	58	кДж/кг
h_{0T}^*	$h_{0T}^* = h_0^* - h_{2t}$	61	кДж/кг

Продолжение табл.6

Обозна- чение	Расчётная формула	Результаты расчётов	Единица измерения
C_{ϕ}	$C_{\phi} = \sqrt{2000 \cdot h_{oT}}$	350	м/с
$x_{\phi onm}$	$x_{\phi onm} = \frac{U}{C_{\phi}} = \frac{\varphi \cdot \cos \alpha_{19}}{2 \cdot \sqrt{1 - \rho}}$	0,476	-
U	$U = C_{\phi} \cdot x_{\phi onm}$	166	м/с
d	$d = U \cdot 60 / (\pi \cdot n)$	1,06	M
C_{1t}	$C_{1t} = C_{\phi} \cdot \sqrt{1 - \rho}$	339	м/с
h_{0c}^*	$h_{0c}^*=h_{0T}^*\cdotigl(1- hoigr)$	58	кДж/кг
h_{1t}	$h_{1t} = h_0^* - h_{0c}^*$	3044	кДж/кг
P_1	Определяются в точке 1_t (рис.1) по	3,045	МПа
t_{1t}	s_0, h_{tt} с использованием h,s	320,6	°C
v_{1t}	диаграммы или программы САТТ2	0,0837	м ³ /кг
$\mu_{\scriptscriptstyle 1}$	Принимается	0.07	
F_1	$F_1 = \frac{G \cdot v_{1t}}{\left(\mu_1 \cdot C_{1t}\right)}$	0,97 0,02	- м ²
l_1	$l_1 = \frac{F_1}{\pi \cdot d \cdot e \cdot \sin \alpha_{19}}$	0,022	М
M_{1t}	$M_{1t} = \frac{C_{1t}}{\sqrt{k \cdot P_1 \cdot v_{1t} \cdot 10^6}}$	0,598	-
	Профиль сопловой решетки выбирается C-90-15A		
$\boldsymbol{\mathcal{G}}_1$	Принимается	0.040.5	
D	_	0,0496	M
B_1	$B_1 = rac{oldsymbol{arepsilon}_1}{oldsymbol{arepsilon}_{1m}} \cdot B_{1m}$	0,0297	M
Z_c	$z_c = \frac{\pi \cdot d}{e_1 \cdot \bar{t}_1}$	84	-
$\delta_{_{1\kappa\!p}}$	$\mathcal{S}_{1\kappa p} = rac{oldsymbol{e}_1}{oldsymbol{e}_{1m}} \cdot 2 \cdot oldsymbol{r}_{1m}$	0,00077	M
$ar{\mathcal{\delta}}_{_{1\kappa p}}$	$\overline{\mathcal{S}}_{1\kappa\rho} = \frac{\mathcal{S}_{1\kappa\rho}}{\mathcal{S}_{1} \cdot \overline{t}_{1} \cdot \sin \alpha_{19}}$	0,07	-
$ar{l}_1$	$ar{l}_{_1}=rac{l_{_1}}{arkappa_{_1}}$	0,447	-

Продолжение табл.6

Обозна-	Dooriëryog don gyro	Результаты	Единица
чение	Расчётная формула	расчётов	измерения
\overline{G}_1	$\overline{e}_1 = \frac{e_1}{l_1} = \frac{1}{l_1}$	2,237	-
μ_{10}	$\mu_{10} = 0.9843 - 0.0057 \cdot \overline{e}_1$	0,972	-
F_{10}	$F_{10} = \frac{G \cdot v_{1t}}{\mu_{10} \cdot C_{1t}}$	0,02	\mathbf{M}^2
l_{10}	$l_{10} = \frac{F_{10}}{\pi \cdot d \cdot e \cdot \sin \alpha_{12}}$	0,022	M
$\mu_{_{1n}}$	Определяется по графику (рис. 3)	$21,33 \cdot 10^{-6}$	кг/(м·с)
R_{e1}	$R_{e1} = \frac{C_{1t} \cdot \boldsymbol{e}_1}{\mu_{1n} \cdot \boldsymbol{v}_{1t}}$	$9,42 \cdot 10^6$	-
λ_1	$\lambda_1 = \frac{d}{l_1}$	48,036	-
$arphi_0$	Для $\alpha_{19} = 12^0 \div 20^0$:	0,960	-
C_1	$\lambda_1 > 10 \varphi_0 = 0.98 - 8.74 \cdot 10^{-3} \cdot \overline{e}_1;$ $C_1 = C_{1t} \cdot \varphi_0$	327	M/C
W_1	$W_1 = C_1 \cdot \sqrt{1 + \left(\frac{U}{C_1}\right)^2 - 2 \cdot \frac{U}{C_1} \cdot \cos \alpha_{19}}$	173	м/с
$tgoldsymbol{eta}_1$	$tg\beta_1 = \frac{\sin \alpha_{19}}{\cos \alpha_{19} - U/C_1}$	0,6076	-
$oldsymbol{eta}_1$	$\beta_1 = arctg\beta_1$	31,28	град
ζ_1	$\zeta_1 = 1 - \varphi_0^2$	0,073	-
Δh_c	$\Delta h_{_{c}} = h_{0c}^{st} \cdot {m \zeta}_{1}$	4,234	кДж/кг
h_1	$h_{_1}=h_{_{1t}}+\Delta h_{_C}$	3048	кДж/кг
h_{0p}	$h_{0_D} = ho \cdot h_{0T}^*$	3,7	кДж/кг
h_{2t}^{op}	$h_{2t} = h_1 - h_{0p}$	3044	кДж/кг
v_1	Определяются в точке 1 (рис.1) по	0,08419	${ m m}^3/{ m k}\Gamma$
t_1	P_1, h_1 c	322,4	$^{\circ}\mathrm{C}$
s_1	использованием h, s диаграммы или программы CATT2	6,626	кДж/(кг·К)
P_2	Определяются в точке 2_t (рис.1) по	3,0	МПа
v_{2t}	s_1, h_2 , c	0,08517	м ³ /кг
t_{2t}	использованием h, s диаграммы или	321	°C
W_{2t}	программы CATT2 $W_{2t} = \sqrt{2000 \cdot h_{0p} + W_1^2}$	193	м/с

Продолжение табл.6

Обозна-	Росцётная формула	Результаты	Единица
чение	Расчётная формула	расчётов	измерения
M_{2t}	$M_{2t} = \frac{W_{2t}}{\sqrt{k \cdot P_2 \cdot v_{2t} \cdot 10^6}}$	0,335	-
	/ V 2 21	0.04	
μ_2	Принимается	0,94	- M ²
F_2	$F_2 = G \cdot v_{2t} / (\mu_2 \cdot W_{2t})$	0,038	M
Δl	Принимается	0,0035	M
l_2	$l_2 = l_{10} + \Delta l$	0,026	M
$\sin \beta_2$	$\sin \beta_2 = \frac{F_2}{(\pi \cdot d \cdot l_2)}$	0,4393	-
$oldsymbol{eta}_2$	$\beta_2 = \arcsin \beta_2$	26,06	град
	Выбирается профиль рабочей		
	лопатки Р-35-25А из табл. 3		
$\boldsymbol{\varepsilon}_{2m}$		0.0271	
B_{2m}		0,0254	M
r_{2m}	Определяются по табл. 3	0.025 $2 \cdot 10^{-4}$	M
$W_{_{\scriptscriptstyle M\!U\!H.m}}$		$1,68 \cdot 10^{-7}$	M M ³
${ar t}_2$		0,65	IVI
		0,03	_
\boldsymbol{e}_2	Принимается	0,0309	M
B_2	$B_2 = \frac{e_2}{e_{2m}} \cdot B_{2m}$	0,0304	M
z_p	\mathcal{B}_{2m}	166	IVI
P	$z_p = \frac{\pi \cdot d}{\ell} (e_2 \cdot \bar{t}_2)$	100	_
${\mathcal \delta}_{2\kappa\!p}$	$\mathcal{\delta}_{2\kappa p} = rac{oldsymbol{arepsilon}_2}{oldsymbol{arepsilon}_{2m}} \cdot 2 \cdot r_{2m}$	0,00048	M
$ar{\mathcal{\delta}}_{2\kappa\!p}$	$ar{\mathcal{\delta}}_{2\kappa p} = rac{\mathcal{\delta}_{2\kappa p}}{\mathcal{\delta}_{2\kappa p}} \left(e_2 \cdot ar{t}_2 \cdot \sinoldsymbol{eta}_2 ight)$	0,055	-
2.4		0.021	
$ar{l}_2$	$ar{l}_2 = rac{l_2}{s_2}$	0,831	-
_	$\overline{e}_2 = \frac{e_2}{l_2} = \frac{1}{l_2}$	1,203	-
$\overline{\mathcal{B}}_2$	l_2 l_2 l_2		
Δeta	$\Delta\beta = 180 - \beta_1 - \beta_2$	100.54	
μ_{20}	$\Delta \beta = 180 - \beta_1 - \beta_2$ Для $\Delta \beta = 130^{\circ} \div 106^{\circ}$:	122,54	град
	$\mu_{20} = 0.9637 + 0.352 \cdot 10^{-3} \cdot (130 - \Delta\beta) -$	0,948	_
	$\mu_{20} = 0.5057 + 0.532.10 (130 - \Delta p) = -0.0154 \cdot \overline{e}_2;$	0,,,,	_
	0,010T 0 ₂ ,		
L		I	I

Продолжение табл.6

Обозна-	Dooriërrag door gra	Результаты	Единица
чение	Расчётная формула	расчётов	измерения
F_{20}	$F_{20} = \frac{G \cdot v_{2t}}{(\mu_{20} \cdot W_{2t})}$	0,038	м ²
	/ (* 20 2t /		
$\sin eta_{20}$	$\sin \beta_{20} = \frac{F_{20}}{(\pi \cdot d \cdot l_2)}$	0.4202	
$oldsymbol{eta}_{20}$	$\beta_{20} = \arcsin \beta_{20}$	0,4393 26,06	-
μ_{2n}	Определяется по графику (рис.3)	$20,00$ $23 \cdot 10^{-6}$	град кг/(м·с)
D.	$R_{e2} = \frac{W_{2t} \cdot \varepsilon_2}{\left(\mu_{2n} \cdot v_{2t}\right)}$	$3,042 \cdot 10^6$	- Kir(M C)
R_{e2}	/ (ZII ZI)	,	
λ_2	$\lambda_2 = \frac{d}{l_2}$	40,769	-
Ψ	$\psi = 0.955 + 0.2 \cdot 10^{-3} (130 - \Delta \beta) -$	0,942	
	$-(0.011-0.148\cdot10^{-3}\cdot(130-\Delta\beta))\cdot\bar{s}_2$	0,942	-
W_2	$W_2 = W_{2t} \cdot \psi$	182	м/с
ζ_2	$\zeta_2 = 1 - \psi^2$	0,113	-
$\Delta h_{_{p}}$	$\Delta h_p = \zeta_2 \cdot \frac{W_{2t}^2}{2000}$		
$rac{\Delta n_p}{}$, 2000	2,1	кДж/кг
C_2	$C_2 = U \cdot \sqrt{1 + \left(\frac{W_2}{U}\right)^2 - 2 \cdot \left(\frac{W_2}{U}\right) \cdot \cos \beta_{20}}$	80	м/с
$tglpha_2$	$tg \alpha_2 = \frac{\sin \beta_{20}}{\cos \beta_{20} - U_{W_2}}$	24,368	-
α_2	$\alpha_2 = arctg \alpha_2$	-87,65	град
R_{u}	$R_{u} = G \cdot (W_{1} \cdot \cos \beta_{1} + W_{2} \cdot \cos \beta_{20})$	24858	Н
$F_{2\kappa}$	$F_{2\kappa} = \pi \cdot d \cdot l_2$	0,086	M ²
R_a	$R_a = G \cdot (W_1 \cdot \sin \beta_1 - W_2 \cdot \sin \beta_{20}) +$	2501	**
	$+ F_{2\kappa} \cdot (P_1 - P_2) \cdot 10^6$	2591	Н
R	$R = \sqrt{R_u^2 + R_a^2}$	24992	Н
$W_{\scriptscriptstyle MUH}$	$W_{_{MIH}} = \left(\frac{\boldsymbol{e}_{2}}{\boldsymbol{e}_{2m}}\right)^{3} \cdot W_{_{MIH.m}}$	0,0003 · 10 ⁻³	3
σ	$\sigma = \frac{R \cdot l_2}{2 \cdot z_p \cdot e \cdot W_{\text{\tiny MALH}}} \cdot 10^{-6}$	4,95	МПа
$\Delta h_{\scriptscriptstyle g}$	$\Delta h_{_{\scriptscriptstyle G}} = \frac{C_2^2}{2000}$	3,2	кДж/кг
$\eta_{\scriptscriptstyle o\scriptscriptstyle n}$	$\eta_{o\pi} = 1 - \frac{\Delta h_c + \Delta h_p + \Delta h_e}{h_{0T}^*}$	0,841	-
$\eta_{\scriptscriptstyle o_{\scriptscriptstyle J}}'$	$\eta'_{o\pi} = \frac{U \cdot (W_1 \cdot \cos \beta_1 + W_2 \cdot \cos \beta_{20})}{h_{0T}^* \cdot 10^3}$	0,845	-

Обозна- чение	Расчётная формула	Результаты расчётов	Единица измерения
$\Delta\eta_{\scriptscriptstyle OR}$	$\Delta oldsymbol{\eta}_{\scriptscriptstyle O\scriptscriptstyle R} = rac{\left oldsymbol{\eta}_{\scriptscriptstyle O\scriptscriptstyle R} - oldsymbol{\eta}_{\scriptscriptstyle O\scriptscriptstyle R}' ight }{oldsymbol{\eta}_{\scriptscriptstyle O\scriptscriptstyle R}} \cdot 100$	0,4	%
R_{eu}	$R_{eu} = rac{U \cdot d}{2 \cdot \mu_{1n} \cdot v_1}$	$4,557 \cdot 10^7$	-
$\kappa_{m\delta}$	Определяется по графику (рис.4)	0,0008	_
5 mò	$\zeta_{mo} = \kappa_{mo} \cdot \frac{d^2}{F_1} \cdot x_{\phi onm}^3$	0,005	-
$\eta_{\scriptscriptstyle oi}$	$oldsymbol{\eta}_{oi} = oldsymbol{\eta}_{o\scriptscriptstyle B} - oldsymbol{\zeta}_{\scriptscriptstyle MO}$	0,836	_
Δh_{mo}	$\Delta h_{m \phi} = {\mathcal \zeta}_{m \phi} \cdot h_{0T}^*$	0,3	кДж/кг
h_2	$h_2 = h_{2t} + \Delta h_p$	3047	кДж/кг
h_2'	$h_2' = h_2 + \Delta h_{_{\scriptscriptstyle B}} + \Delta h_{_{m \dot{\scriptscriptstyle O}}}$	3050	кДж/кг
$h_{_i}$	$h_{_i}=h_0^*-h_2'$	51	кДж/кг
η_{oi}'	$\eta_{oi}^{\prime}=rac{h_{i}}{h_{0T}^{st}}$	0,836	-
$\Delta\eta_{oi}$	$\Delta oldsymbol{\eta}_{oi} = rac{\left oldsymbol{\eta}_{oi} - oldsymbol{\eta}_{oi}' ight }{oldsymbol{\eta}_{oi}} \!\cdot\! 100$	0,0	%
N_{i}	$N_i = G \cdot h_i$	4094	кВт

Библиографический список

- 1. Щинников П.А. Проектирование одноцилиндровой конденсационной турбины [Электронный ресурс]: учебное пособие/ П.А. Щинников Электрон. текстовые данные. Новосибирск: Новосибирский государственный технический университет, 2013. 83 с. Режим доступа: http://www.iprbookshop.ru/45147.- ЭБС «IPRbooks».
- 2. Коновалов П.Н. Нагнетатели и тепловые двигатели. Тепловой расчет паровой многоступенчатой противодавленческой турбины: учебнометодическое пособие к выполнению курсовой работы/ П. Н. Коновалов, А.А. Верхоланцев, М.С. Липатов. СПб.: ВШТЭ СПбГУПТД, 2018. 68 с.

Содержание

Общие положения	3
Алгоритм теплового расчета промежуточной ступени	
многоступенчатой турбины	
Библиографический список	24