#### МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ ТЕХНОЛОГИЙ И ДИЗАЙНА»

#### ВЫСШАЯ ШКОЛА ТЕХНОЛОГИИ И ЭНЕРГЕТИКИ

П.Н.Коновалов, А.А.Верхоланцев, М.С.Липатов

# НАГНЕТАТЕЛИ И ТЕПЛОВЫЕ ДВИГАТЕЛИ

# ТЕПЛОВОЙ РАСЧЕТ ПАРОВОЙ МНОГОСТУПЕНЧАТОЙ ПРОТИВОДАВЛЕНЧЕСКОЙ ТУРБИНЫ

Учебно-методическое пособие к выполнению курсовой работы

Санкт-Петербург 2018 УДК 621.43(075) ББК 31.31я7 Н 641

Нагнетатели и тепловые двигатели. Тепловой расчет паровой многоступенчатой противодавленческой турбины: учебно - методическое пособие к выполнению курсовой работы/ сост. П. Н. Коновалов, А. А. Верхоланцев, М. С. Липатов/ СПбГУПТД ВШТЭ.- СПб., 2018.- 68 с.

Приводятся обоснование выбора типа паровой турбины, исходные данные, алгоритмы и результаты теплового расчета паровой многоступенчатой противодавленческой турбины, включающей двухвенечную регулирующую ступень и две нерегулируемые одновенечные ступени, с рисунками, графиками и таблицами.

Предназначено для студентов ИЭиА и ИБФО, обучающихся по направлению подготовки 13.03.01 Теплоэнергетика и теплотехника, профили «Промышленная теплоэнергетика» и «Энергетика теплотехнологий».

Рецензенты: зав. кафедрой промышленной теплоэнергетики ВШТЭ СПбГУПТД, канд. техн. наук доцент С.Н. Смородин; профессор кафедры энергетических установок (не ядерных) ВУНЦ ВМФ «Военно-морская академия», д-р техн. наук В.В.Барановский.

Подготовлено и рекомендовано к печати кафедрой теплосиловых установок и тепловых двигателей ВШТЭ СПбГУПТД (протокол №5 от 12.03.2018).

Утверждено к изданию методической комиссией института энергетики и автоматизации ВШТЭ СПбГУПТД (протокол № 4 от 14.03.2018).

Рекомендовано к изданию Редакционно-издательским советом ВШТЭ в качестве учебно-методического пособия.

Редактор и корректор Т.А. Смирнова Техн. редактор Л.Я. Титова

Темплан 2018 г., поз. 17

| Подп. к печати 14.03.2018. | Формат 60х84/16.              | Бумага тип. № 1. |
|----------------------------|-------------------------------|------------------|
| Печать офсетная.           | Объем 4,5 печ.л; 4,5 учизд.л. | Тираж 200 экз.   |
| Изд. № 17. Цена "С". Заказ | N⁰                            |                  |

Ризограф Высшей школы технологии и энергетики СПбГУПТД, 198095, Санкт-Петербург, ул. Ивана Черных, 4.

© Высшая школа технологии и энергетики СПбГУПТД, 2018 © П.Н.Коновалов, А.А.Верхоланцев, М.С.Липатов, 2018

#### введение

Объектом курсовой работы является многоступенчатая паровая турбина с противодавлением без регулируемых отборов пара типа «Р».

Многоступенчатая противодавленческая паровая турбина – это двигатель, в котором тепловая энергия пара преобразуется в механическую работу на валу турбины. Данная турбина состоит из трех ступеней, отработавший пар в турбине поступает к потребителю теплоты с давлением  $p_T$ , вал турбины соединен жесткой муфтой с валом электрогенератора. Первой по ходу пара в проточной части турбины стоит ступень, которую называют регулирующей ступенью.

Паровые турбины как наиболее экономичные тепловые двигатели находят широкое применение на тепловых электростанциях (T $\exists$ C), электроцентралях (ТЭЦ) и атомных электростанциях (АЭС). Многие России, промышленные предприятия например, металлургические, нефтегазоперерабатывающие заводы, целлюлозно-бумажные комбинаты и другие являются теплоэнергоемкими, которые обеспечиваются теплотой и в основном от собственных ТЭЦ. Потребности электроэнергией В электрической и особенно в тепловой энергии, идущей на производственные и отопительные цели с определенными параметрами пара, обусловливают характеристики паровых турбин, которые тип И технические эксплуатируются на ТЭЦ промышленных предприятий. Наиболее широкое распространение на таких ТЭЦ получили противодавленческие турбины типа «Р», «ПР» и теплофикационные конденсационные турбины типа «П» и «ПТ».

Курсовая работа является завершающим этапом изучения дисциплины «Нагнетатели и тепловые двигатели», на котором студенты применяют знания и умения, полученные в процессе освоения данной дисциплины.

Целью работы формирование курсовой является компетенций, связанных изучением конструкции паровых турбин, С методов математического моделирования рабочих процессов в турбинах, с получением навыков по тепловому расчету многоступенчатой паровой

турбины, в результате которого определяют геометрические характеристики турбины, ее относительные КПД и некоторые другие параметры.

Задача курсовой работы - научить студентов использовать знания по закономерностям рабочих процессов в турбине для ее теплового расчета, привить навыки к самостоятельному анализу полученных результатов.

Основой курсовой работы является тепловой расчет паровой турбины, который представляет собой установление связей между входной и выходной информацией посредством формул, уравнений, неравенств и логических условий. В результате теплового расчета паровой турбины определяются геометрические И кинематические характеристики проточной части. относительные КПД ступеней и турбины в целом, электрическая мощность турбины, которая соответствовать заданной. Расчет должна может производиться с использованием компьютерной техники (программы Excel, Mathcad и др.), а также калькулятора. При выполнении указанного расчета студенты должны уметь пользоваться h,s-диаграммой для водяного пара, программой САТТ2 или другой подобной ей.

Решение поставленной задачи можно осуществить, если воспользоваться одной из методик теплового расчета паровой турбины. В настоящем учебно-методическом пособии за основу взята методика расчета турбины, изложенная в [1].

В зависимости от назначения паровой турбины могут меняться требования, предъявляемые к данному типу турбины, параметры в задании для расчета и порядок расчета. Предлагаемая методика в первую очередь предназначена для целей проектирования турбин. В связи с тем, что рядом параметров в процессе расчета приходится задаваться, а затем их значения уточняются, в методике используется способ последовательных приближений.

Методика предполагает три этапа расчета:

- первый этап, на котором производится предварительный расчет, включающий выбор формы меридионального сечения проточной части

турбины, определение теплоперепадов, относительных КПД, секундного расхода пара;

- второй этап, где производится детальный повенечный расчет ступеней турбины на среднем диаметре;

- третий этап предназначен для определения характеристик многоступенчатой турбины на номинальном режиме (коэффициента возврата тепла, относительных КПД, электрической мощности).

В задании на курсовую работу должны содержаться следующие исходные данные:

- электрическая номинальная мощность турбины  $N_{2}$ , MBT;

- давление пара перед клапанами турбины  $p_0$ , МПа;

- температура пара перед клапанами турбины  $t_0$ , °С;

- давление пара за выхлопным патрубком  $p_T$ , МПа;

- скорость потока пара на входе в сопловый аппарат регулирующей ступени *C*<sub>0</sub>, м/с;

- частота вращения ротора турбины *n*, об/мин.

## 1. ПРЕДВАРИТЕЛЬНЫЙ РАСЧЕТ ПАРОВОЙ ТУРБИНЫ

По исходным данным приступают к предварительному расчету турбины при электрической номинальной мощности *N*<sub>9</sub>. Исходные данные для расчета турбины представлены в табл.1.

| Наименование величины                      | Обозна-<br>чение      | Размерность | Значение |
|--------------------------------------------|-----------------------|-------------|----------|
| Электрическая номинальная мощность турбины | $N_{_{\mathfrak{I}}}$ | MBm         | 14       |
| Давление пара перед клапанами<br>турбины   | $p_{0}$               | МПа         | 1,5      |

Таблица 1. Исходные данные

Окончание табл. 1

| Наименование величины                    | Обозна-<br>чение           | Размерность | Значение   |
|------------------------------------------|----------------------------|-------------|------------|
| Температура пара перед клапанами турбины | $t_0$                      | $^{0}C$     | 435        |
| Давление пара за выхлопным патрубком     | $p_{\scriptscriptstyle T}$ | МПа         | 0,44       |
| Скорость потока пара на входе в          |                            |             |            |
| ступени                                  | $C_{0}$                    | м/с         | 70<br>3000 |
| Частота вращения ротора турбины          | n                          | ОО / МИН    | 5000       |

 $p_0 = 1,5 M\Pi a, t_0 = 435^{\circ}C$ По параметрам начальным пара c использованием h,s-диаграммы или программы САТТ2 определяются в точке 0 (рис.1)  $h_0 = 3331,6 \ \kappa \square \mathcal{H} / \kappa \mathcal{I}$ , Энтропия пара энтальпия пара  $s_0 = 7,3786 \ \kappa \square m / (\kappa \epsilon \cdot K)$ . Используя давление пара за выхлопным патрубком  $p_T = 0,44 \ M\Pi a$  и энтропию пара  $s_0 = 7,3786 \ \kappa \square \mathcal{H} / (\kappa_Z \cdot K)$ , находят энтальпию пара в конце изоэнтропного процесса его расширения  $h_t = 2987 \ \kappa \square m / \kappa B$  точке T<sub>t</sub>. Располагаемый теплоперепад в турбине без учета потери давления в стопорном и регулирующих клапанах определяется по разности энтальпий в точках 0 и Т<sub>t</sub>.

В процессе предварительного расчета возникает необходимость обоснованного принятия некоторых величин. На основе данных тепловых расчетов паровых турбин, справочников, учебников и научно-технической литературы [2 - 6] по турбинам принимаются:

- коэффициент потери давления в стопорном и регулирующих клапанах  $\kappa = 0.03 \div 0.05;$ 

- опытный коэффициент для выхлопных патрубков турбин с противодавлением  $\lambda = 0.05 \div 0.10;$ 

- скорость пара в выхлопном патрубке турбины с противодавлением  $C_n = 50 \div 80 M/c.$ 



Рис.1. Предварительный процесс расширения пара в многоступенчатой турбине в h,s-диаграмме

Меридиональный профиль проточной части многоступенчатых турбин может быть выполнен по-разному. Общим является то, что площадь проходного сечения должна непременно увеличиваться по ходу пара, несмотря на некоторое увеличение осевых скоростей. Это объясняется тем, что приращение удельного объема по длине проточной части турбины оказывается больше соответственного приращения осевой скорости *C*<sub>*a*</sub> пара.

Профили проточной части многоступенчатых турбин, наиболее часто встречающиеся в двигателях, показаны на рис.2. Если считать, что максимальный диаметр и окружные скорости на периферии (в точке A на рис.2) в последней ступени во всех схемах одинаковы, то проточная часть с  $d_H = const$  (рис.2, а) при заданной частоте вращения позволяет получить



Рис.2. Схемы меридионального сечения проточной части турбины: а – с постоянным наружным диаметром ( $d_H = const$ ); б – с постоянным средним диаметром ( $d = d_T = const$ ); в – с постоянным внутренним диаметром ( $d_B = const$ )

наибольшие окружные скорости во всех ступенях. Кроме того, она обусловливает относительно простую форму корпуса, радиальные зазоры остаются неизменными при осевых смещениях ротора. Коническая форма ротора усложняет технологию его изготовления. Недостатком этой схемы, как и схемы с постоянным внутренним диаметром  $d_B = const$  (рис.2,в), является большой угол  $\gamma_B$  внутренней конической поверхности. Во избежание больших потерь энергии потока рабочего тела необходимо иметь  $\gamma_B \leq (8 \div 12^0)$ .

При углах раскрытия проточной части больше 12<sup>°</sup> поток не успевает приспособиться к резкому изменению геометрии проточной части турбины. Вероятность отрыва потока от внутренней конической поверхности особенно велика (рис.2,а), так как в корневых сечениях обычно мала степень реактивности, а крутизна наклона поверхности здесь наибольшая.

В случае, когда d = const (рис.2,б), легче осуществлять плавные очертания меридионального сечения проточной части. Однако коническая форма ротора и статора при их относительном осевом смещении делает уплотнения

радиальных зазоров ненадежными. Это обстоятельство заставляет менять коническую форму на ступенчатую, что усложняет технологию изготовления турбины.

При  $d_B = const$  (рис.2,в) ротор имеет простую форму, удобную для изготовления и обработки, диски и замки нескольких ступеней выполняются одинаковыми, проточная часть может формироваться из одинаковых ступеней, а производится только подрезка вершин лопаток. Недостаток этой схемы аналогичен недостатку схемы при  $d_H = const$  (рис.2,а).

В связи с тем, что при схеме меридионального сечения проточной части турбины d=const упрощается тепловой расчет нерегулируемых ступеней, выбирается проточная часть с d=const.

Алгоритм и результаты предварительного теплового расчета многоступенчатой паровой турбины представлены в табл.2.

| Наименование величины, обозначение       | Способ определения         | Размер-<br>ность | Результаты расчетов |
|------------------------------------------|----------------------------|------------------|---------------------|
| Энтальпия пара перед                     | Определяется по $p_0, t_0$ |                  |                     |
| клапанами турбины, <i>h</i> <sub>0</sub> | в точке 0 (рис.1) c        |                  |                     |
|                                          | использованием h,s-        |                  |                     |
|                                          | диаграммы или              | кДж/кг           | 3331,6              |
|                                          | программы САТТ2            |                  |                     |
| Энтропия пара перед                      | Определяется по $p_0, t_0$ |                  |                     |
| клапанами турбины, <i>s</i> <sub>0</sub> | в точке 0 (рис.1) c        | п                |                     |
|                                          | использованием h,s-        | <u>кДж</u><br>К  | 7 2706              |
|                                          | диаграммы или              | кг∙К             | /,3/86              |
|                                          | программы САТТ2            |                  |                     |
| Энтальпия пара в конце                   | Определяется по            |                  |                     |
| изоэнтропного процесса                   | $p_T, s_0$ в точке $T_t$   |                  |                     |
| расширения в турбине, $h_t$              | (рис.1) с                  |                  |                     |
|                                          | использованием h,s-        |                  |                     |
|                                          | диаграммы или              | кЛж/кг           | 2987                |
|                                          | программы САТТ2            | қдлқ қі          | 2901                |
| Располагаемый теплоперепад               |                            |                  |                     |
| в турбине без учета потери               |                            | кДж/кг           | 344.6               |
| давления в клапанах, $H_0$               | $h_0 - h_t$                |                  | ,.                  |

Таблица 2. Алгоритм и результаты предварительного расчета турбины

| Наименование величины,                | C                                                                        | Размер-            | Результаты |
|---------------------------------------|--------------------------------------------------------------------------|--------------------|------------|
| обозначение                           | Спосоо определения                                                       | ность              | расчетов   |
| Коэффициент потери                    |                                                                          |                    |            |
| давления в стопорном и                |                                                                          |                    |            |
| регулирующих клапанах, к              | Принимается                                                              | -                  | 0,045      |
| Потеря давления в клапанах,           |                                                                          |                    |            |
| $\Delta p_{\kappa}$                   | $0,045 \cdot p_0$                                                        | MHa                | 0,0675     |
| Давление пара перед соплами           |                                                                          | МПа                | 1 4225     |
| регулирующей ступени, $p_0$           | $p_0 - \Delta p_\kappa$                                                  | MITIA              | 1,4325     |
| Опытный коэффициент, $\lambda$        | Принимается                                                              | -                  | 0,07       |
| Скорость пара в выхлопном             | -                                                                        | Ma                 | 70         |
| патрубке, С <sub>п</sub>              | Принимается                                                              | M/C                | 70         |
| Потеря давления в                     | $p_{-} - p_{-} = \lambda \cdot \left(\frac{C_n}{2}\right)^2 \cdot p_{-}$ | MПа                | 0.0151     |
| выхлопном патрубке, $\Delta p_n$      | $P_z  P_T = \mathcal{N} \left( 100 \right)  P_T$                         | IVIIIa             | 0,0151     |
| Давление пара за последней            |                                                                          |                    |            |
| ступенью, <i>p</i> <sub>z</sub>       | $p_T + \Delta p_n$                                                       | МΠа                | 0.455      |
| Энтальпия пара в конце                | Определяется по $p_z, s_0$                                               |                    | 0,100      |
| изоэнтропного процесса                | в точке Z <sub>t</sub> (рис.1) с                                         |                    |            |
| расширения в турбине без              | использованием h,s-                                                      |                    |            |
| учета потерь энергии в                | диаграммы или                                                            |                    |            |
| выхлопном патрубке, $h_{zt}$          | программы САТТ2                                                          | кДж/кг             | 2995,4     |
| Потеря энергии пара в                 |                                                                          |                    |            |
| выхлопном патрубке, $\Delta H_n$      | $h_{zt} - h_t$                                                           | кДж/кг             | 8,4        |
| Энтропия пара перед соплами           | Определяется по                                                          | <u>кДж</u>         |            |
| регулирующей ступени, $s_0$           | $p_0, h_0$ в точке 0                                                     | кг∙К               | 7,3996     |
| Температура пара перед                | (рис.1) с                                                                |                    |            |
| соплами регулирующей                  | использованием h,s-                                                      | <sup>0</sup> C     | 121 58     |
| ступени, $t_0$                        | диаграммы или                                                            | C                  | 434,30     |
| Удельный объем пара перед             | программы САТТ2                                                          |                    |            |
| соплами регулирующей                  |                                                                          | м <sup>3</sup> /кг | 0 2245     |
| ступени, $v_0$                        |                                                                          |                    | 0,22-15    |
| Энтальпия пара в конце                |                                                                          |                    |            |
| изоэнтропного процесса                |                                                                          |                    |            |
| расширения в проточной                | Определяется по $p_z, s_0$                                               |                    |            |
| части турбины без учета               | в точке $Z_t$ (рис. 1) с                                                 |                    |            |
| потерь энергии в клапанах и           | ИСПОЛЬЗОВАНИСМ П,8-                                                      | кДж/кг             | 3006,5     |
| выхлопном патрубке, $h_{zt}$          | диаграммы или<br>программы САТТ?                                         |                    |            |
| Потеря энергии пара в                 | программы САТТ2                                                          |                    |            |
| клапанах турбины, $\Delta H_{\kappa}$ | h' - h                                                                   | кДж/кг             | 11,1       |
| Располагаемый теплоперепад            | $n_{zt}$ $n_{zt}$                                                        |                    |            |
| в проточной части, $H_0$              |                                                                          | кДж/кг             | 325,1      |

### Окончание табл. 2

| Наименование величины,              | Сполобопроволица                                                                              | Размер-            | Результаты |
|-------------------------------------|-----------------------------------------------------------------------------------------------|--------------------|------------|
| обозначение                         | Спосоо определения                                                                            | ность              | расчетов   |
| Располагаемый                       |                                                                                               |                    |            |
| теплоперепад в проточной            | -2 (                                                                                          | <b>H</b> (         | 225.55     |
| части турбины по                    | $H_0' + \frac{C_0^2}{2000}$                                                                   | кДж/кг             | 327,55     |
| заторможенным параметрам,           | / 2000                                                                                        |                    |            |
|                                     | Определяется (рис.3)                                                                          | _                  | 0.80       |
| относительный                       |                                                                                               |                    | 0,00       |
| эффективный КПД Турбины,            | Определяется (рис.4)                                                                          | -                  | 0,99       |
| 70e<br>Механический КПЛ             | ,                                                                                             |                    |            |
| турбины п                           | $\eta_{_{oe}}/$                                                                               | -                  | 0,808      |
| Относительный внутренний            |                                                                                               |                    |            |
| КПЛ турбины <i>п</i>                | определяется (рис.5)                                                                          | -                  | 0,97       |
| КПЛ электрогенератора <i>п</i>      |                                                                                               |                    |            |
| Относительный                       | ${\pmb \eta}_{oe} \cdot {\pmb \eta}_{\scriptscriptstyle {\scriptscriptstyle {\mathcal S}^2}}$ |                    | 0.784      |
| электрический КПЛ                   |                                                                                               | -                  | 0,784      |
| турбины, $\eta_{a}$                 |                                                                                               |                    |            |
| Внутренний                          | ${H}_{_0}\cdot\eta_{_{oi}}$                                                                   | кДж/кг             | 278,4      |
| (использованный)                    | /                                                                                             |                    |            |
| теплоперепад, <i>H</i> <sub>i</sub> | $H_i H_o^*$                                                                                   | -                  | 0,856      |
| Относительный внутренний            | / 0                                                                                           |                    |            |
| КПД проточной части                 |                                                                                               |                    |            |
| турбины, η                          |                                                                                               |                    |            |
| Энтальпия пара в конце              | $h_0 - H_i$                                                                                   | кЛж/кг             | 3053.2     |
| действительного процесса            |                                                                                               | қдлі кі            | 5055,2     |
| расширения в проточной              | Определяется по                                                                               |                    |            |
| части туроины, $n_z$                | $p_z, h_z$ в точке Z                                                                          |                    |            |
| у дельный объем пара в              | (рис.1) с                                                                                     |                    |            |
| процесса расширения в               | использованием n,s-                                                                           | 3 /                |            |
| процесса расширения в               | диаграммы или<br>программы САТТ?                                                              | м <sup>3</sup> /кг | 0,5687     |
| V <sub>z</sub>                      | $N_{\rm a} \cdot 1000$                                                                        |                    | 52.0       |
| <i>4</i> ,                          | $\frac{\overline{\eta_{o3}}\cdot H_0}{\overline{\eta_{o3}}\cdot H_0}$                         | KI/C               | 52,0       |
|                                     |                                                                                               |                    |            |
| Секундныи расход пара, $G_0$        |                                                                                               |                    |            |
|                                     |                                                                                               |                    |            |



Рис.3. Зависимость относительного эффективного КПД турбины от ее мощности



Рис.4. Зависимость механического КПД турбины от ее мощности



Рис.5. Зависимость КПД электрогенератора от его мощности

# 2. ДЕТАЛЬНЫЙ ТЕПЛОВОЙ РАСЧЕТ ПРОТОЧНОЙ ЧАСТИ МНОГОСТУПЕНЧАТОЙ ПАРОВОЙ ТУРБИНЫ

#### 2.1. Расчет двухвенечной регулирующей ступени

Детальный расчет турбины производится, как правило, на режиме номинальной мощности. Он строится на базе данных, полученных на этапе предварительного расчета турбины. Детальный расчет турбины осуществляется по ее венцам с определением потерь энергии пара, геометрических размеров, параметров треугольников скоростей И относительных КПД ступеней.

Регулирующие ступени выполняют как одновенечными, так и двухвенечными. Одновенечные активные регулирующие ступени применяют при срабатывании теплового перепада 80÷120 кДж/кг. Двухвенечные ступени скорости применяют для срабатывания сравнительно более высоких теплоперепадов 100÷300 кДж/кг.

Тип регулирующей ступени выбирается с учетом следующих особенностей влияния данной ступени на конструкцию и экономичность многоступенчатой турбины:

1. Использование двухвенечной ступени скорости в качестве регулирующей ступени, в которой срабатывается большой теплоперепад, приводит к сокращению числа нерегулируемых ступеней в турбине, а значит к уменьшению ее осевого размера, металлоемкости, стоимости изготовления.

2. КПД двухвенечной ступени скорости на режимах, близких к расчетному (номинальному), меньше одновенечной ступени, поэтому КПД турбины в целом тоже будет меньше. Однако на частичных нагрузках при малых отношениях скоростей  $x_{\phi} \angle 0,32$  КПД двухвенечной ступени может быть больше одновенечной.

3. Срабатывание большого теплоперепада в двухвенечной ступени обусловливает снижение утечек пара через переднее концевое уплотнение,

концевых потерь энергии в первых нерегулируемых ступенях, так как при этом уменьшается давление пара в камере регулирующей ступени и, следовательно, перед концевым уплотнением, увеличивается удельный объем пара на входе в первую нерегулируемую ступень и вследствие этого увеличиваются высоты лопаток данной ступени. Этот эффект особенно заметен для турбин малой мощности.

4. Большой теплоперепад в ступени приводит к значительному снижению температуры пара за ступенью, что позволяет использовать относительно дешевые низколегированные стали для изготовления ротора и корпуса турбины.

Учитывая вышеизложенное, в качестве регулирующей ступени выбирается двухвенечная ступень скорости, а в качестве двух нерегулируемых ступеней – одновенечные ступени давления.

В процессе расчета регулирующей ступени необходимо принять значения располагаемых теплоперепадов одновенечных ступеней давления, которые лежат в пределах  $h_{0T} = 50 \div 60 \kappa \beta m/\kappa^2$ . По данным [1] при грубо отлитых сопловых лопатках принимается коэффициент скорости  $\varphi = 0.92 \div 0.94$ , при хорошо отлитых и обработанных -  $\varphi = 0.94 \div 0.96$ , при тщательно фрезерованных и отшлифованных -  $\varphi = 0.96 \div 0.98$ . Угол выхода потока пара из соплового аппарата регулирующей ступени выбирается в пределах  $\alpha_1 = 12 \div 20^\circ$ , из сопловых аппаратов нерегулируемых ступеней - $\alpha_1 = 11 \div 18^{\circ}$ . Степень реактивности двухвенечной ступени скорости на среднем диаметре принимается  $\rho = 0.08 \div 0.15$ , при этом  $\rho = \rho_{1p} + \rho_{\mu} + \rho_{2p}$ , где  $\rho_{1p}$  - степень реактивности в первом рабочем венце,  $\rho_{\mu}$  - степень реактивности в направляющей (поворотной) решетке,  $\rho_{2p}$ - степень реактивности во втором рабочем венце. Степень реактивности нерегулируемых одновенечных ступеней для турбин с противодавлением принимаются на среднем диаметре  $\rho = 0.05 \div 0.15$ . Она несколько увеличивается от ступени к ступени или принимается постоянной.

После определения средних диаметров регулирующей и первой нерегулируемой ступеней необходимо произвести их сравнение, если средний диаметр регулирующей ступени  $d_p > d_1$  - среднего диаметра нерегулируемой ступени, то расчет продолжается, если меньше, то нужно уменьшить располагаемый теплоперепад первой нерегулируемой ступени и повторить расчет. Указанные соотношения диаметров позволяют при небольших массовых расходах пара и относительно высоких его давлениях (малых удельных объёмах) получить приемлемые длины лопаток последующих нерегулирумых ступеней.

При определении скорости звука на выходе из каналов соплового аппарата, выходной площади межлопаточных каналов указанного аппарата необходимо принять:

- коэффициент расхода в сопловом аппарате  $\mu_1 = 0.96 \div 0.98$ ;

- коэффициент расхода в рабочей решетке  $\mu_2 = 0.90 \div 0.97$ ;
- коэффициент расхода в направляющей решетке  $\mu'_1 = 0.92 \div 0.97$ ;
- показатель изоэнтропы перегретого пара k = 1,3.

Для уменьшения утечек пара из проточной части турбины в местах выхода вала из корпуса устанавливают концевые уплотнения лабиринтового типа со ступенчатым или гладким валом (рис.6). В турбинах чаще устанавливают лабиринтовые уплотнения с гладким валом, так как они имеют более высокие показатели надежности.



Рис.6. Схема лабиринтового уплотнения со ступенчатым (а) и гладким (б) валами

При определении утечек пара через переднее и заднее концевые уплотнения турбины предполагается задаться некоторыми величинами:

- коэффициент расхода в концевом уплотнении  $\mu_y = 0.65 \div 0.85$ ;

- радиальный зазор в уплотнении  $\delta_y = 0,2 \div 0,5$  мм;
- диаметр вала на участке уплотнения  $d_{y} = (0,3 \div 0,5) \cdot d$ ;

- отношение  $\frac{\delta_y}{s} = 0.05$  (*s* - расстояние между гребнями);

- число гребней уплотнения  $z = 10 \div 80$ .



Рис.7. Поправочный коэффициент *К*<sub>у</sub> для расчета лабиринтового уплотнения на гладком валу

Кроме вышеперечисленных величин в процессе расчета двухвенечной ступени скорости и одновенечных ступеней принимаются значения следующих величин:

- хорда профиля сопловой лопатки активной ступени  $e_1 = 40 \div 80 \text{ мм}$ ,
- реактивной ступени  $e_1 = 20 \div 60 \text{ мм};$
- хорда профиля рабочей лопатки  $B_2 = 20 \div 60 \text{ мм}$ ;
- относительный шаг сопловой решетки  $\bar{t}_1 = 0.5 \div 0.9$ ;

- относительный шаг рабочей решетки  $\bar{t}_2 = 0,4 \div 0,75$ ;

- перекрыша  $\Delta l = l_2 - l_1 = 3 \div 6$  мм;

допустимое изгибающее напряжение в рабочих лопатках ступеней с парциальным подводом пара (регулирующая ступень) [σ]=15÷20 *МПа*,
 в рабочих лопатках нерегулируемых ступеней [σ]=30÷80 *МПа*;

- относительное расстояние между диском и диафрагмой  $\delta_s = \frac{s}{r} = 0.05$ ,

- расстояние между диском и диафрагмой s,

- средний радиус ступени г.

Профили сопловых и рабочих лопаток выбираются из табл. 6. В турбиностроении используются аэродинамически отработанные профили в МЭИ, ЦКТИ им. И.И. Ползунова, ЦНИИ им. А.Н. Крылова, ЛМЗ. Все профили делятся на три группы:

- профили лопаток сопловых и рабочих решеток, предназначенные для докритических режимов обтекания, число M < 1, обозначаются буквой A;

- профили лопаток сопловых и рабочих решеток, предназначенные для околокритических режимов обтекания, число  $M < 1,25 \div 1,3$ , обозначаются буквой *Б*;

- профили лопаток рабочих решеток активных ступеней, работающих при сверхзвуковых скоростях на входе в решетку, число  $M = 1,3 \div 1,6$ , обозначаются буквой *B*.

В табл. 6 профили лопаток имеют следующее обозначение: первая буква *С* - профиль для сопловых и рабочих реактивных лопаток, *P* - профиль для рабочих активных лопаток; первые две цифры – значение расчетного угла входа потока, последние – значение угла выхода потока из решетки; последняя буква (А, Б, В) обозначает скоростной режим, на который рассчитан профиль.

Профиль лопатки в табл. 6 выбирается в зависимости от чисел Маха  $M_{1t}, M_{2t}$ , углов входа потока пара в решетку  $\alpha_0, \beta_1$  и углов выхода  $\alpha_{12}, \beta_{22}$ 

Алгоритм и результаты детального теплового расчета регулирующей двухвенечной ступени скорости паровой турбины показаны в табл.3.

| 0                                                                              | Pasmen-                                                                                                                                                                                                                                                                                                                                                                                                                                | Daaren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Спосоо определения                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                        | гезультаты                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                | ность                                                                                                                                                                                                                                                                                                                                                                                                                                  | расчетов                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Принимается                                                                    | кДж/кг                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Принимается                                                                    | кДж/кг                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $H'_0 - h_{0T1} - h_{0T2}$<br>$H^*_0 - h_{0T1} - h_{0T2} =$                    | кДж/кг                                                                                                                                                                                                                                                                                                                                                                                                                                 | 219,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $= h_{0Tp} + \frac{C_0^2}{2000}$                                               | кДж/кг                                                                                                                                                                                                                                                                                                                                                                                                                                 | 221,55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Принимается                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Принимается                                                                    | град.                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Принимается                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Принимается                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\frac{\varphi \cdot z \cdot z \cdot z_{13}}{2 \cdot z \cdot \sqrt{1 - \rho}}$ | -                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $x_{\phi onp}$ уменьшается за<br>счет потерь от трения                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| диска и парциального<br>подвода пара,<br>поэтому принимается                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\sqrt{2000\cdot h^*_{_{0Tp}}}$                                                | м/с                                                                                                                                                                                                                                                                                                                                                                                                                                    | 665,66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                | Способ определения<br>Принимается<br>$H'_0 - h_{0T1} - h_{0T2}$<br>$H'_0 - h_{0T1} - h_{0T2} =$<br>$= h_{0Tp} + \frac{C_0^2}{2000}$<br>Принимается<br>Принимается<br>Принимается<br>Принимается<br>$\frac{\varphi \cdot \cos \alpha_{15}}{2 \cdot z \cdot \sqrt{1 - \rho}}$<br>$x_{\phi onp}$ уменьшается за<br>счет потерь от трения<br>диска и парциального<br>подвода пара,<br>поэтому принимается<br>$\sqrt{2000 \cdot h_{0Tp}^*}$ | Способ определения         Кажлер<br>ность           Принимается         КДж/КГ           Принимается         КДж/КГ $H'_0 - h_{0T1} - h_{0T2}$ КДж/КГ $H'_0 - h_{0T1} - h_{0T2} =$ КДж/КГ $= h_{0Tp} + \frac{C_0^2}{2000}$ КДж/КГ           Принимается         -           Принимается         -           Принимается         -           Принимается         -           Принимается         -           Принимается         -           Принимается         - $M_{0} - cos \alpha_{1_{0}}$ - $2 \cdot z \cdot \sqrt{1 - \rho}$ - $x_{\phi onp}$ уменьшается за         -           счет потерь от трения         - $\sqrt{2000 \cdot h_{0Tp}^*}$ м/с |

Таблица 3. Алгоритм и результаты детального теплового расчета регулирующей ступени

| Наименование величины, обозначение                                                                                     | Способ определения                                                                                    | Размер- | Результаты расчетов            |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------|--------------------------------|
| Окружная скорость на                                                                                                   | $C_{\phi} \cdot x_{\phi onp}$                                                                         | м/с     | 159.76                         |
| среднем диаметре<br>регулирующей ступени, U <sub>p</sub><br>Средний диаметр<br>регулирующей ступени. d                 | $U_{p} \cdot 60 / (\pi \cdot n)$                                                                      | М       | 1,02                           |
| Коэффициент скорости в сопловом аппарате первой                                                                        | Принимается                                                                                           | -       | 0,96                           |
| нерегулируемой ступени, $\varphi$<br>Угол выхода потока пара из<br>каналов соплового аппарата<br>первой нерегулируемой | Принимается                                                                                           | град.   | 13                             |
| ступени, $\alpha_{1,3}$<br>Степень реактивности                                                                        | Принимается                                                                                           | -       | 0,05                           |
| Оптимальное отношение<br>скоростей в первой<br>нерегулируемой ступени,                                                 | $\frac{\varphi \cdot \cos \alpha_{1_{2}}}{2 \cdot \sqrt{1 - \rho}}$<br>$x_{\phi onml}$ уменьшается за | -       | 0,48                           |
| $x_{\phi onml}$                                                                                                        | счет потерь от трения<br>диска, поэтому<br>принимается                                                | -       | 0,47                           |
| Фиктивная скорость в первой нерегулируемой ступени, $C_{\phi_1}$                                                       | $\sqrt{2000\cdot h_{_{0T1}}}$                                                                         | м/с     | 325,58                         |
| Окружная скорость на среднем диаметре первой нерегулируемой ступени, U <sub>1</sub>                                    | $C_{\phi 1} \cdot x_{\phi onml}$                                                                      | м/с     | 153,02                         |
| Средний диаметр первой нерегулируемой ступени, <i>d</i> <sub>1</sub>                                                   | $(\pi \cdot n)$                                                                                       | М       | 0,974                          |
| Сравнение средних $d_1$<br>диаметров ступеней $d_p$ и $d_1$                                                            | Расчет продолжается при $d_p > d_1$ в                                                                 |         |                                |
|                                                                                                                        | противном случае<br>уменьшают $h_{0T1}$ и<br>расчет повторяют с<br>определения $h_{0Tp}$              | М       | d <sub>p</sub> >d <sub>1</sub> |
| степень реактивности в<br>первой рабочей решетке<br>регулирующей ступени, $\rho_{1p}$                                  | Принимается                                                                                           | -       | 0,02                           |

| Наименование величины,<br>обозначение                                                           | Способ определения                                                                                 | Размер-<br>ность   | Результаты расчетов |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------|---------------------|
| Степень реактивности в направляющей решетке регулирующей ступени, $\rho_{\mu}$                  | Принимается                                                                                        | -                  | 0,03                |
| Степень реактивности во второй рабочей решетке регулирующей ступени, $\rho_{2n}$                | Принимается                                                                                        | -                  | 0,05                |
| Полный располагаемый теплоперепад в сопловом аппарате, $h_{0.}^*$                               | $ig(1\!-\! hoig)\!\cdot h^*_{\scriptscriptstyle 0Tp}$                                              | кДж/кг             | 199,4               |
| Располагаемый теплоперепад<br>в первой рабочей решетке,<br><i>h</i> <sup>'</sup> <sub>0n1</sub> | $ ho_{1p}\cdot h^*_{_{0Tp}}$                                                                       | кДж/кг             | 4,43                |
| Располагаемый теплоперепад в направляющей решетке, $h'_{0_H}$                                   | $ ho_{_{\scriptscriptstyle H}}\cdot h_{_{0Tp}}^{*}$                                                | кДж/кг             | 6,65                |
| Располагаемый теплоперепад во второй рабочей решетке, $h'_{0p2}$                                | ${ ho_2}_p\cdot h^*_{_{0Tp}}$                                                                      | кДж/кг             | 11,08               |
| Энтальпия пара на входе в сопловый аппарат по параметрам торможения, $h_0^*$                    | $h_0 + \frac{C_0^2}{2000}$                                                                         | кДж/кг             | 3334,05             |
| Давление пара на входе в<br>сопловый аппарат по                                                 | $p'_{0} + \frac{C_{0}^{2}}{2 \cdot v'_{0} \cdot 10^{6}}$ ИЛИ                                       |                    |                     |
| параметрам торможения, $p_0^*$<br>Температура пара на входе в                                   | определяется в точке $0^*$ (рис.8) по $h_0^*, s_0'$ с                                              | МΠа                | 1,443               |
| сопловый аппарат по параметрам торможения, $t_0^*$                                              | использованием h,s<br>диаграммы или<br>программы САТТ2                                             | °C                 | 435,8               |
| Энтальпия пара за сопловым аппаратом, <i>h</i> <sub>1t</sub>                                    | $h_0^* - h_{0c}^*$                                                                                 | кДж/кг             | 3134,65             |
| Давление пара за сопловым аппаратом, $p_1$                                                      | Определяются в<br>точке 1 <sub>t</sub> (рис.8) по<br><i>h</i> <sub>1</sub> <i>s</i> <sub>2</sub> с | МΠа                | 0,7415              |
| сопловым аппаратом, $v_{1t}$                                                                    | использованием h,s                                                                                 | м <sup>3</sup> /кг | 0,3741              |
| Температура пара, <sup><i>t</i><sub>1<i>t</i></sub><br/>Энтальпия пара за первой</sup>          | программы САТТ2                                                                                    | °C                 | 336,6               |
| рабочей решеткой на изоэнтропе $0^* - 2'_{tu}$ , $h_{2tu}$                                      | $h_{1t}-h_{0p1}^{\prime}$                                                                          | кДж/кг             | 3130,22             |
|                                                                                                 |                                                                                                    |                    |                     |

Продолжение табл.3

| Наименование величины,                       | С <u>доооб</u> о <del>да</del> одология                                          | Размер-            | Результаты |
|----------------------------------------------|----------------------------------------------------------------------------------|--------------------|------------|
| обозначение                                  | Спосоо определения                                                               | ность              | расчетов   |
| Давление пара за первой                      | Определяется в точке                                                             |                    |            |
| рабочей решеткой, $p_2$                      | $2_{tu}$ (рис.8) по $h_{2tu}, s'_0$ с                                            |                    |            |
|                                              | использованием h,s                                                               | МΠо                | 0.720      |
|                                              | диаграммы или                                                                    | Ivii la            | 0,750      |
| Энтальпия пара за                            | программы САТТ2                                                                  |                    |            |
| направляющей решеткой на                     | $h_{-} - h'_{-}$                                                                 | кДж/кг             | 3123,57    |
| изоэнтропе $0^* - 2'_{tu}$ , $h'_{1tu}$      | V2tu V0н                                                                         |                    |            |
| Давление пара за                             | Определяется в точке                                                             |                    |            |
| направляющей решеткой, $p'_1$                | 1' <sub>tи</sub> (рис.8) по <i>h</i> ' <sub>tu</sub> , <i>s</i> ' <sub>0</sub> с | MIT.               | 0.712      |
|                                              | использованием h,s                                                               | MITIA              | 0,712      |
|                                              | диаграммы или                                                                    |                    |            |
|                                              | программы САТТ2                                                                  |                    |            |
| энтальния пара за второи рабочей решеткой на | 1/ 1/                                                                            | кДж/кг             | 3112,49    |
| изоэнтропе $0^* - 2'$ , $h'_2$               | $n_{1tu} - n_{0p2}$                                                              |                    |            |
| Давление пара за второй                      |                                                                                  |                    |            |
| рабочей решеткой, р'                         | $2'_{tr}$ (рис 8) по $h'_{tr}$ s' с                                              | МΠа                | 0.684      |
|                                              | использованием h.s                                                               | 1 <b>v111a</b>     | 0,004      |
|                                              | диаграммы или                                                                    |                    |            |
| Отношение, $\frac{\delta_y}{s}$              | программы САТТ2                                                                  | -                  | 0,05       |
| Поправочный коэффициент                      | Принимается                                                                      |                    |            |
| для уплотнения с гладким                     | Определяется по $\frac{\delta_y}{s}$                                             | -                  | 1,78       |
| валом, $K_y$                                 | на рис.7                                                                         |                    |            |
| Коэффициент расхода, $\mu_y$                 | Принимается                                                                      | _                  | 0.7        |
| Радиальный зазор, $\delta_y$                 | Принимается                                                                      | MM                 | 0,3        |
| Диаметр вала на участке                      | $0,3 \cdot d_p$                                                                  |                    |            |
| уплотнения, <i>d</i> <sub>y</sub>            | r                                                                                | Μ                  | 0,293      |
| Кольцевая площадь                            |                                                                                  |                    |            |
| радиального зазора в                         | $\pi \cdot d_y \cdot \delta_y$                                                   | $\mathbf{M}^2$     | 0.00028    |
| уплотнении, $F_y$                            |                                                                                  | 171                | 0,00020    |
| Удельный объем пара перед                    | $v_{1y} = v_{1t}$                                                                | м <sup>3</sup> /кг | 0,374      |
| передним концевым                            |                                                                                  |                    |            |
|                                              | n - n                                                                            |                    | 0 5 4 9    |
| давление пара перед                          | $P_{1y} - P_1$                                                                   | MHa                | 0,742      |
| уплотнением, р <sub>1</sub>                  |                                                                                  |                    |            |
| • • • • • • •                                |                                                                                  |                    |            |

| Наименование величины, обозначение                                                                                               | Способ определения                                                                                       | Размер-<br>ность   | Результаты расчетов |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------|---------------------|
| Давление пара за передним концевым уплотнением, <i>p</i> <sub>2y</sub>                                                           | Принимается равным<br>атмосферному<br>давлению $p_{2y} = p_a$                                            | МПа                | 0,1                 |
| Отношение давления пара за<br>и перед уплотнением, <i>є</i><br>Число гребней переднего                                           | $p_{2y}/p_{1y}$                                                                                          | -                  | 0,135               |
| уплотнения, <i>z</i> <sub>1</sub><br>Утечки пара через переднее                                                                  | принимается<br>$p_{1y} \cdot (1 - \varepsilon^2)$                                                        | ,                  | 0.0.5               |
| концевое уплотнение, $G_{1y}$                                                                                                    | $\mu_{y} \cdot K_{y} \cdot F_{y} \cdot \sqrt{\frac{-iy}{v_{1y}} \cdot z}$                                | кг/с               | 0,0679              |
| $U$ тношение, $\frac{y}{s}$                                                                                                      | Принимается $\delta_{y}$                                                                                 | -                  | 0,05                |
| для уплотнения с гладким<br>валом, <i>К</i> <sub>y</sub>                                                                         | на рис.7                                                                                                 | -                  | 1,76                |
| Число гребней заднего<br>уплотнения, <i>z</i> <sub>2</sub>                                                                       | Принимается                                                                                              | -                  | 32                  |
| Давление пара перед задним концевым уплотнением, <i>p</i> <sub>1y</sub>                                                          | $p_{1y} = p_z$                                                                                           | МПа                | 0,455               |
| Давление пара за задним концевым уплотнением, <i>p</i> <sub>2y</sub>                                                             | Принимается равным<br>атмосферному                                                                       |                    |                     |
| 0                                                                                                                                | давлению $p_{2y} = p_a$                                                                                  | МΠа                | 0,1                 |
| Отношение давления пара за<br>и перед уплотнением, <i>Є</i><br>Удельный объем пара перед                                         | $p_{2y}/p_{1y}$                                                                                          | -                  | 0,220               |
| задним концевым<br>уплотнением, <i>v</i> <sub>1</sub> ,                                                                          | $v_{1y} = v_z$                                                                                           | м <sup>3</sup> /кг | 0,57                |
| Утечки пара через заднее<br>концевое уплотнение, $G_{2y}$                                                                        | $\mu_{y} \cdot K_{y} \cdot F_{y} \cdot \sqrt{\frac{p_{1y} \cdot (1 - \varepsilon^{2})}{v_{1y} \cdot z}}$ | кг/с               | 0,524               |
| Количество пара,<br>проходящего через сопловый<br>аппарат с учетом его утечки<br>через переднее концевое<br>уплотнение. <i>G</i> | $G_{0} + G_{1y}$                                                                                         | кг/с               | 52,07               |
| Длина переднего концевого<br>уплотнения, <i>L</i> <sub>1y</sub>                                                                  | $s \cdot z_1 = \left( \frac{\delta_y}{0.05} \right) \cdot z_1$                                           | М                  | 0,3                 |
| Длина заднего концевого уплотнения, L <sub>2y</sub>                                                                              | $s \cdot z_2 = \left(\frac{\delta_y}{0.05}\right) \cdot z_2$                                             | М                  | 0,192               |

Продолжение табл.3

| Наименование величины,                                                                          | Способ определения                                                            | Размер-            | Результаты                                                                      |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------|
| обозначение                                                                                     | Спосоо определения                                                            | ность              | расчетов                                                                        |
| Теоретическая абсолютная скорость пара на выходе из соплового аппарата, <i>C</i> <sub>1</sub> , | $\sqrt{2000\cdot h_{0c}^{st}}$                                                | м/с                | 631,5                                                                           |
| Скорость звука в выходных сечениях каналов соплового                                            | $\sqrt{k \cdot p_1 \cdot v_{1t} \cdot 10^6}$                                  | м/с                | 600,5                                                                           |
| аппарата, <i>a</i> <sub>1t</sub><br>Число Маха в выходных<br>сечениях каналов соплового         | $C_{1t} / a_{1t}$                                                             | -                  | 1,052                                                                           |
| аппарата, <i>M</i> <sub>1</sub> ,<br>Постоянная величина,<br>характеризующая свойства           | $\sqrt{k \cdot \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}}^{-}$             | -                  | 0,667                                                                           |
| Коэффициент расхода в сопловом аппарате, $\mu_1$                                                | Принимается<br>Определяется в                                                 | -                  | 0,975                                                                           |
| Удельный объем пара на входе в сопловый аппарат по                                              | точке 0* (рис.8) по<br>$h_0^*, s_0'$ с                                        |                    |                                                                                 |
| параметрам торможения, $v_0$                                                                    | диаграммы или<br>программы САТТ2                                              | м <sup>3</sup> /кг | 0,223                                                                           |
| Выходная площадь межлопаточных каналов соплового аппарата, <i>F</i> <sub>1</sub>                | $\frac{G_0'}{\alpha \cdot \mu_1 \cdot \sqrt{\frac{p_0^* \cdot 10^6}{v_0^*}}}$ | M <sup>2</sup>     | 0,0315                                                                          |
| Произведение степени парциальности на высоту сопловой лопатки, <i>e</i> · <i>l</i> <sub>1</sub> | $\frac{F_1}{\pi \cdot d_p \cdot \sin \alpha_{12}}$                            | м (см)             | 0,041<br>(4,10)                                                                 |
| Оптимальная степень парциальности, <i>e</i> <sub>onm</sub>                                      | $0,33 \cdot \sqrt{e \cdot l_1}$                                               | -                  | 0 668                                                                           |
| Длина сопловой лопатки, <i>l</i> <sub>1</sub>                                                   | $e \cdot l_1 / e_{onm}$                                                       | м (см)             | 0,000                                                                           |
| Профиль лопатки соплового<br>аппарата                                                           | Выбирается из табл.6<br>по $M_{1t}, \alpha_0, \alpha_{13};$<br>определяются:  | -                  | 0,061<br>(6,1)<br>С-90-15Б                                                      |
|                                                                                                 | табличные хорда $  $                                                          | M<br>M             | $e_{1m} = 5.2 \cdot 10^{-2}$<br>$P_{m} = 4.0 \cdot 10^{-2}$                     |
|                                                                                                 | радиус закругления                                                            | Μ                  | $\begin{aligned} B_{1m} &= 4,0.10\\ r_{1m} &= 0,03 \cdot 10^{-2} \end{aligned}$ |
|                                                                                                 | выходной кромки<br>профиля r <sub>1m</sub> , угол                             | град.              | $\alpha_y = 36^{\circ}$                                                         |
|                                                                                                 |                                                                               |                    |                                                                                 |

|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Doorton        | Door interaction   |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|
| паименование величины,                                                                                | Способ определения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Размер-        | Результаты         |
| ооозначение                                                                                           | установки профиля $\alpha_y$ , относительный шаг решетки $\bar{t}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -              | $\bar{t}_1 = 0,78$ |
| Хорда профиля сопловой лопатки, <i>в</i> <sub>1n</sub>                                                | Принимается<br>$\pi \cdot d \cdot e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Μ              | 0,05               |
| Число сопловых лопаток, $z_c$                                                                         | $\frac{\frac{1}{\beta_1} \cdot \frac{1}{\beta_1}}{\frac{1}{\beta_1} \cdot \frac{1}{\beta_1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -              | 54 88 (55)         |
| Уточненная хорда профиля                                                                              | $\pi \cdot d \cdot e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | 54,00 (55)         |
| сопловой лопатки, $e_1$                                                                               | $\frac{p}{z_c \cdot \overline{t_1}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | М              | 0,05               |
| Ширина сопловой решетки, <i>В</i> <sub>1</sub>                                                        | $\frac{\mathbf{G}_1}{\mathbf{G}_{1m}} \cdot \mathbf{B}_{1m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | М              | 0,038              |
| Толщина выходной кромки профиля сопловой лопатки, $\delta_{1\kappa p}$                                | $\frac{\mathbf{G}_1}{\mathbf{G}_{1m}} \cdot 2 \cdot \mathbf{r}_{1m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ММ             | 0,6                |
| Относительная толщина<br>выходной кромки профиля<br>сопловой лопатки, $\overline{\delta}_{_{1 kp}}$   | $\frac{\delta_{_{1\kappa p}}}{s_{_{1}}\cdot \bar{t}_{_{1}}\cdot \sin \alpha_{_{19}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -              | 0,065              |
| Относительная длина сопловой лопатки, $\bar{l}_1$<br>Относительная хорда                              | $\begin{array}{c} l_1 \\ g_1 \\ g_1 \\ g_1 \\ g_1 \\ g_2 \\ g_2 \\ g_2 \\ g_2 \\ g_2 \\ g_1 \\ g_2 \\$ | -              | 1,22               |
|                                                                                                       | $/l_1$ $/l_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -              | 0,82               |
| расхода в сопловом аппарате,                                                                          | $0,9843 - 0,0057 \cdot \overline{e}_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -              | 0,98               |
| Уточненная выходная<br>площадь межлопаточных<br>каналов соплового аппарата,<br><i>F</i> <sub>10</sub> | $\frac{G_0'}{\alpha\cdot\mu_{10}\cdot\sqrt{p_0^*\cdot 10^6/\atop v_0^*}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M <sup>2</sup> | 0,0314             |
| Уточненная длина сопловой<br>попатки <i>l</i> .                                                       | $\frac{F_{10}}{\pi \cdot d \cdot c \cdot \sin \alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | М              | 0.061              |
| Критическое отношение                                                                                 | $\frac{\pi}{p} \frac{\alpha}{p} \frac{k}{(k-1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 141            | 0,001              |
| давлений, $\varepsilon_{\kappa p}$                                                                    | $\frac{p_{\kappa p}}{p_0^*} = \left(\frac{2}{(k+1)}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -              | 0,546              |
| Отношение давлений в сопловом аппарате, $\varepsilon$                                                 | $p_1 / p_0^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -              | 0,514              |
| Сравнение є и є <sub>кр</sub>                                                                         | $\varepsilon \ge \varepsilon_{\kappa p}$ - отклонения<br>потока пара нет,<br>$\alpha_1 = \alpha_{1_2};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -              | нет                |
|                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                    |

| Наименование величины,                                                                                                 |                                                                                                                                                                                         | Размер-            | Результаты           |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|
| обозначение                                                                                                            | Способ определения                                                                                                                                                                      | ность              | расчетов             |
| Критическое давление пара в                                                                                            | $\varepsilon < \varepsilon_{\kappa\rho}$ - имеет место<br>отклонение потока<br>пара, $\alpha_1 > \alpha_{1\rho}$                                                                        | -                  | да                   |
| минимальном сечении канала соплового аппарата, $p_{1\kappa p}$                                                         | $arepsilon_{_{\kappa\!p}}\cdot p_0^*$                                                                                                                                                   | МПа                | 0,788                |
| Энтальпия пара в<br>минимальном сечении канала<br>соплового аппарата, <i>h</i> <sub>1кр</sub><br>Удельный объем пара в | Определяются в<br>точке $1_{tkp}$ (рис.8) по<br>$p_{1kp}, s'_0$ с                                                                                                                       | кДж/кг             | 3151,7               |
| минимальном сечении канала<br>соплового аппарата, <i>v</i> <sub>1<i>кр</i></sub><br>Критическая скорость потока        | использованием h,s<br>диаграммы или<br>программы САТТ2                                                                                                                                  | м <sup>3</sup> /кг | 0,357                |
| пара в минимальном сечении канала соплового аппарата, $C_{1_{kp}}$                                                     | $\sqrt{k \cdot p_{_{1\kappa\!p}} \cdot 10^6 \cdot v_{_{1\kappa\!p}}}$                                                                                                                   | м/с                | 604,66               |
| Угол выхода потока пара из<br>каналов соплового аппарата<br>при сверхзвуковом течении,<br><i>α</i> <sub>1</sub>        | $\operatorname{arcsin} \alpha_{1} = \operatorname{arcsin}(\alpha_{1,2} + \delta_{1})$ $= \operatorname{arcsin}((C_{1,p} / C_{1,t}) \times (v_{1,t} / v_{1,p}) \cdot \sin \alpha_{1,2})$ | град.              | 14°05'               |
| Угол отклонения потока пара<br>в косом срезе соплового<br>аппарата, $\delta_1$                                         | $\alpha_1 - \alpha_{1_2}$                                                                                                                                                               | град.              | 0°05'                |
| коэффициент динамической<br>вязкости пара, $\mu_{1n}$                                                                  | Определяется по<br>графику (рис.9),<br>давление и<br>температура пара<br>опрелеляются в точке                                                                                           | кг/(м·с)           | 22·10 <sup>-6</sup>  |
| Число Рейнольдса, <i>R</i> <sub>e1</sub>                                                                               | $\frac{1_{t} (\text{рис.8})}{C_{1t} \cdot e_{1}} \left( \mu_{1n} \cdot v_{1t} \right)$ $R_{e1} > R_{exp} = (3 \div 5) \cdot 10^{5}$                                                     | -                  | 3,84·10 <sup>6</sup> |
|                                                                                                                        | Поправка на влияние<br>числа <i>R<sub>e</sub></i> не вносится<br>(режимы работы<br>решетки в области<br>автомодельности),<br>КПД не меняется                                            |                    |                      |

| Наименование величины,                                                               | Способ определения                                                                                                                                          | Размер-            | Результаты |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------|
| обозначение                                                                          | Спосоо определения                                                                                                                                          | ность              | расчетов   |
| Отношение среднего диаметра к высоте лопатки, $\lambda_1$                            | $d_p/l_{10}$<br>Для $\alpha_{19} = 9^0 \div 11^0$ :                                                                                                         | -                  | 16,72      |
| Уточненный коэффициент скорости в сопловом аппарате, $\varphi_0$                     | $ \begin{aligned} \varphi_0 &= 0.973 - 0.0111 \cdot \overline{e}_1; \\ \lambda_1 &< 10 \\ \varphi_0 &= 0.97 - 0.01542 \cdot \overline{e}_1; \end{aligned} $ | -                  | -          |
|                                                                                      | для $\alpha_{1_2} = 12^0 \div 20^0$ :<br>$\lambda_1 > 10$                                                                                                   | -                  | -          |
|                                                                                      | $\varphi_0 = 0.98 - 8.74 \cdot 10^{-3} \cdot \bar{e}_1;$<br>$\lambda_1 < 10$                                                                                | -                  | 0,973      |
|                                                                                      | $\varphi_0 = 0.9773 - 1.196 \cdot 10^{-2} \cdot \overline{e}_1$                                                                                             | -                  | -          |
| Абсолютная скорость пара на выходе из соплового                                      | $C_{1t}\cdot arphi_0$                                                                                                                                       | м/с                | 614,344    |
| аппарата, $C_1$<br>Относительная скорость пара<br>на входе в рабочую решетку,        | $C_1 \cdot \sqrt{1 + \left(\frac{U_p}{C_1}\right)^2 - 2 \cdot \frac{U_p}{C_1} \cdot \cos \alpha_{1_2}}$                                                     | м/с                | 460,953    |
| Тангенс угла входа пара в рабочую решетку, $tg\beta_1$                               | $\frac{\sin \alpha_{1,2}}{\cos \alpha_{1,2}} - \frac{U_p}{C_1}$                                                                                             | -                  | 0,341      |
| Угол входа пара в рабочую решетку, $\beta_1$                                         | $arctg \beta_1$                                                                                                                                             | град.              | 18,81      |
| Коэффициент потерь энергии в сопловом аппарате, $\zeta_1$                            | $1-\varphi_0^2$                                                                                                                                             | -                  | 0,053      |
| Потери энергии в сопловом аппарате, $\Delta h_c$                                     | $h^*_{_{0c}}\cdot{\zeta}_1$                                                                                                                                 | кДж/кг             | 10,622     |
| Энтальпия пара за сопловым аппаратом, <i>h</i> <sub>1</sub>                          | $h_{1t} + \Delta h_c$                                                                                                                                       | кДж/кг             | 3145,272   |
| Удельный объем пара за сопловым аппаратом, <i>v</i> <sub>1</sub> Температура пара за | Определяются в<br>точке 1 (рис.8) по<br><i>P</i> <sub>1</sub> , <i>h</i> <sub>1</sub> с                                                                     | м <sup>3</sup> /кг | 0,3773     |
| Энтропия пара за сопловым аппаратом, $i_1$<br>Эппаратом, $s_1$                       | использованием h, s<br>диаграммы или<br>программы CATT2                                                                                                     | <u>кДж</u><br>кг∙К | 7,417      |
| Энтальпия пара за первой рабочей решеткой, <i>h</i> <sub>2t</sub>                    | Определяются в<br>точке 2 <sub>t</sub> (рис.8) по                                                                                                           | кДж/кг             | 3140,9     |

| Наименование величины,                                                                                | C                                                                                                                                                                                                              | Размер-            | Результаты      |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
| обозначение                                                                                           | Спосоо определения                                                                                                                                                                                             | ность              | расчетов        |
| Удельный объем пара за первой рабочей решеткой, <i>v</i> <sub>2t</sub>                                | $s_1, p_2$ с<br>использованием h, s                                                                                                                                                                            | м <sup>3</sup> /кг | 0,38193         |
| Температура пара за первой рабочей решеткой, <i>t</i> <sub>2t</sub>                                   | диаграммы или<br>программы САТТ2                                                                                                                                                                               | °C                 | 339,4           |
| Располагаемый теплоперепад в первой рабочей решетке, <i>h</i> <sub>n-1</sub>                          | $h_1 - h_{2t}$                                                                                                                                                                                                 | кДж/кг             | 4,372           |
| Теоретическая относительная скорость пара на выходе из первой рабочей решетки, <i>W</i> <sub>2t</sub> | $\sqrt{2000 \cdot h_{0p1} + W_1^2}$                                                                                                                                                                            | м/с                | 470,34          |
| Число Маха в выходных сечениях каналов первой рабочей решетки, <i>M</i> <sub>2t</sub>                 | $\frac{W_{2t}}{\sqrt{k \cdot P_2 \cdot v_{2t} \cdot 10^6}}$                                                                                                                                                    | -                  | 0,781           |
| Коэффициент расхода в первой рабочей решетке, $\mu_2$                                                 | Принимается                                                                                                                                                                                                    | -                  | 0,945           |
| Выходная площадь<br>межлопаточных каналов<br>первой рабочей решетки, <i>F</i> <sub>2</sub>            | $G_0 \cdot v_{2t} / (\mu_2 \cdot W_{2t})$                                                                                                                                                                      | M <sup>2</sup>     | 0,0447          |
| Перекрыша для лопаток первой рабочей решетки, Δl <sub>p</sub>                                         | Принимается                                                                                                                                                                                                    | ММ                 | 4,0             |
| Длина лопатки первой рабочей решетки, $l_2$                                                           | $l_{10} + \Delta l_p$                                                                                                                                                                                          | м (мм)             | 0,065<br>(65,0) |
| Синус угла выхода потока пара из первой рабочей решетки, $\sin \beta_2$                               | $\int_{-\infty}^{F_2} \left( \pi \cdot d_p \cdot e \cdot l_2 \right)$                                                                                                                                          | -                  | 0,3211          |
| Угол выхода потока пара из первой рабочей решетки, $\beta_2$                                          | arcsin $\beta_2$                                                                                                                                                                                               | град.              | 18,73           |
| Хорда профиля лопатки<br>первой рабочей решетки, <i>в</i> <sub>2n</sub>                               | дальнейшем<br>проверяется по числу                                                                                                                                                                             | М                  | 0,0513          |
| Профиль лопатки рабочей<br>решетки                                                                    | Рейнольдса $R_{e2}$ и<br>величине<br>изгибающего<br>напряжения $\sigma$<br>Выбирается из табл.6<br>по $M_{2t}, \beta_1, \beta_2$ ;<br>определяются:<br>табличные хорда $e_{2m}$ ,<br>ширина решетки $B_{2m}$ , | -<br>M<br>M<br>M   | P-26-17A        |

Продолжение табл.3

| TT                                                                                                                      |                                                                                                                                                                       | D                            | D                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------|
| Наименование величины,                                                                                                  | Способ определения                                                                                                                                                    | Размер-                      | Результаты                                                                        |
| обозначение                                                                                                             | 1 / ,                                                                                                                                                                 | ность                        | расчетов                                                                          |
|                                                                                                                         | радиус закругления<br>выходной кромки<br>профиля $r_{2m}$ , момент<br>сопротивления<br>профиля $W_{_{MH,m}}$ , угол<br>установки профиля<br>$\beta_y$ , относительный | м <sup>3</sup><br>град.<br>- | $W_{MUHIM} = 0,225$<br>×10 <sup>-6</sup><br>$\beta_y = 75^0$<br>$\bar{t}_2 = 0,6$ |
|                                                                                                                         | шаг решетки $t_2$                                                                                                                                                     |                              |                                                                                   |
| Число рабочих лопаток первого вениа. <i>г</i>                                                                           | $\pi \cdot d_p / (s_{2n} \cdot \overline{t}_2)$                                                                                                                       | -                            | 104,1 (105)                                                                       |
| Уточненная хорда профиля<br>лопатки первой рабочей                                                                      | $\pi \cdot d_p / (105 \cdot \bar{t}_2)$                                                                                                                               | М                            | 0,051                                                                             |
| решетки, <i>в</i> <sub>2</sub><br>Ширина рабочей решетки<br>первого венца, <i>B</i> <sub>2</sub>                        | $\frac{\boldsymbol{B}_2}{\boldsymbol{B}_{2m}} \cdot \boldsymbol{B}_{2m}$                                                                                              | М                            | 0,0499                                                                            |
| Толщина выходной кромки профиля рабочей лопатки первого венца, $\delta_{2\kappa\rho}$                                   | $\frac{\boldsymbol{\beta}_2}{\boldsymbol{\beta}_{2m}} \cdot 2 \cdot \boldsymbol{r}_{2m}$                                                                              | м (мм)                       | 8.10-4 (0,8)                                                                      |
| Относительная толщина<br>выходной кромки профиля<br>рабочей лопатки первого                                             | $\delta_{2\kappa p} \Big/ \Big( e_2 \cdot ar t_2 \cdot \sin eta_2 \Big)$                                                                                              | -                            | 0,0814                                                                            |
| венца, $\overline{\delta}_{2\kappa\rho}$<br>Относительная длина<br>рабочей лопатки первого<br>венца, $\overline{l}_{2}$ | $l_2/s_2$                                                                                                                                                             | -                            | 1,275                                                                             |
| Относительная хорда рабочей лопатки первого венца, $\bar{B}_2$<br>Угол поворота потока в                                | $\frac{B_2}{l_2} = \frac{1}{l_2}$                                                                                                                                     | -                            | 0,785                                                                             |
| рабочей решетке первого<br>венца , Δ <i>β</i>                                                                           | $180 - \beta_1 - \beta_2$                                                                                                                                             | град.                        | 142,46                                                                            |
| Уточненный коэффициент расхода в рабочей решетке первого венца, $\mu_{20}$                                              | Для $\Delta \beta \le 105$ :<br>0,9725-0,0145 $\cdot \bar{e}_2$ ;<br>для $\Delta \beta = 130^\circ \div 106^\circ$ :                                                  | -                            | -                                                                                 |
|                                                                                                                         | $(0.9637 + 0.352 \cdot 10^{-3} \cdot (130 - \Delta\beta) - 0.0154 \cdot \overline{e}_2;$                                                                              | -                            | -                                                                                 |
|                                                                                                                         |                                                                                                                                                                       |                              |                                                                                   |

| Наименование величины,                                                                                                          | Способ определения                                                                                                                                      | Размер-        | Результаты            |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------|
| обозначение                                                                                                                     |                                                                                                                                                         | ность          | расчетов              |
|                                                                                                                                 | для $\Delta\beta = 145^{\circ} \div 131^{\circ}$ :<br>0,9557 + 0,533 · 10 <sup>-3</sup> · (145 –                                                        | -              | 0,944                 |
| Уточненная выходная<br>площадь межлопаточных<br>каналов рабочей решетки                                                         | $-\Delta\beta) - 0.0164 \cdot \overline{e}_{2}$ $G_{0} \cdot v_{2t} / (\mu_{20} \cdot W_{2t})$                                                          | M <sup>2</sup> | 0,0447                |
| первого венца, $F_{20}$<br>Уточненный синус угла<br>выхода потока пара из<br>рабочей решетки первого<br>венца, sin $\beta_{20}$ | $\overset{F_{20}}{\swarrow} (\pi \cdot d_p \cdot e \cdot l_2)$                                                                                          | -              | 0,3211                |
| Уточненный угол выхода<br>потока пара из рабочей<br>решетки первого венца, $\beta_{20}$                                         | $\arcsin \beta_{20}$                                                                                                                                    | град.          | 18,73                 |
| Коэффициент динамической<br>вязкости пара на выходе из<br>каналов первой рабочей                                                | Определяется по<br>графику (рис.9),<br>давление и                                                                                                       | кг/(м∙с)       | 22,2·10 <sup>-6</sup> |
| решетки, $\mu_{2n}$<br>Число Рейнольдса, $R_{e2}$                                                                               | температура пара<br>определяются в точке<br>$2_t$ (рис.8)<br>$W_{2t} \cdot e_2 / (\mu_{2n} \cdot v_{2t})$<br>$R_{e2} > R_{exp} = (3 \div 5) \cdot 10^5$ | -              | 2,9·10 <sup>6</sup>   |
|                                                                                                                                 | Поправка на влияние<br>числа <i>R<sub>e</sub></i> не вносится<br>(режимы работы<br>решетки в области<br>автомодельности),                               |                |                       |
| Отношение среднего<br>диаметра к высоте лопатки<br>первой рабочей решетки,<br>$\lambda_2$                                       | КПД не меняется $\frac{d_p}{l_2}$                                                                                                                       | -              | 15,692                |
| Коэффициент скорости в первой рабочей решетке, $\psi$                                                                           | Определяется по<br>формулам<br>(табл. 7)                                                                                                                | -              | 0,94                  |
| Относительная скорость пара<br>на выходе из первой рабочей<br>решетки, <i>W</i> <sub>2</sub>                                    | $\psi \cdot W_{2t}$                                                                                                                                     | м/с            | 442,013               |

| Наименование величины,<br>обозначение                                                                                        | Способ определения                                                                                                              | Размер<br>-<br>ность | Результаты<br>расчетов |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|
| Коэффициент потерь энергии                                                                                                   | $1-\psi^2$                                                                                                                      | -                    | 0,116                  |
| в первой рабочей решетке, $\zeta_2$<br>Потери энергии в первой<br>рабочей решетке, $\Delta h_p$                              | $\zeta_2 \cdot W_{2t}^2 / 2000$                                                                                                 | кДж/кг               | 12,831                 |
| Абсолютная скорость потока<br>пара на входе в<br>направляющую решетку, <i>C</i> <sub>2</sub>                                 | $U_{p} \cdot (1 + (W_{2}/U_{p})^{2} - 2 \cdot (W_{2}/U_{p}) \cdot \cos \beta_{20})^{0.5}$                                       | м/с                  | 295,205                |
| Тангенс угла направления абсолютной скорости на входе в направляющую решетку, $tg\alpha_2$                                   | $\frac{\sin\beta_{20}}{\left(\cos\beta_{20}-\frac{U_{p}}{W_{2}}\right)}$                                                        | -                    | 0,548                  |
| Угол направления<br>абсолютной скорости на<br>входе в направляющую<br>решетку, $\alpha_2$                                    | $arctg \alpha_2$                                                                                                                | град.                | 28,73                  |
| Окружное усилие,<br>действующее на рабочие<br>лопатки первого венца, <i>R<sub>u</sub></i>                                    | $G_0 \cdot (W_1 \cdot \cos eta_1 + W_2 \cdot \cos eta_{20}) \ \pi \cdot d_p \cdot l_2$                                          | Н                    | 44456,87               |
| Кольцевая площадь рабочих                                                                                                    | $C$ (W sin $\theta$ W sin $\theta$ )                                                                                            | M <sup>2</sup>       | 0,21                   |
| Осевое усилие, действующее на рабочие лопатки первого венца, $R_a$                                                           | $G_0 \cdot (w_1 \cdot \sin \beta_1 - w_2 \cdot \sin \beta_{20}) $<br>+ $F_{2\kappa} \cdot (p_1 - p_2) \cdot 10^6$               | Н                    | 2762,942               |
| Равнодействующая от<br>окружного и осевого усилий,<br>действующих на рабочие                                                 | $\sqrt{R_u^2+R_a^2}$                                                                                                            | Н                    | 44542,64               |
| лопатки первого венца, <i>R</i><br>Момент сопротивления<br>профиля рабочей лопатки<br>первого венца, <i>W</i> <sub>мин</sub> | $\left(\frac{\boldsymbol{\boldsymbol{\beta}}_2}{\boldsymbol{\boldsymbol{\beta}}_{2m}}\right)^3 \cdot \boldsymbol{W}_{_{MUH.M}}$ | M <sup>3</sup>       | 1,76·10 <sup>-6</sup>  |
| Изгибающее напряжение в рабочей лопатке первого венца, $\sigma$                                                              | $\frac{R \cdot l_2}{2 \cdot z_p \cdot e \cdot W_{MiH}} \cdot 10^{-6}$ при $\sigma > < [\sigma]$ изменяется                      | МПа                  | 11,738                 |
|                                                                                                                              | , $z_p$ и $R_{e2}$ заново<br>определяются                                                                                       |                      |                        |

| Наименование величины,                                                                                                  | Способ определения                                                   | Размер-                         | Результаты |
|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|------------|
| ОООЗначение                                                                                                             |                                                                      | ность                           | расчетов   |
| рабочей решеткой (в конце<br>действительного процесса<br>расширения, точка 2, рис.8),                                   | $h_{2t} + \Delta h_p$                                                | кДж/кг                          | 3153,731   |
| $h_2$<br>Удельный объем пара за<br>первой рабочей решеткой<br>(точка 2, рис.8), $v_2$                                   | Определяются в<br>точке 2 (рис.8) по                                 | м <sup>3</sup> /кг              | 0,386      |
| Температура пара за первой рабочей решеткой (точка 2,                                                                   | использованием h, s<br>лиаграммы или                                 | °C                              | 345,53     |
| рис.8), <i>t</i> <sub>2</sub><br>Энтропия пара за первой<br>рабочей решеткой (точка 2,<br>рис.8), <i>s</i> <sub>2</sub> | программы САТТ2                                                      | <u>кДж</u><br>кг <sup>.</sup> К | 7,4376     |
| Энтальпия пара за направляющей решеткой, <i>h</i> <sub>1</sub> ,                                                        | Определяются в<br>точке 1' <sub>t</sub> (рис.8) по                   | кДж/кг                          | 3146,7     |
| Удельный объем пара за направляющей решеткой, $v'_{1t}$                                                                 | $s_2, p'_1$ с использованием h, s                                    | м <sup>3</sup> /кг              | 0,39345    |
| Температура пара за направляющей решеткой, $t'_{1t}$                                                                    | диаграммы или<br>программы САТТ2                                     | °C                              | 342,0      |
| Располагаемый теплоперепад в направляющей решетке, <i>h</i> <sub>0н</sub>                                               | $h_2 - h_{1t}'$                                                      | кДж/кг                          | 7,031      |
| Теоретическая абсолютная скорость пара на выходе из направляющей решетки, $C'_{1t}$ Скорость звука в выходных           | $\sqrt{2000 \cdot h_{0u} + C_2^2}$                                   | м/с                             | 318,132    |
| сечениях каналов                                                                                                        | $\sqrt{k\cdot p_1'\cdot v_{1t}'\cdot 10^6}$                          | м/с                             | 603,47     |
| направляющей решетки, $a'_{1t}$<br>Число Маха в выходных<br>сечениях каналов<br>направляющей решетки, $M'_{1t}$         | $C'_{1t} a'_{1t}$                                                    | -                               | 0,527      |
| Коэффициент расхода в направляющей решетке, $\mu'_1$                                                                    | принимается                                                          | -                               | 0,95       |
| Выходная площадь<br>межлопаточных каналов<br>направляющей решетки. <i>F</i> .'                                          | $G_{_0}\cdot v_{_{1t}}^\prime (\mu_1^\prime \cdot C_{_{1t}}^\prime)$ | м <sup>2</sup>                  | 0,0677     |
| Перекрыша для лопаток<br>направляющей решетки, $\Delta l_n$                                                             | принимается                                                          | ММ                              | 4,0        |
|                                                                                                                         |                                                                      |                                 |            |

Продолжение табл.3

| Наименование величины, обозначение                                                                     | Способ определения                                                                                                                                                                                                            | Размер-<br>ность     | Результаты расчетов            |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|
| Длина лопатки<br>направляющей решетки, <i>l</i> <sub>1</sub><br>Синус угла выхода потока               | $l_2 + \Delta l_n$                                                                                                                                                                                                            | М<br>(мм)            | 0,069<br>69,0                  |
| пара из направляющей решетки, $\sin \alpha'_{1,3}$                                                     | $\int_{-\infty}^{F_1'} \left( \pi \cdot e \cdot d_p \cdot l_1' \right)$                                                                                                                                                       | -                    | 0,458                          |
| Эффективный угол выхода потока пара из                                                                 | $\arcsin lpha_{_{12}}'$                                                                                                                                                                                                       | град.                | 27,28                          |
| направляющей решетки, $\alpha_{1,2}^{2}$<br>Профиль лопатки<br>направляющей решетки                    | Выбирается из табл.6<br>по <i>M</i> ' <sub>1t</sub> , α <sub>2</sub> , α' <sub>1</sub> ;                                                                                                                                      | -                    | P-35-25A                       |
|                                                                                                        | определяются:<br>табличные хорда $B'_{1m}$ ,<br>ширина решетки $B'_{1m}$ ,<br>радиус закругления<br>выходной кромки<br>профиля $r'_{1m}$ , угол<br>установки профиля<br>$\alpha'_y$ , относительный<br>шаг решетки $\bar{t}'$ | м<br>м<br>град.<br>- |                                |
| Хорда профиля                                                                                          | Принимается                                                                                                                                                                                                                   |                      |                                |
| направляющей лопатки, в'                                                                               | $\pi \cdot d_{p}$                                                                                                                                                                                                             | Μ                    | 0,04                           |
| число направляющих<br>лопаток, <i>z<sub>н</sub></i><br>Уточненная хорда профиля                        | $\frac{\overline{s'_{1n} \cdot \overline{t}'_{1}}}{\pi \cdot d_{p}}$                                                                                                                                                          | -                    | 133,5<br>(z <sub>н</sub> =134) |
| направляющей лопатки, $e'_1$<br>Ширина направляющей                                                    | $z_{H} \cdot t_{1}'$ $B_{1}' = B'$                                                                                                                                                                                            | Μ                    | 0,04                           |
| решетки, <i>B</i> <sub>1</sub> '<br>Толщина выходной кромки                                            | $\theta'_{1m}$                                                                                                                                                                                                                | М                    | 0,04                           |
| профиля направляющей лопатки, $\delta'_{1\kappa\rho}$                                                  | $\frac{\boldsymbol{\beta}_1'}{\boldsymbol{\beta}_{1m}'} \cdot 2 \cdot \boldsymbol{r}_{1m}'$                                                                                                                                   | ММ                   | 0,63                           |
| Относительная толщина<br>выходной кромки профиля<br>направляющей лопатки, $\overline{\delta'_{1 k p}}$ | $\frac{\overline{\delta}_{1\kappa p}'}{\boldsymbol{e}_1' \cdot \overline{t}_1' \cdot \sin \boldsymbol{\alpha}_{1\mathfrak{p}}'}$                                                                                              | -                    | 0,0578                         |
| Относительная длина направляющей лопатки, $\bar{l}'_1$                                                 |                                                                                                                                                                                                                               | -                    | 1,725                          |
| Относительная хорда<br>направляющей лопатки, $\bar{e_1}'$                                              | $b_{1}/l_{1}' = l_{1}/l_{1}'$                                                                                                                                                                                                 | -                    | 0,58                           |

| Наименование величины,                   | Способ определения                                     | Размер-  | Результаты           |
|------------------------------------------|--------------------------------------------------------|----------|----------------------|
| обозначение                              | Спосоо определения                                     | ность    | расчетов             |
| Угол поворота потока в                   | $180 - \alpha_2 - \alpha_{1_3}'$                       | град.    | 123,99               |
| направляющей решетке, $\Delta \alpha'$   |                                                        |          |                      |
| Уточненный коэффициент                   | Для ∆ <i>α′</i> ≤105:                                  |          |                      |
| расхода в направляющей                   | $0,9725 - 0,0145 \cdot \overline{e}_1';$               |          |                      |
| решетке, $\mu'_{10}$                     | ДЛЯ $\Delta \alpha' = 130^{\circ} \div 106^{\circ}$ :  |          | 0 0 <b></b>          |
|                                          | $0,9637 + 0,352 \cdot 10^{-3} \cdot (130 -$            | -        | 0,957                |
|                                          | $-\Delta \alpha'$ ) - 0,0154 $\cdot \overline{e}'_1$ ; |          |                      |
|                                          | ДЛЯ $\Delta \alpha' = 145^{\circ} \div 131^{\circ}$ :  |          |                      |
|                                          | $0,9557 + 0,533 \cdot 10^{-3} \cdot (145 -$            |          |                      |
|                                          | $-\Delta \alpha') - 0.0164 \cdot \overline{e}_1'$      |          |                      |
| Уточненная выходная                      |                                                        |          |                      |
| площадь межлопаточных                    | $G_0 \cdot v'_{1t}$                                    | $M^2$    | 0.0672               |
| каналов направляющеи                     | $/(\mu_{10}\cdot C_{1t})$                              | 171      | 0,0072               |
| решетки, $F_{10}$                        |                                                        |          |                      |
| Уточненный синус угла                    | $F_{10}(\pi \cdot e \cdot d \cdot l'_{1})$             | -        | 0,455                |
| выхода потока пара из                    |                                                        |          |                      |
| направляющей решетки,                    |                                                        |          |                      |
| $\sin \alpha_{1y}$                       |                                                        |          |                      |
| Уточненный угол выхода                   | $\arcsin \alpha'$                                      | град.    | 27,068               |
| потока пара из                           | III III IIII                                           |          |                      |
| направляющей решетки, $\alpha'_{1y}$     |                                                        |          |                      |
| Отношение среднего                       | d /                                                    |          |                      |
| диаметра к высоте                        | $l_1'$                                                 | -        | 14,783               |
| направляющей лопатки, $\lambda_1$        | Определяется по                                        |          |                      |
| Коэффициент скорости в                   | формулам                                               |          | 0.05                 |
| направляющей решетке, $\psi_{\mu}$       | (табл. 7)                                              | -        | 0,95                 |
|                                          | $1 - \psi_{\mu}^{2}$                                   |          | 0.0975               |
| Коэффициент потерь энергии               |                                                        | -        | 0,0975               |
| в направляющей решетке,                  | Определяется по                                        |          |                      |
| $\zeta_1$                                | графику (рис.9),                                       | кг/(м∙с) | $22.5 \cdot 10^{-6}$ |
| Коэффициент динамической                 | давление и                                             | M/(M V)  | 22,0 10              |
| вязкости пара, $\mu'_{1n}$               | температура пара                                       |          |                      |
|                                          | определяются в точке                                   |          |                      |
|                                          | 1' <sub>t</sub> (рис.8)                                |          |                      |
|                                          | $C'_{1t} \cdot \boldsymbol{e}'_1$                      |          |                      |
|                                          | $/(\mu'_{1n}\cdot v'_{1t})$                            | -        | $1,44 \cdot 10^{6}$  |
| число Рейнольдса, <i>R</i> <sub>ен</sub> | $R_{\rm eh} > R_{\rm exp} = (3 \div 5) \cdot 10^5$     |          |                      |
|                                          |                                                        |          |                      |

| Наименование величины,                                                                                                            | Способ определения                                                                                                                         | Размер-                         | Результаты       |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|
| обозначение                                                                                                                       | enotor onpedentinis                                                                                                                        | ность                           | расчетов         |
| Потери энергии в                                                                                                                  | Поправка на влияние<br>числа $R_e$ не вносится<br>(режимы работы<br>решетки в области<br>автомодельности),<br>КПД не меняется              |                                 |                  |
| направляющей решетке, $\Delta h_{\mu}$                                                                                            | $\zeta_1 \cdot C_{1t} / 2000$                                                                                                              | кДж/кг                          | 4,93             |
| Энтальпия пара за направляющей решеткой (в конце действительного процесса расширения, точка                                       | $h_{1t}' + \Delta h_{_{H}}$                                                                                                                | кДж/кг                          | 3151,63          |
| 1, рис.8), <i>h</i> <sub>1</sub><br>Удельный объем пара за<br>направляющей решеткой, <i>v</i> <sub>1</sub><br>Температура цара за | Определяются в<br>точке 1 (рис.8) по<br><i>P</i> <sub>1</sub> , <i>h</i> <sub>1</sub> с                                                    | м <sup>3</sup> /кг              | 0,39503          |
| направляющей решеткой, $t'_1$                                                                                                     | использованием h, s                                                                                                                        | °C                              | 344,35           |
| Энтропия пара за направляющей решеткой, <i>s</i> <sub>1</sub> '                                                                   | диаграммы или<br>программы САТТ2                                                                                                           | <u>кДж</u><br>кг <sup>.</sup> К | 7,4456           |
| Аосолютная скорость пара на выходе из направляющей решетки, <i>C</i> <sub>1</sub>                                                 | $C'_{1t}\cdot \psi_{\scriptscriptstyle H}$                                                                                                 | м/с                             | 302,225          |
| Относительная скорость пара на входе во вторую рабочую решетку, <i>W</i> <sub>1</sub> '                                           | $C_{1}' \cdot \sqrt{1 + \left(\frac{U_{p}}{C_{1}'}\right)^{2} - 2 \cdot \frac{U_{p}}{C_{1}'} \cdot \cos \alpha_{1y}'}$ $\sin \alpha_{1y}'$ | м/с                             | 175,71           |
| Тангенс угла входа пара во вторую рабочую решетку, $tg\beta'_1$                                                                   | $\overline{\cos \alpha'_{1y} - \frac{U_p}{C_1'}}$                                                                                          | -                               | 1,258            |
| Угол входа пара в рабочую<br>решетку, $\beta'_1$<br>Энтальпия пара за второй<br>рабочей решеткой, $h'_{2t}$                       | $arctg \beta'_1$<br>Определяются в<br>точке 2' <sub>t</sub> (рис.8) по<br>$s'_1, p'_2$ с                                                   | град.<br>кДж/кг                 | 51,508<br>3140,4 |
| Удельный объем пара за второй рабочей решеткой, <i>v</i> <sub>2t</sub>                                                            | использованием h, s<br>диаграммы или                                                                                                       | м <sup>3</sup> /кг              | 0,40747          |
| Температура пара за второй рабочей решеткой, $t'_{2t}$                                                                            | программы САТТ2                                                                                                                            | °C                              | 338,7            |
| Располагаемый теплоперепад во второй рабочей решетке, $h_{0p2}$                                                                   | $h_1'-h_{2t}'$                                                                                                                             | кДж/кг                          | 11,23            |

| Наименование величины.                                                                                                                                                                                                                                           |                                                                                                                                                                                             | Размер-                            | Результаты                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| обозначение                                                                                                                                                                                                                                                      | Способ определения                                                                                                                                                                          | ность                              | расчетов                                                                                                                                          |
| Теоретическая относительная скорость пара на выходе из                                                                                                                                                                                                           | $\sqrt{2000 \cdot h_{0p2} + W_1'^2}$                                                                                                                                                        | м/с                                | 230,94                                                                                                                                            |
| второй рабочей решетки, $W'_{2t}$<br>Число Маха в выходных<br>сечениях каналов второй<br>рабочей решетки, $M'_{2t}$<br>Коэффициент расхода во<br>второй рабочей решетке, $\mu'_2$<br>Выходная площадь<br>межлопаточных каналов<br>второй рабочей решетки, $F'_1$ | $W'_{2t} / \sqrt{k \cdot P'_{2} \cdot v'_{2t} \cdot 10^{6}}$<br>Принимается<br>$G_{0} \cdot v'_{2t} / (\mu'_{2} \cdot W'_{2t})$                                                             | -<br>-<br>M <sup>2</sup>           | 0,384<br>0,95<br>0,097                                                                                                                            |
| Перекрыша для лопаток<br>второй рабочей решетки, $\Delta l'_p$<br>Ллина попатки второй                                                                                                                                                                           | Принимается                                                                                                                                                                                 | ММ                                 | 4,0                                                                                                                                               |
| рабочей решетки, <i>l</i> <sub>2</sub><br>Синус угла выхода потока                                                                                                                                                                                               | $l'_1 + \Delta l'_p$                                                                                                                                                                        | М<br>(MM)                          | 0,073<br>73,0                                                                                                                                     |
| пара из второй рабочей решетки, $\sin \beta_2'$                                                                                                                                                                                                                  | $\int (\pi \cdot d_p \cdot e \cdot l'_2)$                                                                                                                                                   | -                                  | 0,621                                                                                                                                             |
| Угол выхода потока пара из второй рабочей решетки, $\beta'_2$                                                                                                                                                                                                    | $\arcsin eta_2'$                                                                                                                                                                            | град.                              | 38,39                                                                                                                                             |
| Хорда профиля лопатки<br>второй рабочей решетки, в' <sub>2n</sub>                                                                                                                                                                                                | Принимается, в<br>дальнейшем<br>проверяется по числу<br>Рейнольдса <i>R</i> <sup>'</sup> <sub>e2</sub> и                                                                                    | М<br>(мм)                          | 0,06<br>60,0                                                                                                                                      |
| Профиль лопатки второй<br>рабочей решетки                                                                                                                                                                                                                        | величине<br>изгибающего<br>напряжения $\sigma'$<br>Выбирается из табл.6<br>по $M'_{2t}, \beta'_1, \beta'_2$ ;<br>определяются:<br>табличные хорда $e'_{2m}$ ,<br>ширина решетки $B'_{2m}$ , | -<br>M<br>M<br>M<br>M <sup>3</sup> | P-50-33A<br>$s'_{2m} = 2,56 \cdot 10^{-2}$<br>$B'_{2m} = 2,5 \cdot 10^{-2}$<br>$r_{2m} = 0,017 \cdot 10^{-2}$<br>$W'_{2m} = 0.079 \times 10^{-2}$ |
|                                                                                                                                                                                                                                                                  | радиус закругления<br>выходной кромки<br>профиля $r'_{2m}$ , момент<br>сопротивления<br>профиля $W'_{_{MUH,m}}$ , угол<br>установки профиля                                                 | град.<br>-                         | ×10 <sup>-6</sup><br>$\beta'_{y} = 78^{0}$<br>$\bar{t}'_{2} = 0,55$                                                                               |

| Наименование величины,                                                                                              | Способ опродологиия                                                                                                                                      | Размер-        | Результаты           |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|
| обозначение                                                                                                         | Спосоо определения                                                                                                                                       | ность          | расчетов             |
|                                                                                                                     | $\beta'_y$ , относительный шаг решетки $\bar{t}'_2$                                                                                                      |                |                      |
| Число рабочих лопаток<br>второго венца, <i>z</i> ',                                                                 | $\pi\cdot d_{p}/(s'_{2n}\cdotar{t}'_{2})$                                                                                                                | -              | 97,1<br>(97)         |
| Уточненная хорда профиля лопатки второй рабочей                                                                     | $\pi \cdot d_p / (97 \cdot \bar{t}_2')$                                                                                                                  | м<br>(мм)      | 0,06<br>60,0         |
| решетки, в'2<br>Ширина рабочей решетки<br>второго вениа В'                                                          | $\frac{\boldsymbol{s}_2}{\boldsymbol{s}_{2m}'} \cdot \boldsymbol{B}_{2m}'$                                                                               | М              | 0,0586               |
| Толщина выходной кромки профиля рабочей лопатки                                                                     | $\frac{{\boldsymbol{\beta}}_2'}{{\boldsymbol{\beta}}_{2m}'}\cdot 2\cdot r_{2m}'$                                                                         | М<br>(MM)      | $8,0.10^{-4}$<br>0,8 |
| второго венца, $\delta'_{2\kappa p}$<br>Относительная толщина<br>выходной кромки профиля<br>рабочей лопатки второго | $\delta_{2\kappa p}' (e_2' \cdot ar{t}_2' \cdot \sin eta_2')$                                                                                            | -              | 0,039                |
| венца, $\bar{\delta}'_{2\kappa\rho}$<br>Относительная длина<br>рабочей лопатки второго                              | $l_2'/_{\beta_2'}$                                                                                                                                       | -              | 1,217                |
| венца, $l'_2$<br>Относительная хорда рабочей                                                                        | $\frac{B_{2}'}{l_{2}'} = \frac{1}{l_{2}'}$                                                                                                               | -              | 0,822                |
| Угол поворота потока в рабочей решетке второго                                                                      | $180 - \beta_1' - \beta_2'$                                                                                                                              | град.          | 90,102               |
| венца, Δβ'<br>Уточненный коэффициент<br>расхода в рабочей решетке                                                   | Для $\Delta \beta' \leq 105$ :<br>0,9725 - 0,0145 · $\overline{s}_2'$ ;                                                                                  | -              | 0,961                |
| второго венца, $\mu'_{20}$                                                                                          | $0.9637 + 0.352 \cdot 10^{-3} \cdot (130\Delta\beta') = 0.0154 \cdot \overline{a}_{2}';$                                                                 | -              |                      |
| Уточненная выходная<br>площадь межлопаточных<br>каналов рабоней решетки                                             | ДЛЯ $\Delta \beta' = 145^{\circ} \div 131^{\circ}$ :<br>0,9557 + 0,533 · 10 <sup>-3</sup> · (145 –<br>$-\Delta \beta') - 0,0164 \cdot \overline{e}_{2}'$ | -              |                      |
| второго венца, <i>F</i> <sub>20</sub><br>Уточненный синус угла                                                      | $G_{_0}\cdot v_{_{2t}}^\prime (\mu_{_{20}}^\prime \cdot W_{_{2t}}^\prime)$                                                                               | M <sup>2</sup> | 0,0955               |
| выхода потока пара из рабочей решетки второго венца, sin $\beta'_{20}$                                              | $\overset{F_{20}'}{\swarrow} (\pi \cdot d_p \cdot e \cdot l_2')$                                                                                         | -              | 0,611                |

| Наименование величины,                                                                                                                           | Способ определения                                                                                                                           | Размер-  | Результаты            |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|
| обозначение                                                                                                                                      | Спосоо определения                                                                                                                           | ность    | расчетов              |
| Уточненный угол выхода потока пара из рабочей                                                                                                    | $\arcsin \beta'_{20}$                                                                                                                        | град.    | 37,67                 |
| решетки второго венца, $\beta'_{20}$<br>Коэффициент динамической<br>вязкости пара на выходе из<br>каналов второй рабочей<br>решетки, $\mu'_{2n}$ | Определяется по<br>графику (рис.9),<br>давление и<br>температура пара                                                                        | кг/(м∙с) | 22,5·10 <sup>-6</sup> |
| Число Рейнольдса, <i>R</i> ' <sub>e2</sub>                                                                                                       | определяются в точке<br>$2'_t$ (рис.8)<br>$W'_{2t} \cdot e'_2 / (\mu'_{2n} \cdot v'_{2t})$<br>$R'_{e^2} > R_{exp} = (3 \div 5) \cdot 10^5$   | -        | 1,511·10 <sup>6</sup> |
|                                                                                                                                                  | Поправка на влияние<br>числа <i>R<sub>e</sub></i> не вносится<br>(режимы работы<br>решетки в области<br>автомодельности),<br>КПД не меняется |          |                       |
| Отношение среднего<br>диаметра к высоте лопатки<br>второй рабочей решетки,                                                                       | $\frac{d_p}{l'_2}$                                                                                                                           | -        | 13,97                 |
| Коэффициент скорости во второй рабочей решетке, ψ'                                                                                               | Определяется по<br>формулам<br>(табл. 7)                                                                                                     | -        | 0,963                 |
| Относительная скорость пара<br>на выходе из второй рабочей<br>решетки <i>W</i> .'                                                                | $\psi' \cdot W'_{2t}$                                                                                                                        | м/с      | 222,395               |
| Коэффициент потерь энергии<br>во второй рабочей решетке,<br>$\zeta'_2$                                                                           | $1-\psi'^2$                                                                                                                                  | -        | 0,0726                |
| Потери энергии во второй рабочей решетке, $\Delta h'_p$                                                                                          | $\zeta'_{2} \cdot W'^{2}_{2t} / 2000$                                                                                                        | кДж/кг   | 1,936                 |
| Абсолютная скорость потока пара за регулирующей ступенью, <i>C</i> <sub>2</sub>                                                                  | $U_{p} \cdot (1 + (W_{2}'/U_{p})^{2} - 2 \cdot (W_{2}'/U_{p}) \cdot \cos \beta_{20}')^{0.5}$                                                 | м/с      | 138,87                |
| Тангенс угла направления абсолютной скорости за ступенью, $tg \alpha'_2$                                                                         | $\sin \beta_{20}' \left( \cos \beta_{20}' - \frac{U_p}{W_2'} \right)$                                                                        | -        | 9,49                  |

| Наименование величины,                         | Способ опродолжи                                                           | Размер-             | Результаты            |
|------------------------------------------------|----------------------------------------------------------------------------|---------------------|-----------------------|
| обозначение                                    | Спосоо определения                                                         | ность               | расчетов              |
| <b>T</b>                                       |                                                                            | град.               | 83,98                 |
| Угол направления                               | $arctg\alpha'_2$                                                           |                     |                       |
| аосолютнои скорости за                         |                                                                            |                     |                       |
| ступенью, $\alpha_2$                           |                                                                            |                     |                       |
| Окружное усилие,                               |                                                                            | Н                   | 14751,176             |
| действующее на рабочие                         | $G_0 \cdot (W_1' \cdot \cos \beta_1' + W_2' \cdot \cos \beta_{20}')$       |                     |                       |
| лопатки второго венца, <i>R</i> ' <sub>u</sub> |                                                                            | 2                   | 0.004                 |
| Кольцевая площадь рабочих                      | $\pi \cdot d_p \cdot l_2$                                                  | M                   | 0,234                 |
| лопаток второго венца, $F_{2\kappa}^{\dagger}$ | $C = (W' \sin \theta' - W' \sin \theta')$                                  |                     |                       |
| Осевое усилие, действующее                     | $G_0 \cdot (w_1 \cdot \sin p_1 - w_2 \cdot \sin p_{20}) +$                 | ч                   | 3174 56               |
| на рабочие лопатки второго венца, $R'_a$       | $+F_{2\kappa}^{\prime}\cdot(p_{1}^{\prime}-p_{2}^{\prime})\cdot10^{\circ}$ | 11                  | 5174,50               |
| Равнодействующая от                            | $\sqrt{R_u^{\prime2}+R_a^{\prime2}}$                                       | Н                   | 15088,904             |
| окружного и осевого усилий,                    |                                                                            |                     |                       |
| действующих на рабочие                         |                                                                            |                     |                       |
| лопатки второго венца, R'                      |                                                                            |                     |                       |
| Момент сопротивления                           | $\left( \begin{array}{c} \beta' \end{array} \right)^3$                     | м <sup>3</sup>      | $1.017 \cdot 10^{-6}$ |
| профиля рабочей лопатки                        | $\left \frac{\sigma_2}{\beta'}\right  \cdot W'_{MUH.m}$                    | IVI                 | 1,017 10              |
| второго венца, $W'_{MIH}$                      | $(\mathbf{v}_{2m})$<br>$\mathbf{P}' \mathbf{l}'$                           |                     |                       |
| Изгибающее напряжение в                        | $\frac{K \cdot \iota_2}{2 \cdot \tau' \cdot c \cdot W'} \cdot 10^{-6}$     | МΠа                 | 8,357                 |
| рабочей лопатке второго                        | $2 \cdot z_p \cdot e \cdot W_{MUH}$                                        |                     |                       |
| венца, $\sigma'$                               | при $\sigma >< [\sigma']$                                                  |                     |                       |
|                                                | изменяется хорда $e_2$ ,                                                   |                     |                       |
|                                                | значения $\sigma$ , $z_p$ и $R_{e2}$                                       |                     |                       |
|                                                | заново определяются $C'^2$                                                 | те <b>П</b> ате/тер | 0.642                 |
| Потери энергии с выходной                      | $\frac{C_2}{2000}$                                                         | КДЖ/КГ              | 9,042                 |
| скоростью, $\Delta h_{e}$                      | $\Delta h_c + \Delta h_p + \Delta h_{\mu}$                                 |                     |                       |
| Относительный лопаточный                       | $1 - \frac{b}{h_{0T}^*} - \frac{b}{h_{0T}^*}$                              | -                   | 0,820                 |
| КПД ступени, $\eta_{on}$                       | $\Delta h'_{n} + \Delta h_{a}$                                             |                     |                       |
|                                                | $-\frac{p}{h_{0T}^*}$                                                      |                     |                       |
|                                                | 01                                                                         |                     |                       |
|                                                | $W_{\rm c} = W_{\rm c} \cdot \cos \beta_{\rm c}$                           | 1                   | 106005                |
| окружные составляющие                          | $W_{1u} = W \cdot \cos \beta$                                              | M/C                 | 436,335               |
| W W W' W'                                      | $W'_{2u} = W'_2 \cos \beta_2$ $W'_2 = W'_2 \cos \beta_2$                   | M/C                 | 418,005               |
| $1^{1}u, 1^{2}u, 1^{1}u, 1^{2}u$               | $W_{1u} = W_1 \cdot \cos \rho_1$ $W_1' = W_1' \cos \rho_1'$                | M/C                 | 109,303               |
|                                                | $vv_{2u} = vv_2 \cdot \cos p_2$                                            | M/C                 | 1/4,314               |
|                                                |                                                                            |                     |                       |
|                                                |                                                                            |                     |                       |

| Наименование величины,                                                        | Способ определения                                                                                                                                      | Размер- | Результат                    |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------|
| обозначение                                                                   | 1 ' '                                                                                                                                                   | ность   | расчетов                     |
| Относительный лопаточный КПД ступени, выраженный через скорости, $\eta'_{on}$ | $\frac{U}{h_{0T}^* \cdot 10^3} \cdot \left( W_{1u} + W_{2U} + W_{1u}' + W_{2u}' \right)$                                                                | -       | 0,821                        |
| Величина Δη <sub>ол</sub>                                                     | $\frac{ \eta_{on} - \eta'_{on} }{\eta_{on}} \cdot 100, $ если<br>$\Delta \eta_{on} > 1,0\%, $ то ошибка в<br>расчетах                                   | %       | 0,122                        |
| Входные и выходные<br>треугольники скоростей<br>регулирующей ступени          | По рассчитанным<br>скоростям:<br>$C_1, C_1', C_2, C_2', W_1, W_1', W_2$<br>$W_2', U$                                                                    | м/с     |                              |
|                                                                               | и углам:<br>$\alpha_1, \alpha_1', \alpha_2, \alpha_2', \beta_1, \beta_{20}, \beta_1'$<br>, $\beta_{20}'$ строятся<br>треугольники скоростей<br>(рис.10) | град.   |                              |
| Ширина профиля сопловой лопатки, <i>В</i> 1                                   | $(\mathbf{s}_1 / \mathbf{s}_{1m}) \cdot B_{1m}$                                                                                                         | М       | 0,038                        |
| Ширина профиля первой рабочей лопатки, <i>В</i> 2                             | $(\boldsymbol{e}_2 / \boldsymbol{e}_{2m}) \cdot \boldsymbol{B}_{2m}$                                                                                    | М       | 0,0499                       |
| Ширина профиля<br>поворотной лопатки, <i>В</i> '1                             | $\left(oldsymbol{arsigma}_{1}^{\prime}  /  oldsymbol{arsigma}_{1m}^{\prime}  ight) \cdot oldsymbol{B}_{1m}^{\prime}$                                    | М       | 0,04                         |
| Ширина профиля второй рабочей лопатки, <i>В</i> ' <sub>2</sub>                | $\left( m{e}_{2}^{\prime}/m{e}_{2m}^{\prime} ight) \cdot B_{2m}^{\prime}$                                                                               | М       | 0,0586                       |
| Средняя длина лопаток, <i>l<sub>cp</sub></i><br>Осевой зазор между            | $(l_{10} + l_2 + l'_1 + l'_2)/4$                                                                                                                        | м (мм)  | 0,067                        |
| направляющими и рабочими<br>лопатками, <i>б</i>                               | $0,01 \cdot l_{cp} + (3 \div 4)_{MM}$                                                                                                                   | мм (м)  | 4,67 (0.0047)                |
| Радиальный зазор при средней длине лопаток, <i>δ</i> ,                        | $0,3 + (d_p + l_{cp} / 2)^2 \cdot 10^{-6}$ Проточная часть                                                                                              | мм (м)  | 1,41<br>$(1,41\cdot10^{-3})$ |
|                                                                               | регулирующей ступени                                                                                                                                    |         |                              |
|                                                                               | показана на рис. 11                                                                                                                                     |         |                              |
| энергии на трение диска,<br>$\zeta_{mp}$ , включающие:                        | $\zeta_{mp.\partial} + \zeta_{mp.n} + \zeta_{mp.\delta}$                                                                                                | -       | 4,378·10 <sup>-4</sup>       |

Продолжение табл.3

| Наименование величины,                                                | Способ определения                                                                                                                         | Размер-  | Результат             |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|
| обозначение                                                           | Способ определения                                                                                                                         | ность    | расчетов              |
|                                                                       | <sup>µ<sub>1n</sub></sup> - коэффициент<br>динамической вязкости<br>пара определяется по<br>графику (рис.9),                               | кг/(м∙с) | 22·10 <sup>-6</sup>   |
|                                                                       | пара определяются в<br>точке 1 <sub>t</sub> (рис.8);<br>$R_{eu} = \frac{U_P \cdot d_P}{2 \cdot \mu_{1n} \cdot v_1}$ - число<br>Рейнольдса; | _        | 9,82·10 <sup>6</sup>  |
|                                                                       | <i>К<sub>тр.д</sub></i> - коэффициент<br>трения диска                                                                                      | -        | 0,65·10 <sup>-3</sup> |
| Относительные потери на трение о пар торцевых                         | (рис. 12).<br>$K_{mp.\partial} \cdot \frac{d_p^2}{F_1} \cdot x_{\phi onp}^3$                                                               | -        | 2,95.10-4             |
| поверхностей диска, $\zeta_{mp.\partial}$                             | <i>К<sub>тр.п</sub></i> - коэффициент<br>трения поверхностей,                                                                              | -        | 1·10 <sup>-3</sup>    |
|                                                                       | <i>а=с</i> принимаются (рис.11);                                                                                                           | М        | 0,022                 |
|                                                                       | $b = B'_1 + 2 \cdot \delta_a;$<br>$\sum B_n = a + b + c$                                                                                   | M<br>M   | 0,0494<br>0,0934      |
| Относительные потери на<br>трение о пар свободных<br>цилиндрических и | $K_{mp.n} \cdot rac{d_p \cdot \sum B_n}{F_1} \cdot x_{\phi onp}^3$                                                                        | -        | 4,15·10 <sup>-5</sup> |
| ободе диска, $\zeta_{mp.n}$                                           | <i>К<sub>тр.б</sub> - коэффициент</i><br>трения поверхности<br>банлажа, принимается:                                                       | -        | 2·10 <sup>-3</sup>    |
|                                                                       | $d_{\delta} = d_{p} + \frac{l_{2} + l_{2}'}{2}$ - диаметр                                                                                  | М        | 1,089                 |
|                                                                       | окружности из<br>бандажной ленты;<br>$\sum B_{\delta} = d + e$ - суммарная<br>ширина бандажных лент;                                       | М        | 0,1179                |

| Наименование величины,                                                                                                      | Спороб опродолжи                                                                                                                       | Размер- | Результат             |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|
| обозначение                                                                                                                 | Способ определения                                                                                                                     | ность   | расчетов              |
|                                                                                                                             | $d = B_2 + \cdot \delta_a; e = B'_2 + \cdot \delta_a;$                                                                                 |         |                       |
| Относительные потери на трение о пар поверхности лопаточного бандажа, $\zeta_{mp.\delta}$                                   | (рис. 11)<br>$K_{mp.\delta} \cdot \frac{d_{\delta} \cdot \sum B_{\delta}}{F_1} \cdot x_{\phi onp}^3$                                   | -       | 1,12.10-4             |
| Относительные потери<br>энергии, вызванные<br>парциальным подводом                                                          | (* + (*                                                                                                                                |         | 0.010                 |
| пара. С ришонающие:                                                                                                         | 5 <sub>вен</sub> т 5 <sub>вык</sub>                                                                                                    | -       | 0,019                 |
| включающие.                                                                                                                 | $K_{een}$ - коэффициент,<br>зависящий от геометрии<br>ступени, принимается;<br>$e_{\kappa}$ - доля окружности,                         | -       | 0,065                 |
|                                                                                                                             | занимаемая защитным кожухом, установленным на нерабочей дуге $(1 - e_{onm})$ ;                                                         |         | 0,5                   |
| Относительные потери<br>энергии на вентиляцию,<br>$\zeta_{вен}$                                                             | $\frac{K_{_{6e\mu}}}{\sin \alpha_{_{19}}} \cdot \frac{1 - e_{_{onm}} - 0.5e_{_{\kappa}}}{e_{_{onm}}} \times x_{_{\phi onp}}^3 \cdot z$ | -       | 9,12·10 <sup>-4</sup> |
|                                                                                                                             | <i>К<sub>вык</sub></i> - опытный коэффициент:                                                                                          | -       | 0,25                  |
|                                                                                                                             | <i>m</i> - число пар концов сопловых сегментов                                                                                         | -       | 2                     |
| Относительные потери<br>энергии на концах дуг<br>сопловых сегментов (потери                                                 | (число групп сопел);<br>$K_{_{6 b k}} \cdot \frac{B_2 \cdot l_2 + 0.6 \cdot B'_2 \cdot l'_2}{F_1} \times$                              | -       | 0,018                 |
| на выколачивание), $\zeta_{\text{вык}}$<br>Относительный внутренний<br>КПД ступени, выраженный<br>через потери, $\eta_{oi}$ | $ \begin{array}{l} \times x_{\phi onp} \cdot m \cdot \eta_{on} \\ \\ \eta_{on} - \zeta_{mp} - \zeta_{nn} \end{array} $                 | _       | 0,802                 |
| диска, $\Delta h_{mp}$                                                                                                      | $h_{\scriptscriptstyle 0T}^*\cdot {\zeta}_{\scriptscriptstyle mp}$                                                                     | кДж/кг  | 0,097                 |
| Потери энергии, вызванные парциальным подводом пара, $\Delta h_{nn}$                                                        | $h_{0T}^{*}\cdot {\mathcal L}_{nn}$                                                                                                    | кДж/кг  | 4,21                  |
|                                                                                                                             |                                                                                                                                        |         |                       |

## Окончание табл.3

| Наименование величины, обозначение                                                                                                                                                         | Способ определения                                                                                             | Размер-<br>ность | Результат<br>расчетов |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------|-----------------------|
| Энтальпия пара за второй рабочей решеткой (в конце действительного процесса расширения, точка 2',                                                                                          | $h_{2t}' + \Delta h_p'$                                                                                        | кДж/кг           | 3142,34               |
| рис.8), <i>h</i> <sub>2</sub> '<br>Энтальпия пара за второй<br>рабочей решеткой,<br>определяющая внутренний<br>теплоперепад (рис.8, точка<br>2 <sup>'''</sup> ), <i>h</i> <sub>1</sub> ''' | $h_2' + \Delta h_e + \Delta h_{mp} + \Delta h_{nn}$                                                            | кДж/кг           | 3156,29               |
| Внутренний теплоперепад,<br><i>h<sub>i</sub></i>                                                                                                                                           | $h_{0}^{*}-h_{2}^{\prime \prime \prime }$                                                                      | кДж/кг           | 177,765               |
| Относительный внутренний КПД ступени, $\eta'_{oi}$                                                                                                                                         | ${\displaystyle \frac{h_{i}}{h_{0Tp}^{*}}}$                                                                    | -                | 0,802                 |
| Величина Δη <sub>οi</sub>                                                                                                                                                                  | $rac{ \eta_{oi} - \eta'_{oi} }{\eta_{oi}} \cdot 100$ , если $\Delta \eta_{oi} > 1,0\%$ , то ошибка в расчетах | %                | 0,0                   |
| Внутренняя мощность<br>ступени, N <sub>i</sub>                                                                                                                                             | $G_{_0}\cdot h_{_i}$                                                                                           | кВт              | 9243,78               |

По полученным величинам в тепловом расчете регулирующей двухвенечной турбинной ступени строятся процессы расширения пара в указанной ступени в h, s – диаграмме для водяного пара (рис. 8) и треугольники скоростей (рис. 10). При построении теплового процесса ступени на оси абсцисс откладываются значения энтропии s (кДж/(кг·К)), на оси ординат – значения энтальпии h (кДж/кг).

Графические изображения в масштабе процессов расширения пара в турбинной ступени и треугольники скоростей должны соответствовать результатам расчетов. Так, например, отношение суммы длин отрезков прямых, характеризующих располагаемые теплоперепады в двух рабочих и направляющей решетках, к длине отрезка прямой, характеризующей полный располагаемый теплоперепад в ступени, должно соответствовать заданному значению степени реактивности в ступени  $\rho$ .

При построении треугольников скоростей векторы окружных скоростей  $\overline{U}_p$  должны быть равны и параллельны друг другу и параллельны линии окружного направления; несоблюдение этого условия означает, что в расчетах допущена ошибка.

Тепловой расчет регулирующей двухвенечной турбинной ступени производится при условии, что отношение скоростей  $x_{\phi onp} = \frac{U_p}{C_{\phi}}$  является оптимальным, поэтому угол выхода потока пара из ступени в абсолютном движении  $\alpha'_2$  по значению должен быть в пределах  $80^{\circ}-90^{\circ}$ .

Если принятое значение коэффициента скорости  $\varphi$  будет отличаться от уточненного  $\varphi_0$  больше, чем на 1%  $\left(\Delta \varphi = \frac{|\varphi - \varphi_0|}{\varphi} \cdot 100 > 1\%\right)$ , то необходимо со значением  $\varphi_0$  произвести расчет заново, начиная с определения  $x_{\phi onp}$ .

Углы входа и выхода потока пара в межлопаточных каналах рабочих лопаток первого и второго венцов, а также в каналах поворотных (направляющих) лопаток должны соотноситься следующим образом:  $\beta_1 > \beta_2, \beta'_1 > \beta'_2, \alpha_2 > \alpha'_1.$ 



Рис. 8. Процесс расширения пара в регулирующей ступени в h, s - диаграмме



Рис. 9. Изменение коэффициента динамической вязкости пара  $\mu_{\pi}$  от температуры и давления



Рис. 10. Треугольники скоростей двухвенечной регулирующей ступени.



Рис. 11. Проточная часть двухвенечной регулирующей ступени.



Далее производится тепловой детальный расчет на среднем диаметре двух нерегулируемых одновенечных ступеней.

# 2.2. Расчет нерегулируемых ступеней

Исходными данными для их расчета являются величины, полученные в ходе предварительного расчета турбины и расчета регулирующей ступени, показанные в табл. 4.

| Наименование величины                                                            | Обозна-<br>чение             | Размерность           | Значение     |
|----------------------------------------------------------------------------------|------------------------------|-----------------------|--------------|
| Давление пара перед сопловым<br>аппаратом первой ступени, <i>p</i> <sub>0</sub>  | $p_0 = p'_2$                 | МПа                   | 0,684        |
| Энтальпия пара перед сопловым аппаратом первой ступени <i>h</i> .                | $h_0 = h_2'''$               | кДж/кг                | 3156,29      |
| Температура пара перед сопловым                                                  | $t_0 = t_2'''$               | <sup>0</sup> <i>C</i> | 346,32       |
| Удельный объем пара перед                                                        | $v_0 = v_2'''$               | м <sup>3</sup> /кг    | 0,4128       |
| <i>v</i> <sub>0</sub><br>Энтропия пара перед сопловым                            | s — s‴                       | кДж/кг·К              | 7,4715       |
| аппаратом первой ступени, $s_0$                                                  | $s_0 - s_2$                  | vala                  | 52,0         |
| Расход пара, G <sub>0</sub><br>Располагаемый теплоперепад в                      | $G_0$                        |                       |              |
| первой ступени, <i>h</i> <sub>071</sub><br>Коэффициент скорости в сопловом       | $h_{0T1} = h_{0T1}^*$        | КДЭС/КГ               | 53,0         |
| аппарате первой нерегулируемой ступени, $\varphi$                                | $\varphi = \varphi_1$        | -                     | 0,96         |
| Угол выхода потока пара из каналов соплового аппарата первой                     |                              | град                  |              |
| нерегулируемой ступени, <i>α</i> <sub>19</sub><br>Степень реактивности первой    | $lpha_{12}$                  | трад.                 | 13           |
| нерегулируемой ступени, <i>р</i><br>Оптимальное отношение скоростей в            | $\rho = \rho_1$              | -                     | 0,05         |
| первой нерегулируемой ступени, <i>x</i> <sub>dound</sub>                         | $x_{\phi onml} = x_{\phi 1}$ | -                     | 0,47         |
| Фиктивная скорость в первой                                                      | C                            | ,                     |              |
| нерегулируемои ступени, C <sub><i>ф</i>1</sub><br>Окружная скорость на среднем   | $\mathbb{C}_{\phi_1}$        | м/С                   | 325,58       |
| диаметре первой нерегулируемой ступени, U <sub>1</sub>                           | $U_1 = U$                    | м/с                   | 152,02       |
| Средний диаметр первой                                                           | d - d                        |                       | 0.074        |
| нерегулируемой ступени, <i>d</i> <sub>1</sub><br>Степень парциальности, <i>e</i> | $a_1 = a$<br>e               | M<br>-                | 0,974<br>1,0 |

| Таблица 4  | Исхолные | панные ппо | nacuera  | цепету  | /IIIIn | VEMLIX    | ступеней |
|------------|----------|------------|----------|---------|--------|-----------|----------|
| таолица ч. | полодные | данные для | pac icia | meper y | JINP   | y CIVIDIA |          |

Алгоритм и результаты детального теплового расчета двух нерегулируемых одновенечных ступеней паровой турбины (табл.5), выполняется последовательно: сначала для первой ступени, затем для второй.

| Наименование              | Единицы<br>измерения | Расчетная формула                                    | 1 –я<br>ступень    | 2-я<br>ступень |
|---------------------------|----------------------|------------------------------------------------------|--------------------|----------------|
| Лавление пара перел       | МПа                  | $n_{\rm c} = n_{\rm c}'$                             | 0.684              | CTynenb        |
| сопловым аппаратом        | IVIIIa               | $P_0 P_2$<br>p - p                                   | 0,004              | 0 5645         |
| $p_0$                     |                      | $p_0 - p_2$                                          |                    | 0,5015         |
| Лавление пара на          |                      | *                                                    |                    |                |
| вхоле в сопловый          | МΠа                  | $p_0 \equiv p_0$                                     | 0.684              |                |
| аппарат по                |                      | $p_0^* = p_0 + \frac{C_2^2}{C_2}$                    | 0,001              | 0.5691         |
| параметрам                |                      | $2 \cdot v_2 \cdot 10^6$                             |                    | -,             |
| торможения $p^*_{a}$      |                      |                                                      |                    |                |
|                           |                      |                                                      |                    |                |
| сопловым аппаратом        | кДж/кг               | $h_0^* = h_2'''$                                     | 3156,29            |                |
| по параметрам             |                      | $h_0^* = h_2 + \Delta h_{mn} + \Delta h_c$           |                    | 3110,43        |
| торможения $h^*$          |                      | 0 2 mp 6                                             |                    |                |
| Располагаемий             |                      | h = h                                                | 53,0               |                |
| тационереная в            | кДж/кг               | $h_{0T} = h_{0T1}$                                   |                    | 57,08          |
| ступеци h                 |                      | $n_{0T} - n_2 - n_{2t}$                              |                    |                |
| $\Pi_{0T}$                |                      | (см. рис.13)                                         |                    |                |
| полныи                    | кДж/кг               | $n_{0T} = n_{0T1}$                                   | 53,0               |                |
| располагасмый             |                      | $h_{0T}^{+} = h_{0T} + \Delta h_{mp} + \Delta h_{e}$ |                    | 59,33          |
| ступеци $k^*$             |                      |                                                      |                    |                |
| Ступени, $n_{0T}$         |                      |                                                      | 0 0 <del>-</del> 1 | · · · · ·      |
| Среднии диаметр           | М                    | $d = d_1 = const$                                    | 0,974              | 0,974          |
| ступени, а                |                      |                                                      |                    |                |
| Окружная скорость на      | 1                    |                                                      | 1 5 2 0 2          | 1 5 9 0 9      |
| среднем диаметре, U       | M/C                  | $U = U_1 = const$                                    | 152,02             | 152,02         |
| Фиктивная скорость        | 1 -                  |                                                      |                    |                |
| пара, $C_{\phi}$          | M/C                  | $C_{\pm} = \sqrt{2000 \cdot h_{0T}^*}$               | 225 59             | 211 17         |
| Отношение скоростей,      |                      | $\varphi  \mathbf{v}  \mathbf{v}$                    | 525,58<br>0.47     | 344,47         |
| X <sub>d</sub>            |                      | $x_{\phi} - x_{\phi onml}$                           | 0,47               | 0.44           |
| степень реактивности      | -                    | $x_{\phi} = U/C_{\phi}$                              |                    | 0,44           |
| ступени. О                |                      |                                                      |                    |                |
| Абсолютная                | _                    | $\rho = \rho_1$                                      | 0.05               | 0.05           |
| теоретическая             |                      | Принимается                                          | 0,05               | 0,05           |
| скорость пара на          |                      | $ ho_2 \ge  ho_1$                                    |                    |                |
| выходе из соплового       | м/с                  |                                                      | 317.34             | 335.75         |
| аппарата, C <sub>1t</sub> |                      | $C_{1t} = \sqrt{1 - \rho} \times C_{\phi}$           |                    |                |

Таблица 5. Алгоритм и результаты детального теплового расчета нерегулируемых ступеней

| Наименование                                                                          | Единицы<br>измерения | Расчетная формула                                                                                  | 1 –я<br>ступень | 2-я<br>ступень |
|---------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------|-----------------|----------------|
| Полный<br>располагаемый<br>теплоперепад в                                             | кДж/кг               | $h_{0_c}^* = \frac{C_{1t}^2}{2000}$                                                                | 50,35           | 56,36          |
| Сопловом анпарате,<br>$h_{0c}^*$<br>Энтальпия пара за<br>сопловым аппаратом           | кДж/кг               | $h_{1t} = h_0^* - h_{0c}^*$                                                                        | 3105,94         | 3054,07        |
| расширении, <i>h</i> <sub>1t</sub><br>Давление пара за<br>сопловым аппаратом,         | ΜΠа                  | Определяются в точке<br>1, (рис.13) по                                                             | 0,57            | 0,4603         |
| $p_1$<br>Температура пара за<br>сопловым аппаратом,<br>$t_{1t}$                       | °C                   | <i>s</i> <sub>0</sub> , <i>h</i> <sub>1t</sub> с использованием h, s диаграммы или программы САТТ2 | 320,95          | 294,6          |
| Удельный объем пара<br>за сопловым                                                    | м <sup>3</sup> /кг   |                                                                                                    | 0,4752          | 0,5626         |
| аппаратом, <i>v</i> <sub>1t</sub><br>Энтропия пара за<br>сопловым аппаратом,          | кДж/(кг∙<br>К)       |                                                                                                    | 7,4715          | 7,4798         |
| $s_{1t}$<br>Коэффициент расхода<br>в сопловом аппарате,<br>$\mu_1$                    | -                    | Принимается                                                                                        | 0,97            | 0,97           |
| Выходная площадь<br>межлопаточных<br>каналов<br>соплового аппарата,                   | M <sup>2</sup>       | $F_1 = \frac{G_0 \cdot v_{1t}}{(\mu_1 \cdot C_{1t})}$                                              | 0,0802          | 0,0898         |
| <i>F</i> <sub>1</sub><br>Угол выхода потока<br>пара из каналов<br>соплового аппарата, | град.                | Принимается<br>$\alpha_{13}(1cm.) \ge \alpha_{13}(2cm.)$                                           | 13              | 13             |
| $\alpha_{1,2}$<br>Длина сопловой<br>лопатки, $l_1$                                    | М                    | $l_1 = \frac{F_1}{\pi \cdot d \cdot e \cdot \sin \alpha_{12}}$                                     | 0,1165          | 0,1305         |
| Число Маха, $M_{1t}$                                                                  | -                    | $M_{1t} = \frac{C_{1t}}{\sqrt{k \cdot P_1 \cdot v_{1t} \cdot 10^6}}$                               | 0,535           | 0,579          |
|                                                                                       |                      |                                                                                                    |                 |                |

| Наименование                                                                                       | Единицы<br>измерения | Расчетная формула                                                                                                                                    | 1 –я<br>ступень                            | 2 –я<br>ступень                            |
|----------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|
| Угол входа потока<br>пара в сопловый                                                               | град.                | $\alpha_0 = \alpha_2 (1cm.)$                                                                                                                         | 00                                         | 88,823                                     |
| аппарат, $\alpha_0$<br>Профиль лопатки<br>соплового аппарата                                       | X                    | Выбирается из табл.6 по<br>$M_{1t}, \alpha_0, \alpha_{12};$ определяются:                                                                            | 90<br>C-90-<br>-12A                        | C-90-<br>-12A                              |
|                                                                                                    | M                    | табличные хорда <i>в</i> <sub>1m</sub> ,<br>ширина решетки <i>В</i> <sub>1m</sub> ,<br>радиус закругления<br>выходной кромки                         | $6,25 \cdot 10^{-2} \\ 3,40 \cdot 10^{-2}$ | $6,25 \cdot 10^{-2} \\ 3,40 \cdot 10^{-2}$ |
|                                                                                                    | М                    | профиля $r_{1m}$ ,<br>угол установки профиля $\alpha_y$ , относительный шаг                                                                          | $0,032 \cdot 10^{-2}$<br>$36^{0}$          | $0,032 \cdot 10^{-2}$                      |
| Хорда профиля<br>сопловой лопатки, <i>в</i> <sub>1</sub><br>Ширина сопловой                        | M                    | решетки $t_1$<br>Принимается<br>$B_1 = \frac{\theta_1}{\alpha} \cdot B_{1m}$                                                                         | 0,72<br>0,05                               | 30<br>0,72<br>0,05                         |
| решетки, <i>В</i> <sub>1</sub><br>Число сопловых                                                   | М                    | $z_c = \frac{\pi \cdot d}{\epsilon_1 \cdot \bar{t}_1}$                                                                                               | 0,0272                                     | 0,0272                                     |
| лопаток, <i>z<sub>c</sub></i><br>Толщина выходной<br>кромки профиля<br>сопловой допатки <i>б</i> . | M                    | $\delta_{1\kappa p} = \frac{\mathbf{e}_1}{\mathbf{e}_{1m}} \cdot 2 \cdot \mathbf{r}_{1m}$                                                            | 85<br>5,12 · 10 <sup>-4</sup>              | 85<br>5,12 · 10 <sup>-4</sup>              |
| Относительная<br>толщина выходной<br>кромки профиля                                                | -                    | $\overline{\delta}_{1\kappa p} = \frac{\delta_{1\kappa p}}{\boldsymbol{\varepsilon}_{1} \cdot \overline{t}_{1} \cdot \sin \boldsymbol{\alpha}_{1p}}$ | 0,0632                                     | 0,0632                                     |
| сопловой лопатки, $\bar{\delta}_{lkp}$<br>Относительная длина                                      | -                    | $\bar{l}_1 = \frac{l_1}{B_1}$                                                                                                                        | 2,33                                       | 2,61                                       |
| сопловой лопатки, <i>l</i> <sub>1</sub><br>Относительная хорда<br>сопловой лопатки. <i>б</i> .     | -                    | $\overline{\boldsymbol{e}}_1 = \frac{\boldsymbol{e}_1}{\boldsymbol{l}_1} = \frac{1}{\boldsymbol{l}_1}$                                               | 0,429                                      | 0,383                                      |
| Уточненный<br>коэффициент расхода<br>в сопловом аппарате,                                          | -                    | $\mu_{10} = 0,9843 - 0,0057 \cdot \overline{e}_1$                                                                                                    | 0,98                                       | 0,982                                      |
| <sup>µ10</sup><br>Уточненная выходная<br>площадь<br>межлопаточных<br>каналов соплового             | м <sup>2</sup>       | $F_{10} = \frac{G_0 \cdot v_{1t}}{(\mu_{10} \cdot C_{1t})}$                                                                                          | 0,0795                                     | 0,0887                                     |

| Наименование                                                 | Единицы<br>измерения | Расчетная формула                                                    | 1-я<br>ступень       | 2 –я<br>ступень      |
|--------------------------------------------------------------|----------------------|----------------------------------------------------------------------|----------------------|----------------------|
| аппарата, F <sub>10</sub>                                    | 1                    |                                                                      | erynenib             | erynenib             |
| Уточненная длина<br>сопловой лопатки, <i>l</i> <sub>10</sub> | М                    | $l_{10} = \frac{F_{10}}{\pi \cdot d \cdot e \cdot \sin \alpha_{19}}$ | 0,1155               | 0,1289               |
| Коэффициент<br>динамической<br>вязкости пара и               | кг/(м·с)             | Определяется по<br>графику (рис.9)                                   | 21.10-6              | 20·10 <sup>-6</sup>  |
| Число Рейнольдса, $R_{e1}$                                   | -                    | $R_{e1} = \frac{C_{1t} \cdot \theta_1}{(\mu_{1x} \cdot \nu_{1x})}$   | 1,59·10 <sup>6</sup> | 1,49·10 <sup>6</sup> |
|                                                              |                      |                                                                      |                      |                      |
|                                                              |                      | Поправка на впияние                                                  |                      |                      |
|                                                              |                      | числа $R_{\mu}$ не вносится                                          |                      |                      |
|                                                              |                      | (режимы работы                                                       |                      |                      |
|                                                              |                      | решетки в области                                                    |                      |                      |
|                                                              |                      | автомодельности), КПД                                                |                      |                      |
| Отношение среднего                                           |                      | не меняется                                                          |                      |                      |
| диаметра к высоте                                            |                      | $\lambda_{1} = d/L$                                                  | 0 122                | 7 556                |
| лопатки, $\lambda_1$                                         | -                    | $I_{1} / l_{10}$                                                     | 0,433                | 7,330                |
| Уточненный                                                   |                      | ДЛЯ $\alpha_{1_9} = 9^\circ \div 11^\circ$ :                         |                      |                      |
| коэффициент                                                  |                      | $\lambda_1 > 10$<br>$\alpha_1 = 0.973 = 0.0111.\overline{a}$         |                      |                      |
| скорости в сопловом                                          | -                    | $\varphi_0 = 0,975  0,0111  0_1,$ $\lambda < 10$                     |                      |                      |
| annapare, $\varphi_0$                                        |                      | $\varphi_0 = 0.97 - 0.01542 \cdot \overline{e}_1;$                   |                      |                      |
|                                                              |                      | для $\alpha_{12} = 12^{\circ} \div 20^{\circ}$ :                     |                      |                      |
|                                                              |                      | $\lambda_1 > 10$                                                     |                      |                      |
|                                                              |                      | $\varphi_0 = 0.98 - 8.74 \cdot 10^{-3} \cdot \overline{e}_1;$        |                      |                      |
|                                                              |                      | $\lambda_1 < 10$                                                     |                      |                      |
|                                                              |                      | $\varphi_0 = 0.9773 - 1.196 \cdot 10^{-2} \cdot \overline{e}_1$      | 0.972                | 0 973                |
| Абсолютная скорость                                          |                      | $C_1 = C_{1t} \cdot \varphi_0$                                       | 0,772                | 0,970                |
| пара на выходе из                                            | м/с                  |                                                                      | 308,508              | 326,591              |
| соплового аппарата,                                          |                      | $\left[ \left( \right) \right)^{2}$                                  |                      |                      |
|                                                              |                      | $\left 1+\left(\frac{U}{C}\right)\right $ -                          |                      |                      |
| скорость пара на                                             | м/с                  | $W_1 = C_1 $                                                         |                      |                      |
| входе в рабочую                                              |                      | $-2 \cdot \frac{1}{C_1} \cdot \cos \alpha_{1_2}$                     | 163,989              | 181,714              |
| решетку, $W_1$                                               |                      |                                                                      |                      |                      |
|                                                              |                      |                                                                      |                      |                      |

| Наименование                                                                | Единицы<br>измерения | Расчетная формула                                                                     | 1 –я<br>ступень | 2 –я<br>ступень |
|-----------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------|-----------------|-----------------|
| Тангенс угла входа пара в рабочую решетку, $tg\beta_1$                      | -                    | $tg\beta_1 = \frac{\sin\alpha_{1,2}}{\cos\alpha_{1,2} - U/C_1}$                       | 0,4675          | 0,442           |
| Угол входа пара в рабочую решетку, $\beta_1$                                | град.                | $\beta_1 = arctg\beta_1$                                                              | 25,058          | 23,847          |
| Коэффициент потерь<br>энергии в сопловом<br>аппарате. <i>С</i> .            | -                    | $\zeta_1 = 1 - \varphi_0^2$                                                           | 0,0552          | 0,0533          |
| Потери энергии в сопловом аппарате,                                         | кДж/кг               | $\Delta h_c = h_{0c}^* \cdot {\mathcal L}_1$                                          | 2,779           | 3,002           |
| ∆ <i>h</i> <sub>c</sub><br>Энтальпия пара за<br>сопловым аппаратом,         | кДж/кг               | $h_{1t} + \Delta h_c$                                                                 | 3108,72         | 3057,07         |
| <i>h</i> <sub>1</sub><br>Температура пара за<br>сопловым аппаратом,         | °C                   | Определяются в точке<br>1 (рис.13) по <i>P</i> <sub>1</sub> , <i>h</i> <sub>1</sub> с | 322,3           | 296,06          |
| <i>t</i> <sub>1</sub><br>Удельный объем пара<br>за сопловым                 | м <sup>3</sup> /кг   | использованием h, s<br>диаграммы или<br>программы CATT2                               | 0,47633         | 0,56412         |
| аппаратом, <i>v</i> <sub>1</sub><br>Энтропия пара за<br>сопловым аппаратом, | кДж/(кг∙<br>К)       |                                                                                       | 7,4762          | 7,4851          |
| $s_1$<br>Располагаемый<br>теплоперепад в<br>рабочей решетке, $h_{0,r}$      | кДж/кг               | $h_{0p}= ho\cdot h_{0T}^{*}$                                                          | 2,65            | 2,97            |
| Энтальпия пара за<br>рабочей решеткой при<br>изоэнтропном                   | кДж/кг               | $h_{2t} = h_1 - h_{0p}$                                                               | 3106,07         | 3054,1          |
| расширении, <i>h</i> <sub>2t</sub><br>Давление пара за                      | МПа                  | Определяются в точке $2_t$<br>(рис.13) по $s_1, h_{2t}$ с                             | 0,5645          | 0,455           |
| Температура пара за рабочей решеткой, <i>t</i> <sub>2t</sub>                | °C                   | использованием п, s<br>диаграммы или<br>программы САТТ2                               | 320,98          | 294,54          |
| Удельный объем пара<br>за рабочей решеткой,<br><i>v</i> <sub>2t</sub>       | м <sup>3</sup> /кг   |                                                                                       | 0,4799          | 0,56917         |
|                                                                             |                      |                                                                                       |                 |                 |

| Наименование                                                                                 | Единицы<br>измерения | Расчетная формула                                                                                                    | 1 –я<br>ступень                               | 2 –я<br>ступень                               |
|----------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Теоретическая<br>относительная<br>скорость пара на<br>выходе из рабочей                      | м/с                  | $W_{2t} = \sqrt{2000 \cdot h_{0p} + W_1^2}$                                                                          | 179,417                                       | 197,383                                       |
| решетки, <i>W</i> <sub>2t</sub><br>Число Маха, <i>M</i> <sub>2t</sub><br>Коэффициент расхода | -                    | $M_{2t} = \frac{W_{2t}}{\sqrt{k \cdot P_2 \cdot v_{2t} \cdot 10^6}}$                                                 | 0,3023                                        | 0,3402                                        |
| в рабочей решетке, μ <sub>2</sub><br>Выходная площадь<br>межлопаточных                       | -                    | Принимается                                                                                                          | 0,94                                          | 0,95                                          |
| каналов рабочей решетки, <i>F</i> <sub>2</sub>                                               | M <sup>2</sup>       | $F_2 = \frac{G_0 \cdot v_{2t}}{\left(\mu_2 \cdot W_{2t}\right)}$                                                     | 0,148                                         | 0,158                                         |
| Перекрыша, ∆ <i>і</i><br>Длина рабочей                                                       | М                    | Принимается                                                                                                          | 0,0035                                        | 0,0035                                        |
| лопатки, <i>l</i> <sub>2</sub><br>Синус угла выхода                                          | М                    | $l_2 = l_{10} + \Delta l$                                                                                            | 0,119                                         | 0,1324                                        |
| потока пара из рабочей решетки,                                                              | -                    | $\sin\beta_2 = \frac{F_2}{(\pi \cdot d \cdot l_2)}$                                                                  | 0,4064                                        | 0,3900                                        |
| $\sin \beta_2$<br>Угол выхода потока                                                         | град.                | $\beta_2 = \arcsin \beta_2$                                                                                          | 23,982                                        | 22,954                                        |
| пара из раоочеи решетки, $\beta_2$ Профиль лопатки                                           | -                    | Выбирается из табл. 6<br>по $M_{2t}, \beta_1, \beta_2$ ;                                                             | P-30-<br>-21A                                 | P-30-<br>-21A                                 |
| рабочей решетки                                                                              | M<br>M               | определяются:<br>табличные хорда <i>в</i> <sub>2m</sub> ,                                                            | 2,56·10 <sup>-2</sup><br>2,5·10 <sup>-2</sup> | 2,56·10 <sup>-2</sup><br>2,5·10 <sup>-2</sup> |
|                                                                                              | M                    | ширина решетки <i>B</i> <sub>2m</sub> ,<br>радиус закругления<br>выходной кромки<br>профиля <i>г</i> <sub>2m</sub> , | 0,02.10-2                                     | 0,02.10-2                                     |
|                                                                                              | М                    | момент сопротивления<br>профиля W                                                                                    | 2,34.10-7                                     | 2,34·10 <sup>-7</sup>                         |
|                                                                                              | град.                | угол установки профиля                                                                                               | 80                                            | 80                                            |
|                                                                                              | _                    |                                                                                                                      | 0,60                                          | 0,60                                          |
|                                                                                              |                      |                                                                                                                      |                                               |                                               |

| Наименование                                                                        | Единицы<br>измерения | Расчетная формула                                                                                                                                                                                           | 1 —я<br>ступень       | 2 –я<br>ступень       |
|-------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|
| Хорда профиля рабочей лопатки, <i>в</i> 2                                           | М                    | Принимается, в<br>дальнейшем<br>проверяется по числу<br>Рейнольдса <i>R</i> <sub>e2</sub> и                                                                                                                 | 0,031                 | 0,031                 |
|                                                                                     |                      | величине изгибающего напряжения $\sigma$                                                                                                                                                                    |                       |                       |
| Ширина рабочей решетки, <i>В</i> <sub>2</sub>                                       | М                    | $B_2 = \frac{B_2}{B_{2m}} \cdot B_{2m}$                                                                                                                                                                     | 0,0303                | 0,0303                |
| Число рабочих лопаток, <i>z<sub>p</sub></i>                                         | -                    | $z_p = \pi \cdot d / (e_2 \cdot \bar{t}_2)$                                                                                                                                                                 | 165                   | 165                   |
| Толщина выходной кромки профиля рабочей лопатки, $\delta_{2\kappa\rho}$             | М                    | $\delta_{2\kappa\rho} = \frac{\boldsymbol{6}_2}{\boldsymbol{6}_{2m}} \cdot 2 \cdot \boldsymbol{r}_{2m}$                                                                                                     | 4,84·10 <sup>-4</sup> | 4,84·10 <sup>-4</sup> |
| Относительная<br>толщина выходной<br>кромки профиля                                 | -                    | $\bar{\delta}_{2\kappa\rho} = \frac{\delta_{2\kappa\rho}}{(\epsilon_2 \cdot \bar{t}_2 \cdot \sin \beta_2)}$                                                                                                 | 0,064                 | 0,067                 |
| раоочеи лопатки, $\delta_{2_{kp}}$<br>Относительная длина                           | -                    | $l_2 = \frac{l_2}{l_2}$                                                                                                                                                                                     | 3,839                 | 4,271                 |
| рабочей лопатки, $\bar{l}_2$<br>Относительная хорда<br>рабочей лопатки, $\bar{s}_2$ | -                    | $\overline{\boldsymbol{\sigma}}_2 = \frac{\boldsymbol{\sigma}_2}{\boldsymbol{l}_2} = \frac{1}{\boldsymbol{l}_2}$                                                                                            | 0,261                 | 0,234                 |
| Угол поворота потока<br>в рабочей решетке, Δβ                                       | град.                | $\Delta\beta = 180 - \beta_1 - \beta_2$                                                                                                                                                                     | 130,96                | 133,20                |
| Уточненный<br>коэффициент расхода<br>в рабочей решетке, $\mu_{20}$                  | _                    | Для $\Delta\beta \le 105$ :<br>0,9725 - 0,0145 · $\bar{e}_2$ ;<br>для $\Delta\beta = 130^\circ \div 106^\circ$ :<br>0,9637 + 0,352 · $10^{-3} \times (130 - \Delta\beta) - 0,0154 \cdot \bar{e}_2$ ;<br>Для |                       |                       |
| Уточненная выходная<br>площадь                                                      |                      | $\Delta \beta = 145^{\circ} \div 131^{\circ} :$<br>0,9557 + 0,533 \cdot 10^{-3} ×<br>×(145 - \Delta \beta) - 0,0164 \cdot \beta_2                                                                           | 0,959                 | 0,958                 |
| межлопаточных каналов рабочей решетки, <i>F</i> <sub>20</sub>                       | M <sup>2</sup>       | $F_{20} = \frac{G_0 \cdot v_{2t}}{(\mu_{20} \cdot W_{2t})}$                                                                                                                                                 | 0,145                 | 0,156                 |

| Наименование                                                                              | Единицы<br>измерения | Расчетная формула                                                                                              | 1-я<br>ступень       | 2 –я<br>ступень      |
|-------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|----------------------|----------------------|
| Уточненный синус<br>угла выхода потока                                                    | -                    | $\sin\beta_{20} = \frac{F_{20}}{(\pi \cdot d \cdot l_2)}$                                                      | 0,398                | 0,386                |
| пара из рабочеи<br>решетки, $\sin \beta_{20}$<br>Уточненный угол<br>выхода потока пара из | град.                | $\beta_{20} = \arcsin \beta_{20}$                                                                              | 23,466               | 22,706               |
| рабочей решетки, $\beta_{20}$<br>Коэффициент<br>динамической                              | кг/(м·с)             | Определяется по<br>графику (рис.9)                                                                             | 21.10-6              | 20·10 <sup>-6</sup>  |
| вязкости пара, $\mu_{2n}$<br>Число Рейнольдса, $R_{e2}$                                   | -                    | $R_{e2} = \frac{W_{2t} \cdot \boldsymbol{e}_2}{2n} \cdot \boldsymbol{v}_{2t}$                                  | 5,52·10 <sup>5</sup> | 5,38·10 <sup>5</sup> |
|                                                                                           |                      | $R_{e2} > R_{exx} = (3 \div 5) \cdot 10^5$<br>Поправка на влияние<br>числа $R_e$ не вносится<br>(режимы работы |                      |                      |
| Отношение среднего<br>диаметра к высоте                                                   |                      | решетки в области<br>автомодельности),<br>КПД не меняется                                                      |                      |                      |
| лопатки, $\lambda_2$<br>Коэффициент                                                       | -                    | $\lambda_2 = \frac{d}{l_2}$ Определяется по                                                                    | 8,185                | 7,356                |
| скорости в рабочеи решетке, $\psi$<br>Относительная                                       | -                    | формулам<br>(табл. 7)                                                                                          | 0,932                | 0,941                |
| скорость пара на<br>выходе из рабочей<br>решетки, <i>W</i> <sub>2</sub>                   | м/с                  | $W_2 = \psi \cdot W_{2t}$                                                                                      | 167,217              | 185,693              |
| Коэффициент потерь<br>энергии в рабочей                                                   | -                    | $\zeta_2 = 1 - \psi^2$                                                                                         | 0,1314               | 0,1145               |
| Потери энергии в рабочей решетке, $\Delta h_p$                                            | кДж/кг               | $\Delta h_p = \zeta_2 \cdot \frac{W_{2t}^2}{2000}$                                                             | 2,1145               | 2,2308               |
| Абсолютная скорость пара за ступенью, <i>C</i> <sub>2</sub> Тангенс угла                  | м/с                  | $C_{2} = U \cdot \sqrt{\frac{1 + \binom{W_{2}}{U}^{2}}{-2 \cdot \binom{W_{2}}{U} \cdot \cos \beta_{20}}}$      | 66,601               | 74,226               |
| направления<br>абсолютной скорости<br>за ступенью, $tg\alpha_2$                           | -                    | $tg\alpha_2 = \frac{\sin\beta_{20}}{\cos\beta_{20} - \frac{U}{W_2}}$                                           | 48,69                | 3,717                |

| Наименование                            | Единицы<br>измерения | Расчетная формула                                                            | 1 –я<br>ступень      | 2 –я<br>ступень |
|-----------------------------------------|----------------------|------------------------------------------------------------------------------|----------------------|-----------------|
| Угол направления                        |                      | $\alpha_2 = arctg\alpha_2$                                                   |                      |                 |
| абсолютной скорости                     | град.                |                                                                              | 88,823               | 74,944          |
| за ступенью, $\alpha_2$                 | _                    | $W_1 \cdot \cos \beta_1 + $                                                  |                      |                 |
| Окружное усилие,                        |                      | $R_u = G_0 \cdot \left( + W_2 \cdot \cos \beta_{20} \right)$                 |                      |                 |
| действующее на                          | Н                    |                                                                              | 15700,7              | 17550,1         |
| рабочие лопатки, <i>R</i> <sub>u</sub>  |                      | $F_{2\pi} = \pi \cdot d \cdot l_2$                                           |                      |                 |
| Кольцевая площадь                       | $M^2$                | $W_1 = W_1 \cdot \sin \beta_1$                                               | 0.364                | 0.405           |
| рабочих лопаток, <i>F</i> <sub>2к</sub> |                      | $W_2 = W_2 \cdot \sin \beta_{22}$                                            | 0,201                | 0,100           |
| Осевое усилие,                          |                      | $R = G_0 \cdot (W_1 - W_2) +$                                                |                      |                 |
| действующее на                          | Н                    | $+ E + (P - P) \cdot 10^{6}$                                                 | 2151,03              | 2239,48         |
| рабочие лопатки, <i>R<sub>a</sub></i>   |                      | $1 I_{2\kappa} (I_1 I_2) I_0$                                                |                      |                 |
| Равнодействующая от                     | н                    | $\mathbf{P} = \sqrt{\mathbf{P}^2 + \mathbf{P}^2}$                            | 15847 4              | 17602 /         |
| окружного и осевого                     | 11                   | $K = \sqrt{K_u + K_a}$                                                       | 13047,4              | 17092,4         |
| усилий, <i>R</i>                        |                      |                                                                              |                      |                 |
| Момент                                  | M <sup>3</sup>       | $W_{\text{regreen}} = \left(\frac{B_2}{2}\right)^2 \cdot W_{\text{regreen}}$ | $4,16 \cdot 10^{-7}$ | 4,16.10-7       |
| сопротивления                           |                      | $\left( \boldsymbol{B}_{2m} \right)$                                         |                      |                 |
| профиля рабочей                         |                      |                                                                              | 10 505               |                 |
|                                         | MHa                  | $\sigma = \frac{R \cdot l_2}{10^{-6}} \cdot 10^{-6}$                         | 13,737               | 17,063          |
| изгиоающее                              |                      | $2 \cdot z_p \cdot e \cdot W_{_{MUH}}$                                       |                      |                 |
| попатке с                               |                      | при $\sigma > < [\sigma]$ изменяется                                         |                      |                 |
| Jonarke, O                              |                      | хорда $e_2$ , значения $\sigma$ и                                            |                      |                 |
|                                         |                      | <i>R</i> <sub><i>e</i><sup>2</sup></sub> заново определяются                 |                      |                 |
|                                         | - (                  | $h - C_2^2$                                                                  |                      |                 |
| Потери энергии с                        | кДж/кг               | $\Delta n_s = /2000$                                                         | 2,218                | 2,755           |
| выходной скоростью,                     |                      |                                                                              |                      |                 |
| $\Delta h_{e}$                          | _                    | $\eta_{an} = 1 - \frac{\Delta n_c + \Delta n_p + \Delta n_e}{\frac{1}{2}}$   | 0 8658               | 0 8654          |
| Относительный                           |                      | $h_{0T}$                                                                     | 0,0050               | 0,0054          |
| лопаточный КПД, $\eta_{on}$             |                      | $W_{1u} = W_1 \cdot \cos \beta_1$                                            |                      |                 |
| Относительный                           | -                    | $W_{2u} = W_2 \cdot \cos \beta_{20}$                                         |                      |                 |
| лопаточный КПД,                         |                      | $\eta'_{01} = \frac{U \cdot (W_{1u} + W_{2u})}{(W_{1u} + W_{2u})}$           | 0,8661               | 0,8648          |
| выраженный через                        |                      | $h_{0T}^* \cdot 10^3$                                                        |                      |                 |
| скорости, $\eta'_{on}$                  | 0/2                  |                                                                              | 0.0346               | 0 0603          |
| Величина $\Delta \eta_{on}$             | 70                   | $\frac{ \eta_{_{o_{}}}-\eta_{_{o_{}}}' }{ }\cdot 100$ , если                 | 0,0340               | 0,0075          |
|                                         |                      | $\eta_{\scriptscriptstyle on}$                                               |                      |                 |
|                                         |                      | $\Delta\eta_{\scriptscriptstyle OR}$ >1% , то ошибка в                       |                      |                 |
|                                         |                      | расчетах                                                                     |                      |                 |
|                                         |                      |                                                                              |                      |                 |
|                                         |                      |                                                                              |                      |                 |

| Наименование                                                                                 | Единицы<br>измерения       | 1 –я<br>ступень                                                                                                                 | 2 –я<br>ступень     |                     |
|----------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|
| Число Рейнольдса, <i>R</i> <sub>eu</sub>                                                     | -                          | $P = U \cdot d$                                                                                                                 |                     |                     |
| Коэффициент трения                                                                           | -                          | $\kappa_{eu} = \frac{1}{2 \cdot \mu_{1n} \cdot v_1}$<br>Определяется по                                                         | 7,4·10 <sup>7</sup> | 7,4·10 <sup>7</sup> |
| диска, к <sub>то</sub><br>Относительные                                                      |                            | графику (рис.12)                                                                                                                | 4,5.10-4            | 4,5.10-4            |
| потери энергии на трение диска, $\zeta_{mo}$                                                 | -                          | $\zeta_{m\partial} = \kappa_{m\partial} \cdot \frac{d^2}{E} \cdot x_{\phi}^3$                                                   | 0,0006              | 0,0004              |
| Относительный<br>внутренний КПД,<br>выраженный через                                         | -                          | $\eta_{oi} = \eta_{on} - \zeta_{m\partial}$                                                                                     | 0,8652              | 0,865               |
| Потери энергии на<br>трение диска, $\Delta h_{mo}$<br>Энтальпия пара за                      | кДж/кг                     | $\Delta h_{m\partial} = \zeta_{m\partial} \cdot h_{0T}^*$                                                                       | 0,0318              | 0,0237              |
| конце<br>действительного<br>процесса расширения,<br>точка 2, рис. 13), <i>h</i> <sub>2</sub> | кДж/кг                     | $h_2 = h_{2t} + \Delta h_p$                                                                                                     | 3108,18             | 3056,33             |
| Температура пара за рабочей решеткой, t,                                                     | °C                         |                                                                                                                                 | 322,01              | 295,6               |
| Удельный объем пара за рабочей решеткой,                                                     | м <sup>3</sup> /кг         | (рис.13 $)$ по<br>$h_{2}$ , $p_{2}$ с использованием                                                                            | 0,4806              | 0,5703              |
| <i>v</i> <sub>2</sub><br>Энтропия пара за<br>рабочей решеткой, <i>s</i> <sub>2</sub>         | кДж/(кг <sup>.</sup><br>К) | h, s диаграммы или<br>программы САТТ2,<br>$s_2 = s_0(2cm)$                                                                      | 7,4797              | 7,489               |
| Энтальпия пара за<br>рабочей решеткой,<br>определяющая                                       | кДж/кг                     | $h_2' = h_2 + \Delta h_e + \Delta h_{m\partial}$                                                                                | 3110,43             | 3059,11             |
| внутреннии<br>теплоперепад (точка<br>2', рис. 13), $h'_2$                                    |                            |                                                                                                                                 |                     |                     |
| Внутренний<br>теплоперепал. <i>h</i> .                                                       | кДж/кг                     | $h_i = h_0^* - h_2'$                                                                                                            | 45,86               | 51,32               |
| Относительный                                                                                |                            | $\eta'_{oi} = \frac{h_i}{h_{0T}^*}$                                                                                             | 0,8653              | 0,865               |
| внутренний КПД, $\eta'_{oi}$<br>Величина $\Delta \eta_{oi}$                                  | - %                        | $\Delta \eta_{oi} = rac{\left \eta_{oi} - \eta_{oi}' ight }{\eta_{oi}} \cdot 100,   m e $ сли $\Delta \eta_{oi} > 1\%,   m TO$ | 0,0116              | 0,00                |
|                                                                                              |                            |                                                                                                                                 |                     |                     |

| Нанианораниа                           | Единицы   | Decuerting themaying  | 1 —я    | 2 —я    |
|----------------------------------------|-----------|-----------------------|---------|---------|
| Паименование                           | измерения | тасчетная формула     | ступень | ступень |
| Внутренняя<br>мощность, N <sub>i</sub> |           | ошибка в расчетах     |         |         |
|                                        | кВт       | $N_i = G_0 \cdot h_i$ | 2384,72 | 2668,64 |

По полученным величинам в тепловых расчетах нерегулируемых одновенечных турбинных ступеней строятся процессы расширения пара в указанных ступенях в h, s – диаграмме для водяного пара (рис.13) и треугольники скоростей (рис.14), которые должны соответствовать расчетным данным. На рис.15 показаны геометрические характеристики одновенечной нерегулируемой ступени.



Рис. 13. Процессы расширения пара в нерегулируемых одновенечных ступенях



Рис.14. Треугольники скоростей одновенечных нерегулируемых ступеней



Рис.15. Геометрические характеристики одновенечной нерегулируемой ступени

Далее производится расчет для определения характеристик многоступенчатой турбины на номинальном режиме (коэффициента возвращенной теплоты, относительных КПД, электрической мощности).

# 2.3. Расчет характеристик многоступенчатой противодавленческой турбины

Коэффициент возвращенной теплоты

$$R = 1 + \frac{\sum_{i=1}^{l=2} h_{0T}^* - H_0^*}{H_0^*} = 1 + \frac{221.55 + 53.0 + 59.33 - 327.55}{327.55} = 1 + 0.02 = 1.02$$

Относительный внутренний КПД проточной части турбины

$$\eta_{0i}' = \frac{\sum_{i=1}^{i=z} h_i}{H_0^*} = \frac{177,765 + 45,86 + 51,32}{327,55} = 0,84$$

Относительный внутренний КПД турбины

$$\eta_{0i} = \frac{\sum_{i=1}^{i=z} h_i}{H_0} = \frac{177,765 + 45,86 + 51,32}{344,6} = 0,798$$

Внутренняя мощность турбины

$$N_i = N_{ip} + N_{i1} + N_{i2} = 9243,78 + 2384,72 + 2668,64 = 14297,14 \ \kappa Bm$$

Расчетный относительный эффективный КПД турбины

 $\eta_{oe} = \eta_{M} \cdot \eta_{oi} = 0,99 \cdot 0,798 = 0,79$ 

Расчетная электрическая номинальная мощность турбины

$$\begin{split} N_{_{3p}} &= \eta_{_{M}} \cdot \eta_{_{3e}} \cdot N_{_{i}} = 0,99 \cdot 0,97 \cdot 14297, 14 = 13729, 54 \ \kappa Bm \\ N_{_{3p}}' &= G_{_{0}} \cdot H_{_{0}} \cdot \eta_{_{oe}} \cdot \eta_{_{3e}} = 52 \cdot 344, 6 \cdot 0, 79 \cdot 0, 97 = 13731, 48 \ \kappa Bm \end{split}$$

Величина 
$$\Delta N_{_{3p}} = \frac{\left|N_{_{3p}} - N'_{_{3p}}\right|}{N_{_{3p}}} \cdot 100 = \frac{\left|13729,54 - 13731.48\right|}{13729.54} \cdot 100 = 0,014\% < 1,0\%$$

Разница в результатах определения расчетной электрической номинальной мощности турбины лежит в рамках погрешности расчета.

Разница между заданной и расчетной электрической номинальной мощностью будет определяться следующей величиной:

$$\Delta N_{3} = \frac{\left|N_{3} - N_{3p}\right|}{N_{3}} \cdot 100 = \frac{\left|14000,00 - 13729,54\right|}{14000,00} \cdot 100 = 1,93\% < 5,0\%.$$

Полученная величина  $\Delta N_3 = 1,93$  % не превышает значения погрешности инженерных расчетов.

Если  $\Delta N_3 >5,0$  %, то производится корректировка расхода пара в турбине  $G_0$  и, следовательно, размеров ее проточной части, т.е. длин сопловых и рабочих лопаток.

Предположим, что N<sub>эр</sub>=13100 кВт, тогда:

$$\Delta N_{3} = \frac{\left|N_{3} - N_{3p}\right|}{N_{3}} \cdot 100 = \frac{\left|14000,00 - 13100,00\right|}{14000,00} \cdot 100 = 6,43 \% > 5,0 \%$$

Определяется расход пара, при котором мощность турбины будет 14000 кВт.

$$\frac{N_{3}}{N_{3p}} = \frac{G_{0} \cdot H_{0} \cdot \eta_{oe} \cdot \eta_{32}}{G_{0p} \cdot H_{0} \cdot \eta_{oe} \cdot \eta_{32}} = \frac{14000}{13100} = 1,07,$$
  
$$G_{0} = 1,07 \cdot G_{op} = 1,07 \cdot 52 = 55,64 \quad \kappa^{2}/c.$$

Уравнения неразрывности для выходных сечений решеток регулирующей ступени:

- сопловый аппарат:

 $G_0 \cdot v_{1t} = \mu_1 \cdot F_1 \cdot C_{1t}$ 

- первая рабочая решетка:

$$G_0 \cdot v_{2t} = \mu_2 \cdot F_2 \cdot W_{2t}$$

- направляющая решетка:

$$G_0 \cdot v'_{1t} = \mu'_1 \cdot F'_1 \cdot C'_{1t}$$

- вторая рабочая решетка:

$$G_0 \cdot v'_{2t} = \mu'_2 \cdot F'_2 \cdot W'_{2t}$$

Уравнения неразрывности для выходных сечений решеток нерегулируемых ступеней:

ieper ympyembix er ynenen

- первая ступень:  $G_0 \cdot v_{1t} = \mu_1 \cdot F_1 \cdot C_{1t},$   $G_0 \cdot v_{2t} = \mu_2 \cdot F_2 \cdot W_{2t};$ - вторая ступень:  $G_0 \cdot v_{1t} = \mu_1 \cdot F_1 \cdot C_{1t},$  $G_0 \cdot v_{2t} = \mu_2 \cdot F_2 \cdot W_{2t}.$ 

В процессе детального расчета регулирующей и двух нерегулируемых ступеней определены: средние диаметры ступеней  $d_p$ ,  $d_1=d_2=d$ ; длины сопловых, направляющих и рабочих лопаток  $l_1$ ,  $l'_1$ ,  $l_2$ ; коэффициенты

расхода  $\mu_1$ ,  $\mu'_1$ ,  $\mu_2$ ; теоретические абсолютные и относительные скорости потока пара на выходе из сопловых, направляющей и рабочих решеток C1t, C'<sub>1t</sub>, W<sub>2t</sub>; выходные углы потоков пара из указанных решеток  $\alpha_{13}$ ,  $\alpha'_1$ ,  $\beta_2$ ; удельные объемы пара в выходных сечениях решеток  $v_{1t}$ ,  $v'_{1t}$ ,  $v_{2t}$ .

С учетом указанных величин уравнения неразрывности можно записать для регулирующей ступени:

 $G_{0} \cdot v_{1t} = \mu_{1} \cdot \pi \cdot d_{p} \cdot e \cdot l_{1} \cdot C_{1t} \cdot \sin \alpha_{1};$   $G_{0} \cdot v_{2t} = \mu_{2} \cdot \pi \cdot d_{p} \cdot e \cdot l_{2} \cdot W_{2t} \cdot \sin \beta_{2};$   $G_{0} \cdot v_{1t}' = \mu_{1}' \cdot \pi \cdot d_{p} \cdot e \cdot l_{1}' \cdot C_{1t}' \cdot \sin \alpha_{1}';$  $G_{0} \cdot v_{2t}' = \mu_{2}' \cdot \pi \cdot d_{p} \cdot e \cdot l_{2}' \cdot W_{2t}' \cdot \sin \beta_{2}';$ 

для первой нерегулируемой ступени:

$$G_0 \cdot v_{1t} = \mu_1 \cdot \pi \cdot d \quad \cdot l_1 \cdot C_{1t} \cdot \sin \alpha_1;$$
  

$$G_0 \cdot v_{2t} = \mu_2 \cdot \pi \cdot d \quad \cdot l_2 \cdot W_{2t} \cdot \sin \beta_2;$$

для второй нерегулируемой ступени:

 $G_0 \cdot v_{1t} = \mu_1 \cdot \pi \cdot d \quad \cdot l_1 \cdot C_{1t} \cdot \sin \alpha_1;$  $G_0 \cdot v_{2t} = \mu_2 \cdot \pi \cdot d \quad \cdot l_2 \cdot W_{2t} \cdot \sin \beta_2.$ 

Из этих уравнений следует, что при расходе пара G<sub>0</sub>=55,64 кг/с

- длины лопаток регулирующей ступени будут:

$$\begin{split} l_1 &= l_{10p} \cdot \frac{G_0}{G_{0p}} = 0,061 \cdot 1,07 = 0,065 \ \ \text{\textit{M}}, \\ l_2 &= l_{2p} \cdot \frac{G_0}{G_{0p}} = 0,065 \cdot 1,07 = 0,070 \ \ \text{\textit{M}}, \\ l_1' &= l_{1p}' \cdot \frac{G_0}{G_{0p}} = 0,069 \cdot 1,07 = 0,074 \ \ \text{\textit{M}}, \\ l_2' &= l_{2p}' \cdot \frac{G_0}{G_{0p}} = 0,073 \cdot 1,07 = 0,078 \ \ \text{\textit{M}}; \end{split}$$

- длины лопаток первой нерегулируемой ступени будут:

$$\begin{split} l_1 &= l_{10p} \cdot \frac{G_0}{G_{0p}} = 0,1155 \cdot 1,07 = 0,1236 \quad \textit{\textit{M}}, \\ l_2 &= l_{2p} \cdot \frac{G_0}{G_{0p}} = 0,1190 \cdot 1,07 = 0,1273 \quad \textit{\textit{M}}; \end{split}$$

- длины лопаток второй нерегулируемой ступени будут:

$$l_{1} = l_{10p} \cdot \frac{G_{0}}{G_{0p}} = 0,1289 \cdot 1,07 = 0,1379 \quad \text{M},$$
  
$$l_{2} = l_{2p} \cdot \frac{G_{0}}{G_{0p}} = 0,1324 \cdot 1,07 = 0,1417 \quad \text{M}.$$

| Обозначение | $\alpha_{\scriptscriptstyle 1\scriptscriptstyle 9}, \beta_{\scriptscriptstyle 2},$ | $\alpha_0, \beta_1,$ | $\alpha_{y}, \beta_{y},$ | $\overline{t}$ | $M_{1i}, M_{2i}$ | 6 , M                 | $B_{m}, M$            | r, M                   | $f_{\star}M^2$        | $W_{mum}, M^3$ |
|-------------|------------------------------------------------------------------------------------|----------------------|--------------------------|----------------|------------------|-----------------------|-----------------------|------------------------|-----------------------|----------------|
|             | град.                                                                              | град.                | град.                    |                | 11 / 21          | <i>m '</i>            | <i>m ′</i>            | <i>m ′</i>             | <i>J</i> ,            | Mun m ·        |
| C-90-09A    | 8÷11                                                                               | 70÷120               | 27÷33                    | 0,72÷0,85      | До 0,90          | 6,06·10 <sup>-2</sup> | 2,94·10 <sup>-2</sup> | $0,028 \cdot 10^{-2}$  | 3,45·10 <sup>-4</sup> | 0,471.10-6     |
| C-90-12A    | 10÷14                                                                              | 70-120               | 31÷36                    | 0,72÷0,87      | До 0,85          | 6,25·10 <sup>-2</sup> | 3,40.10-2             | $0,032 \cdot 10^{-2}$  | 4,09·10 <sup>-4</sup> | 0,575.10-6     |
| C-90-15A    | 13÷17                                                                              | 70÷120               | 36÷42                    | 0,70÷0,85      | До 0,85          | 5,15·10 <sup>-2</sup> | 3,08·10 <sup>-2</sup> | 0,04·10 <sup>-2</sup>  | 3,3·10 <sup>-4</sup>  | 0,45.10.6      |
| C-90-18A    | 16÷20                                                                              | 70÷120               | 41÷46                    | 0,70÷0,80      | До 0,85          | 4,71·10 <sup>-2</sup> | 3,14·10 <sup>-2</sup> | 0,03·10 <sup>-2</sup>  | $2,72 \cdot 10^{-4}$  | 0,333.10.6     |
| C-90-22A    | 20÷24                                                                              | 70÷120               | 41÷47                    | 0,70÷0,80      | До 0,90          | 4,5·10 <sup>-2</sup>  | 3,13·10 <sup>-2</sup> | 0,032·10 <sup>-2</sup> | 2,35·10 <sup>-4</sup> | 0,265.10-6     |
| C-90-27A    | 24-30                                                                              | 70÷120               | 45÷51                    | 0,65÷0,75      | До 0,90          | 4,5·10 <sup>-2</sup>  | 3,28·10 <sup>-2</sup> | 0,027·10 <sup>-2</sup> | 2,03·10 <sup>-4</sup> | 0,195.10-6     |
| C-90-33A    | 30÷36                                                                              | 70÷120               | 52÷58                    | 0,62÷0,75      | До 0,90          | 4,5·10 <sup>-2</sup>  | 3,56·10 <sup>-2</sup> | 0,027·10 <sup>-2</sup> | 1,84·10 <sup>-4</sup> | 0,163.10.6     |
| C-90-38A    | 35÷42                                                                              | 70÷120               | 56÷68                    | 0,60÷0,73      | До 0,90          | 4,5·10 <sup>-2</sup>  | 4,0.10-2              | 0,03·10 <sup>-2</sup>  | $1,75 \cdot 10^{-4}$  | 0,141.10-6     |
| C-55-15A    | 12÷18                                                                              | 45÷75                | 50÷56                    | 0,72÷0,87      | До 0,90          | 4,5·10 <sup>-2</sup>  | 3,3·10 <sup>-2</sup>  | 0,03·10 <sup>-2</sup>  | 4,41·10 <sup>-4</sup> | 0,912.10-6     |
| C-55-20A    | 17÷23                                                                              | 45÷75                | 62 <del>÷</del> 67       | 0,70÷0,85      | До 0,90          | 4,15·10 <sup>-2</sup> | 3,5·10 <sup>-2</sup>  | 0,02·10 <sup>-2</sup>  | 2,15·10 <sup>-4</sup> | 0,275.10.6     |
| C-45-25A    | 21÷28                                                                              | 35÷65                | 62 <del>÷</del> 67       | 0,60÷0,75      | До 0,90          | 4,58·10 <sup>-2</sup> | 4,0.10 <sup>-2</sup>  | 0,02·10 <sup>-2</sup>  | 3,3·10 <sup>-4</sup>  | 0,536.10-6     |
| C-60-30A    | 27÷34                                                                              | 45÷85                | 67÷73                    | 0,52÷0,70      | До 0,90          | 3,46.10-2             | 3,3·10 <sup>-2</sup>  | 0,02·10 <sup>-2</sup>  | 1,49·10 <sup>-4</sup> | 0,154.10-6     |
| C-65-20A    | 17÷23                                                                              | 45÷85                | 48÷55                    | 0,60÷0,70      | До 0,90          | 4,5·10 <sup>-2</sup>  | 3,5·10 <sup>-2</sup>  | 0,022·10 <sup>-2</sup> | 2,26·10 <sup>-4</sup> | 0,348.10-6     |
| C-70-25A    | 22÷28                                                                              | 55÷90                | 53÷59                    | 0,50÷0,67      | До 0,90          | 4,5·10 <sup>-2</sup>  | 3,6.10-2              | 0,026·10 <sup>-2</sup> | 1,89·10 <sup>-4</sup> | 0,235.10.6     |
| С-90-12Б    | 10÷14                                                                              | 70÷120               | 32÷37                    | 0,72÷0,87      | 0,85÷1,15        | 5,66·10 <sup>-2</sup> | 3,1.10-2              | 0,028·10 <sup>-2</sup> | 3,31·10 <sup>-4</sup> | 0,420.10.6     |
| С-90-15Б    | 13÷17                                                                              | 70÷120               | 35÷41                    | 0,70÷0,85      | 0,85÷1,15        | 5,2·10 <sup>-2</sup>  | 4,0.10-2              | 0,03·10 <sup>-2</sup>  | 3,21·10 <sup>-4</sup> | 0,413.10.6     |
| C-90-12B    | 10÷14                                                                              | 70÷120               | 39÷43                    | 0,58÷0,68      | 1,4÷1,8          | 4,09.10-2             | 2,67.10-2             | 0,02.10-2              | 2,3·10 <sup>-4</sup>  | 0,324.10-6     |

Таблица 6. Характеристики профилей турбинных лопаток МЭИ.

Окончание табл.6

| Обозналение     | $\alpha_{\scriptscriptstyle 1\scriptscriptstyle 3}, \beta_{\scriptscriptstyle 2},$ | $\alpha_0, \beta_1,$ | $\alpha_{y}, \beta_{y},$ | $\overline{t}$ | M. M.                | B M                   | Вм                    | r M                    | $f M^2$               | $W M^3$    |
|-----------------|------------------------------------------------------------------------------------|----------------------|--------------------------|----------------|----------------------|-----------------------|-----------------------|------------------------|-----------------------|------------|
| 0005rid-territe | град.                                                                              | град.                | град.                    | ι              | $111_{1t}, 111_{2t}$ | $o_m, m$              | $D_m, m$              | <i>m</i> , <i>sw</i>   | J , M                 | минт, ж    |
| C-90-15B        | 13÷17                                                                              | 70÷120               | 38÷42                    | 0,55÷0,65      | 1,4÷1,7              | 4,2·10 <sup>-2</sup>  | 2,6.10-2              | 0,025·10 <sup>-2</sup> | 2,0.10 <sup>-4</sup>  | 0,238.10-6 |
| P-23-14A        | 12÷16                                                                              | 20÷30                | 77÷82                    | 0,60÷0,75      | До 0,95              | 2,59·10 <sup>-2</sup> | $2,5\cdot10^{-2}$     | $0,02 \cdot 10^{-2}$   | $2,44\cdot10^{-4}$    | 0,39.10-6  |
| P-26-17A        | 15÷19                                                                              | 23÷35                | 75÷81                    | 0,60÷0,70      | До 0,95              | 2,57·10 <sup>-2</sup> | 2,07·10 <sup>-2</sup> | $0,02 \cdot 10^{-2}$   | 2,07·10 <sup>-4</sup> | 0,225.10-6 |
| P-30-21A        | 19÷24                                                                              | 25÷40                | 77÷83                    | 0,58÷0,68      | До 0,90              | 2,56·10 <sup>-2</sup> | $2,5\cdot10^{-2}$     | $0,02 \cdot 10^{-2}$   | $1,85 \cdot 10^{-4}$  | 0,234.10-6 |
| P-35-25A        | 22÷28                                                                              | 30÷50                | 76÷82                    | 0,55÷0,65      | До 0,85              | 2,54·10 <sup>-2</sup> | $2,5\cdot10^{-2}$     | 0,02.10-2              | 1,62·10 <sup>-4</sup> | 0,168-10-6 |
| P-46-29A        | 25÷32                                                                              | 44÷60                | 75÷81                    | 0,45÷0,58      | До 0,85              | 2,56·10 <sup>-2</sup> | 2,5·10 <sup>-2</sup>  | 0,015·10 <sup>-2</sup> | $1,22.10^{-4}$        | 0,112.10-6 |
| P-50-33A        | 30÷36                                                                              | 47÷65                | 75÷81                    | 0,43÷0,55      | До 0,85              | 2,56·10 <sup>-2</sup> | 2,5·10 <sup>-2</sup>  | 0,017·10 <sup>-2</sup> | $1,02.10^{-4}$        | 0,079.10-6 |
| P-60-38A        | 35÷42                                                                              | 55÷75                | 72÷78                    | 0,41÷0,51      | До 0,85              | 2,61·10 <sup>-2</sup> | 2,5·10 <sup>-2</sup>  | 0,02·10 <sup>-2</sup>  | 0,76·10 <sup>-4</sup> | 0,035.10-6 |
| Р-23-14Ак       | 12÷16                                                                              | 20÷30                | 75÷81                    | 0,60÷0,75      | До 0,95              | 2,59·10 <sup>-2</sup> | 2,5·10 <sup>-2</sup>  | 0,02·10 <sup>-2</sup>  | 2,35·10 <sup>-4</sup> | 0,331.10-6 |
| Р-26-17Ак       | 15÷19                                                                              | 23÷45                | 75÷81                    | 0,60÷0,70      | До 0,95              | 2,57·10 <sup>-2</sup> | $2,5\cdot10^{-2}$     | 0,02·10 <sup>-2</sup>  | 1,81·10 <sup>-4</sup> | 0,165.10-6 |
| Р-27-17Б        | 15÷19                                                                              | 23÷45                | 75÷81                    | 0,57÷0,65      | 0,8÷1,15             | 2,54·10 <sup>-2</sup> | 2,5·10 <sup>-2</sup>  | $0,02 \cdot 10^{-2}$   | 2,06.10-4             | 0,296.10-6 |
| Р27-17-Вк       | 15÷19                                                                              | 23÷45                | 75÷81                    | 0,57÷0,68      | 0,85÷1,15            | 2,54·10 <sup>-2</sup> | 2,5·10 <sup>-2</sup>  | 0,02·10 <sup>-2</sup>  | $1,79 \cdot 10^{-4}$  | 0,216.10-6 |
| Р-30-21Б        | 19÷24                                                                              | 25÷40                | 81÷85                    | 0,55÷0,65      | 0,85÷1,1             | 2,01·10 <sup>-2</sup> | 2,0·10 <sup>-2</sup>  | 0,016·10 <sup>-2</sup> | $1,11.10^{-4}$        | 0,101.10-6 |
| Р-35-25Б        | 22÷28                                                                              | 30÷50                | 82÷87                    | 0,55÷0,65      | 0,85÷1,1             | $2.52 \cdot 10^{-2}$  | 2,5·10 <sup>-2</sup>  | 0,02·10 <sup>-2</sup>  | 1,51·10 <sup>-4</sup> | 0,159.10-6 |
| P-21-18B        | 16÷20                                                                              | 19÷24                | 86÷89                    | 0,60÷0,70      | 1,3÷1,6              | 2,0·10 <sup>-2</sup>  | 2,0·10 <sup>-2</sup>  | 0,016·10 <sup>-2</sup> | $1.16 \cdot 10^{-4}$  | 0,142.10.6 |
| P-25-22B        | 20÷24                                                                              | 23÷27                | 87÷90                    | 0,54÷0,67      | 1,35÷1,6             | 2,0·10 <sup>-2</sup>  | 2,0·10 <sup>-2</sup>  | 0,016·10 <sup>-2</sup> | 0,99·10 <sup>-4</sup> | 0,100.10-6 |

| Угол поворота                                 | Отношение         |                                                                                           |
|-----------------------------------------------|-------------------|-------------------------------------------------------------------------------------------|
| потока в                                      | среднего диаметра | Формула                                                                                   |
| решетке,                                      | к высоте лопатки, | $\psi(\mu) \wedge \beta(\Lambda \alpha') \overline{e} (\overline{e}')$                    |
| $\Deltaeta(\Deltalpha')$                      | λ                 | $\varphi(\varphi_n), \Delta \rho(\Delta \alpha_n), \sigma_2(\sigma_1)$                    |
|                                               |                   |                                                                                           |
| $\Delta \beta \leq 90^{\circ}$                | $\lambda > 10$    | $\psi = 0.9657 - 0.0031 \cdot \overline{e}_2$                                             |
| $\Delta \beta \leq 90^{\circ}$                | $\lambda$ <10     | $\psi = 0.9608 - 0.0045 \cdot \overline{e}_2$                                             |
| $\Delta\beta = 105^\circ \div 91^\circ$       | $\lambda > 10$    | $\psi = 0.96 + 0.38 \cdot 10^{-3} (105 - \Delta\beta) -$                                  |
|                                               |                   | $-(7,3\cdot10^{-3}-0,28\cdot10^{-3}\cdot(105-\Delta\beta))\cdot\bar{e}_2$                 |
| $\Delta\beta=105^{\circ}\div91^{\circ}$       | $\lambda$ <10     | $\psi = 0.9562 + 0.2534 \cdot 10^{-3} (105 - \Delta\beta) -$                              |
|                                               |                   | $-(9,975 \cdot 10^{-3} - 0,3734 \cdot 10^{-3} \cdot (105 - \Delta\beta)) \cdot \bar{e}_2$ |
| $\Lambda B - 130^{\circ} \pm 106^{\circ}$     | 1 10              | $\psi = 0.955 + 0.2 \cdot 10^{-3} (130 - \Delta\beta) -$                                  |
| $\Delta p = 150 \div 100$                     | $\lambda > 10$    | $-(0,011-0,148\cdot10^{-3}\cdot(130-\Delta\beta))\cdot\bar{e}_{2}$                        |
| $\Delta\beta = 130^{\circ} \div 106^{\circ}$  | 2 < 10            | $\psi = 0.9455 + 0.428 \cdot 10^{-3} (130 - \Delta \beta) - $                             |
|                                               | $\lambda < 10$    | $-(0,0128-0,114\cdot10^{-3}\cdot(130-\Delta\beta))\cdot\bar{e}_2$                         |
| $\Delta\beta = 145^\circ \div 131^\circ$      | $\lambda > 10$    | $\psi = 0.9505 + 0.3 \cdot 10^{-3} (145 - \Delta\beta) -$                                 |
|                                               |                   | $-(0,015375-2,9175\cdot10^{-4}\cdot(145-\Delta\beta))\cdot\bar{e}_2$                      |
| 1450 $1210$                                   |                   | $\psi = 0.9387 + 4.5333 \cdot 10^{-4} (145 - \Delta \beta) -$                             |
| $\Delta \beta = 145^{\circ} \div 131^{\circ}$ | $\lambda$ <10     | $-(0,0183-3,65\cdot10^{-4}\cdot(145-\Delta\beta))\cdot\bar{e}_2$                          |

Таблица 7. Определение коэффициента скорости  $\psi(\psi_{\mu})$ 

#### ЗАКЛЮЧЕНИЕ

Курсовая работа должна включать расчетно-пояснительную записку и графическую часть.

Расчетно-пояснительная записка должна содержать:

1. Описание принятой конструкции турбины, её назначение, обоснование выбора основных узлов турбины, типы регулирующей и нерегулируемых ступеней.

2. Исходные данные для теплового расчета паровой многоступенчатой противодавленческой турбины.

3. Алгоритм и результаты предварительного теплового расчета паровой турбины.

4. Алгоритм и результаты детального теплового расчета регулирующей ступени.

5. Алгоритм и результаты детального теплового расчета нерегулируемых ступеней.

6. Расчет характеристик паровой многоступенчатой противодавленческой турбины.

7. Выводы по результатам курсовой работы.

8. Графические изображения в масштабе: предварительного процесса расширения пара в турбине, процессов расширения пара в регулирующей ступени, в нерегулируемых ступенях, входных и выходных треугольников скоростей регулирующей и нерегулируемых ступеней.

9. Изображения проточной части двухвенечной регулирующей ступени, геометрических характеристик одновенечной нерегулируемой ступени.

10. Объем расчетно-пояснительной записки вместе с таблицами, рисунками и графиками составляет 30-40 листов печатного текста.

Графическая часть включает два чертежа, выполненные на одном листе формат А-1карандашом или с использованием компьютерных технологий:

1. Продольный разрез турбины в масштабе 1:5, где показываются основные конструктивные узлы турбины (сопловые, рабочие лопатки турбинных ступеней, рабочие диски, диафрагмы, корпус, опорные и упорный подшипники, концевые и диафрагменные уплотнения, регулирующий клапан, валы турбины и электрогенератора с соединительной муфтой и др.). Чертеж должен быть без излишней деталировки, на нем приводятся основные размеры турбины.

2. Проточные части регулирующей и нерегулируемых ступеней изображаются в масштабе 1:1 или 1:2, вычерчиваются подробно, с нанесением всех их размеров, изображаются в правом верхнем углу листа.

## БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Нагнетатели и тепловые двигатели (раздел «Тепловые двигатели»): методические указания к курсовому проекту для студентов вечернего и заочного обучения/ сост. Н.И.Никольский, П.В.Луканин/ ЛТИ ЦБП.-Л.,1990.-50 с.

2. Источники и системы теплоснабжения предприятий: учебник под ред. В.М. Лебедева; М.: Изд-во УМЦ ЖДТ (Маршрут), 2013. - 384 с.

3. Проектирование одноцилиндровой конденсационной турбины [Электронный ресурс]: учебное пособие/ П.А.Щинников - Электрон. текстовые данные. -Новосибирск: Новосибирский государственный технический университет, 2013.— 83 с.

4. Тепловые двигатели для целлюлозно-бумажной промышленности (Теория и конструкция паровых турбин) - учебное пособие/ сост. П.В.Луканин, Т.Ю.Короткова /СПбГТУРП. СПб., 2010. – 197 с.

5. Расчет промежуточной ступени многоступенчатой паровой турбины: методические указания к расчетной работе №2 по дисциплине: «Тепловые двигатели и нагнетатели»/ сост. П.Н. Коновалов, Е.А. Логинова/ СПбГТУРП.- СПб., 2009.- 26 с.

6. Каталог энергетического оборудования -2010. Турбины и Дизели/ М.: «Копировальный центр «Галеон», 2010.- 420 с.

# оглавление

| Введение                                                       | 3  |
|----------------------------------------------------------------|----|
| 1. Предварительный расчет паровой турбины                      | 5  |
| 2. Детальный тепловой расчет проточной части многоступенчатой  |    |
| паровой турбины                                                | 13 |
| 2.1. Расчет двухвенечной регулирующей ступени                  | 13 |
| 2.2. Расчет нерегулируемых ступеней                            | 47 |
| 2.3. Расчет характеристик многоступенчатой противодавленческой |    |
| турбины                                                        | 60 |
| Заключение                                                     | 65 |
| Библиографический список                                       | 67 |