В.А. Ганичев, Е.Н. Громова

РАСЧЁТ ИЗВЕСТЕРЕГЕНЕРАЦИОННОЙ ПЕЧНОЙ УСТАНОВКИ

Учебно-методическое пособие по выполнению курсовых работ

Санкт-Петербург 2019

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ ТЕХНОЛОГИЙ И ДИЗАЙНА»

ВЫСШАЯ ШКОЛА ТЕХНОЛОГИИ И ЭНЕРГЕТИКИ

В.А.Ганичев, Е.Н. Громова

РАСЧЁТ ИЗВЕСТЕРЕГЕНЕРАЦИОННОЙ ПЕЧНОЙ УСТАНОВКИ

Учебно-методическое пособие по выполнению курсовых работ

Санкт-Петербург 2019 УДК 676.08 (075)

ББК 35.77я 7

Γ 192

Ганичев В.А., Громова Е.Н. Расчет известерегенерационной печной установки: учебно-методическое пособие по выполнению курсовых работ / ВШТЭ СПбГУПТД. - СПб., 2019. – 25 с.

Настоящее пособие содержит описание процесса обжига известняка и известкового шлама, методику расчёта известеобжигательных печей, которые широко применяются в целлюлозно-бумажной промышленности. Прилагается перечень литературы, вспомогательные и справочные таблицы.

Предназначается для обучающихся по направлению 13.03.01 «Теплоэнергетика и теплотехника» при выполнении курсовых работ по дисциплине «Проектирование высокотемпературных теплотехнических установок» и выпускных квалификационных работ.

Рецензенты:

профессор кафедры теплосиловых установок и тепловых двигателей ВШТЭ СПбГУПТД, канд. техн. наук Н.Н. Гладышев;

доцент кафедры «Теплоэнергетика и теплосиловые установки» Санкт-Петербургского государственного университета путей сообщения Императора Александра 1, канд. техн. наук В.И. Крылов.

Рекомендовано к изданию Редакционно-издательским советом ВШТЭ СПбГУПТД в качестве учебно-методического пособия.

[©] Высшая школа технологии и энергетики СПбГУПТД, 2019

[©] Ганичев В.А., Громова Е.Н.,

ВВЕДЕНИЕ

В целлюлозно-бумажной, химической И других отраслях промышленности широкое распространение получили известерегенерационные печи для производства негашеной извести, при воздействии на которую водой получают гашеную известь Са(ОН)2. Кроме химической промышленности, такие печные установки применяются в строительстве и сельском хозяйстве.

Известерегенерационная печь является характерной высокотемпературной теплотехнической установкой, в которой протекают технологические процессы, связанные с изменением свойств и структуры материала под воздействием высокой температуры, создаваемой за счёт сжигания топлива.

При расчётах теплотехнологических установок составляется материальный и тепловой баланс, а на основании уравнений теплообмена определяются габариты аппаратов [1].

Основная задача настоящей курсовой работы заключается в том, чтобы научить студентов рассчитывать материальный и тепловой балансы высокотемпературных теплотехнологических установок, определять технико-экономические показатели работы печей, рассчитывать габариты тепломассообменных аппаратов.

1. НАЗНАЧЕНИЕ И КОНСТРУКЦИЯ ИЗВЕСТЕРЕГЕНЕРАЦИОННОЙ ПЕЧИ

Основным варочным реагентом при сульфатной варке целлюлозы является белый щелок, состоящий в основном из едкого натра (NaOH), сульфида натрия (Na₂S), небольшого количества карбоната (Na₂CO₃) и сульфата натрия (Na₂SO₄). Активной частью белого щелока являются едкий натр и сульфид натрия.

Варка целлюлозы осуществляется в варочных котлах, куда загружается щепа и подается щелок. После варки, образующийся черный щелок подвергают регенерации для восстановления использованных минеральных веществ [2]. Процесс регенерации включает в себя следующие стадии:

- упаривание щелока в выпарных аппаратах до содержания абсолютно сухого вещества 50-65 %;
- сжигание упаренного щелока в содорегенерационных котельных агрегатах, в которых теплота от сгорания органической части щелока используется для производства пара, а минеральная часть переходит в плав, основными компонентами которого являются карбонат натрия Na_2CO_3 и сульфид натрия $Na_2S[3]$;
- каустизация раствора плава (зеленого щелока), в процессе которой карбонат натрия переводится в активный едкий натр (белый щелок).

Осветленный зеленый щелок подают на гашение извести и последующую каустизацию в гасителе-классификаторе. Там известь гасится и вступает в реакцию каустизации:

$$CaO + Na_2CO_3 + H_2O = 2NaOH + CaCO_3$$
.

Каустизированный щелок подвергается осветлению в отстойниках или в вакуум-фильтрах, после чего вновь поступает в варочный котел.

Для успешной работы осветлителя необходимо наличие шлама равномерной дисперсности, способного быстро осаждаться и хорошо уплотняться. Образование такого шлама при каустизации возможно только при наличии извести равномерно обожженной, с минимальным количеством примесей [4]. Скорость гашения извести зависит от содержания в ней СаО и примесей (SiO₂, R₂O₃, Na₂O ...), а полнота гашения — от качества обожженной извести, которая в большей степени определяется температурным режимом обжига в печах.

Продуктами, из которых получают известь (CaO), являются природный известняк (CaCO₃) и отработавший каустизационный шлам с влажностью 40-50 %. Основной химической реакцией при регенерации активной извести из каустизационного шлама, как и при обжиге свежего известняка, является эндотермическая реакция разложения карбоната кальция под действием высокой температуры:

$$CaCO_3 \rightarrow CaO + CO_2 - Q$$
,

где О - тепловой эффект разложения карбоната кальция.

Обжиг исходного материала для получения извести осуществляется в известеобжигательных печах.

В старых схемах обжигание производили в так называемых шахтных печах, наполняя их чередующимися слоями топлива и известняка и зажигая топливо снизу, однако печи имеют такие низкую производительность, высокую трудоемкость, большие габариты. Принцип действия современных высокопроизводительных известерегенерационных печей основан на применении вращающегося барабана, в котором обжигаемый материал и дымовые газы движутся противотоком. Исходный материал в виде шлама загружается в барабан с "холодного конца" печи, а процесс сжигания топлива производят с противоположной стороны -"горячего конца" (рис.1).

Установка состоит из вращающегося барабана (1), питательного устройства для подачи шлама или известняка (2), откатной камеры с горелками (3), холодильного барабана для охлаждения выходящей из печи извести (4) и пылеуловителя (8).

Печной барабан установлен на роликовых опорах с небольшим уклоном к горизонту 1-3° в сторону выгрузки извести и вращается с частотой 0,5 1/мин от электродвигателя посредством редуктора и приводной шестерни. Обжигаемый материал и горячие газы движутся в печи противотоком. Чтобы шлам не налипал на стенки, у входного конца печи в футеровку свободно заделаны цепи, сбивающие своими ударами со Цепи, стенок налипшие комья. одновременно набирая пастообразный шлам, увеличивают поверхность соприкосновения с горячими газами, что способствует быстрой сушке шлама с эффективным использованием теплоты газов. Внутри барабан футерован огнеупорным кирпичом.

Топливом для вращающихся печей служат мазут или газ, образующие длинное пламя. Мазут в зависимости от марки подогревают в трубчатом теплообменнике острым паром для придания ему требуемой вязкости.

Для организации горения в печь подают подогретый до температуры 150-300 °C воздух. Подогрев воздуха производят в холодильном барабане за счет его контакта с горячей известью.

Необходимое разрежение в печи создают дымососом. Дымовые газы из печи отводятся в циклон, где очищаются от пыли, и после дополнительной очистки и охлаждения в скруббере удаляются в атмосферу. Скрубберная вода используется в цехе каустизации.

Для нормальной работы известеобжигательной печи необходимо обеспечивать равномерное поступление шлама с влажностью не выше 55 %, хорошо промытым от щелочи. В этом случае шлам в процессе

подсушки хорошо гранулируется, образуя зерна размером 10-20 мм, которые сохраняют свою форму при обжиге и уменьшают потери с пылью.

Холодильный барабан служит для охлаждения извести до 50 °C и нагрева дутьевого воздуха, подаваемого к форсункам. Воздух циркулирует в особых каналах, проложенных в стенках барабана, а затем его используют в качестве дутьевого для горения топлива. Воздушный холодильник диаметром 2,5 м и длиной 8м, делающий 1-5 об/мин, обеспечивает охлаждение около 100 т извести в сутки.

2. ОСНОВНЫЕ СТАДИИ И ТЕМПЕРАТУРНЫЙ РЕЖИМ ОБЖИГА

Во время работы печи по ее длине можно выделить четыре основные зоны, в которых происходят физико-химические изменения сырья [4].

- 1. Зона сушки шлама. Она включает цепную завесу и некоторую часть после нее (по ходу материала). В этой зоне происходит удаление влаги из шлама, а температура материала достигает 200 °C. Температура газов в этой зоне может изменяться от 140 до 800 °C. В случае обжига одного известняка зона сушки значительно сокращается.
- 2. Зона подогрева. После удаления влаги материал интенсивно прогревается от 200 до 750 °C. Температура газов равна 800-1200 °C. Наряду с нагревом происходит диссоциация MgCO₃ на MgO₄иCO₂, а также ряд процессов с силикатами и полуторными окислами.

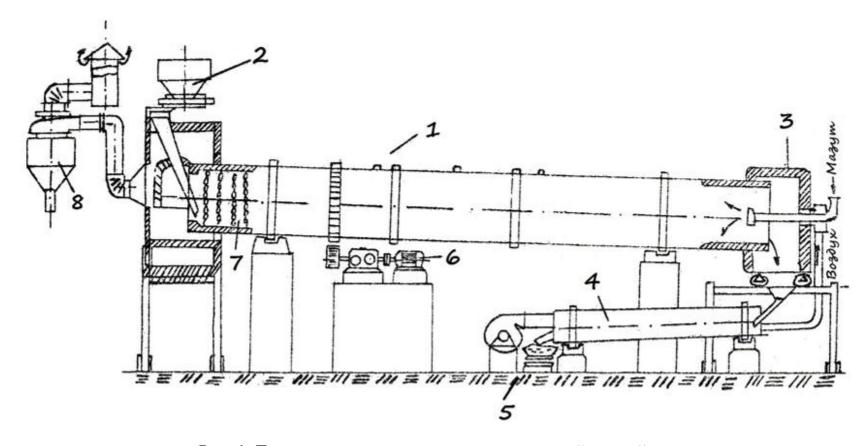


Рис. 1. Технологическая схема регенерационной печной установки

- 1 печной барабан; 2 питатель с дозатором; 3 откатная камера с горелкой; 4 холодильный барабан;
- 5 выход обожженной извести; 6 привод; 7 цепная зона; 8 циклон

3. Зона обжига. В этой зоне происходит основная реакция обжига, при которой карбонат кальция $CaCO_3$, под воздействием высокой температуры разлагается на углекислый газ CO_2 и известь CaO.

$$CaCO_3 = Cao + CO_2 - 147 кДж/кг.$$

Окись кальция СаО представляет собой белое очень огнестойкое вещество, которое часто называют негашеной или жженой известью.

Температура материала в этой зоне достигает 750-1200 °C, температура газов - 1200-1400 °C.

4. Зона охлаждения. При поступлении в печь вторичного воздуха известь охлаждается на 150-200 °C.

Температурный режим обжига оказывает существенное воздействие на качественный показатель обожженной извести - максимальную активность извести при гашении. Зона обжига занимает более половины общей длины печи. Температуру в этой зоне рекомендуется поддерживать в пределах 1200-1300 °C. Повышение температуры выше 1300 °C приводит к пережогу извести и разрушению футеровки печи.

3. ТЕПЛОТЕХНИЧЕСКИЙ ЭФФЕКТ ОБЖИГА ИЗВЕСТИ

При нормальном режиме комочки извести выходят из печи ярко раскаленными; после охлаждения известь приобретает зеленоватый или желтоватый оттенок. Теоретически максимальный выход CaO из CaCO₃ составляет 95-97 %. В виде неразложившегося твердого раствора остается 3-5 % CaCO₃. Однако практически выход CaO оказывается значительно ниже, так как часть ее связывается химическими примесями.

Отношение количества активной CaO в полученной регенерированной извести к количеству активной CaO, затраченному на каустизацию,

называется степенью регенерации извести. Эта величина колеблется для различных установок в пределах от 80 до 95 %. Следовательно, потери CaO в системе каустизации и обжига шлама составляют от 5 до 20 %.

Получаемая в печах известь CaO поступает в цех каустизации, где карбонат натрия (Na_2CO_3) при взаимодействии с негашеной известью (CaO) в присутствии воды (H_2O) образует гидрат окиси (NaOH) и карбонат кальция ($CaCO_3$), который выпадает в осадок.

$$Na_2CO_3 + CaO + H_2O = 2NaOH + CaCo_3$$
.

Гидрат окиси натрия NaOH представляет собой твердое белое, очень гигроскопическое вещество, плавящееся при температуре 328 °C. Ввиду сильного разъедающего действия на ткани, кожу, бумагу и другие органические вещества он называется едким натром.

Результат процесса оценивается степенью каустизации в полученном белом щелоке.

$$K = \frac{NaOH}{NaOH + Na_2CO_3} .$$

Поскольку карбонат натрия (Na_2CO_3) не играет активной роли при варке целлюлозы, необходимо получать после каустизации белый щелок (в основном NaOH) с возможно большей степенью каустизации.

По данным [6,7] удельный расход теплоты при обжиге извести находится в пределах 7390-13720 кДж/кг. Удельный расход теплоты зависит от отношения длины печи к диаметру, температуры нагрева дутьевого воздуха, потерь теплоты в окружающую среду, начальной влажности шлама, коэффициента избытка воздуха и других факторов.

Баланс по массе известерегенерационной печи базируется на усредненном химическом составе продукта и оценке общего уноса известковой пыли. Схематически баланс по массе показан на рис.2. Составление материального баланса печи основано на оценке количества

пыли, образующейся при обработке шлама и определении состава потоков твердых веществ. Состав уходящих из печи газов определяется с учетом наличия в них избыточного кислорода O_2 и CO_2 , образовавшегося в процессе кальцинирования, при полном сгорании топлива.

Общий тепловой баланс печи составляется из расчета количества теплоты, получаемой от сжигания топлива, теплоты от испарения влаги, обжига, уноса теплоты вместе с отходящими из печи продуктами сгорания, потерь теплоты с пылью, а также потерь теплоты с обожженной известью [3].

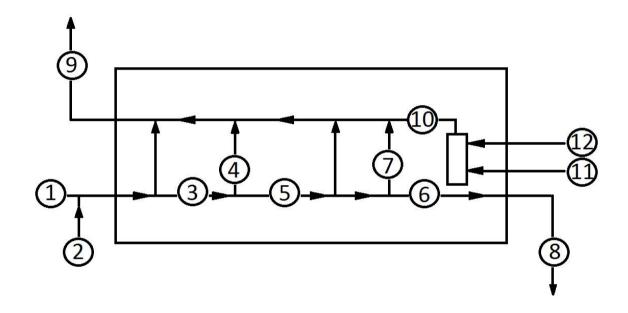


Рис.2. Схема потоков материала, топлива, воздуха и продуктов сгорания в известерегенерационной печной установке:

1 - влажный известковый шлам; 2 - свежая известь (добавка); 3 - сухой шлам; 4 - унос пыли; 5 - сухой материал на обжиг (кальцинирование); 6 - обожженная известь; 7 - унос известковой пыли (состав такой же, как у извести); 8 - готовый продукт; 9 - удаление из печи продуктов сгорания, водяных паров, уноса пыли и CO₂; 10 - продукты сгорания от сжигания мазута; 11 - подача топлива в печь; 12 - подача дутьевого воздуха в печь

Наиболее важными критериями в работе известерегенерационной печи являются обеспечение непрерывности работы установки, качество исходного шлама и оптимизация режима горения топлива.

4. РАСЧЕТНАЯ РАБОТА

Задание для выполнения расчетной работы

Рассчитать процесс горения топлива, составить материальный и тепловой балансы известерегенерационной печи, определить ее геометрические размеры.

Начертить технологическую схему известерегенерационной печной установки.

Процесс обжига известкового шлама производится в известерегенерационной вращающейся печи, в которую подается исходный материал и продукты сгорания по схеме противотока. Отработавшие в печной установке дымовые газы через циклон удаляются в атмосферу, обожженная известь из печи поступает в холодильник, где отдает часть своей теплоты на нагрев дутьевого воздуха.

Выбор студентом варианта контрольной работы производится по предпоследней цифре шифра.

Обозначения, принятые в тепловом расчете известерегенерационной печи:

 G_u - производительность печи по обожженной извести, т/ч;

 $W_{\rm III}$ -влажность шлама при поступлении в печь, %;

 $t_{\rm III}$ - температура шлама на входе в печь, °С;

 t_{ou} , $t_{ou}^{|}$ - соответственно температура извести на выходе из печи и из холодильника, °C;

 $a_{\scriptscriptstyle \Pi J I}$ - потери извести при прокаливании, %;

у - потери извести в результате уноса, %;

 η_{n} - пирометрический коэффициент, $\eta_{n} = 0.8$;

 t_{Γ}^{max} - максимальная температура газов при обжиге, °C;

t_m - температура мазута, °С;

 $t_{\text{в}}, t_{\text{ух.г}}$ - соответственно температура воздуха и уходящих газов, °C;

 $\rho_{\text{в}}, \; \rho_{\text{г}}$ - соответственно плотность воздуха и газа, кг/м³;

 $L_{\rm B}$ - массовый расход воздуха, кг/ч;

 V_{Γ}^{o} - теоретический объем продуктов сгорания, м³/кг;

 $i_{_{B}}$, $i_{RO_{_{2}}}$, $i_{N_{_{2}}}$, $i_{H_{_{2}O}}$ - соответственно энтальпии воздуха, трехатомных газов, азота и водяных паров, кДж/кг;

 $C_{\text{в}}$, C_{RO_2} , C_{N_2} , $C_{\text{H}_2\text{O}}$ - соответственно объемные теплоемкости воздуха, трехатомных газов, азота и водяных паров, кДж/м³°С; $I_{\text{вх}}$, $I_{\text{вых}}$ - соответственно энтальпия холодного и нагретого воздуха, кДж/кг°С;

 $arphi_{oc}$ - коэффициент использования теплоты, $arphi_{oc} = 0.95\text{-}0.98$;

 $C_{\rm w},\, C_{\rm n}$ - соответственно теплоемкость воды и пара, кДж/кг°С;

 $C_{\text{м}}$ - удельная теплоемкость мазута, кДж/кг°С;

u - начальное влагосодержание шлама, кг/кг;

 $C_{c.c}$, C_{ou} - соответственно удельная теплоемкость сухого сырья и обожженной извести, кДж/кг;

r - разность энтальпий пара и влаги, кДж/кг;

 $q_{\text{д}\Gamma}^{|}$ удельный расход теплоты на дегидратацию глинистых веществ и перегрев пара до $t_{yx.r}$, отнесенный к одному кг Al_2O_3 , $q_{\text{д}\Gamma}^{|}=2000$ кДж/кг;

 $q_{д\kappa}^{l}$ - удельный расход теплоты на разложение карбонатов, $q_{d\kappa}^{l}$ =3150 кДж/кг;

 α - коэффициент теплоотдачи от стенки печи к окружающему воздуху, $\mathrm{Bt/m^{2o}C}$:

H - боковая поверхность печи, M^2 ;

 $\Delta t = t_{ct} \overline{t}_{B}$ - разность температур между стенкой печи и воздухом, °C;

5. МЕТОДИКА ТЕПЛОВОГО РАСЧЕТА ИЗВЕСТЕРЕГЕНЕРАЦИОННОЙ ПЕЧИ

5.1. Расчет процесса горения

Топливо — мазут марки М100, сернистый. Рабочая масса топлива [1] C^P ; H^P ; S^P_{op+k} ; N^P+O^P ; A^P ; W^P , %

1. Теплота сгорания мазута:

$$Q_{H}^{P}$$
=339 C_{h}^{P} + 1030 H_{h}^{P} - 109(O_{h}^{P} - S_{op+k}^{P}) - 25,1 W_{h}^{P} , кДж/кг.

2. Теоретический расход воздуха:

$$V_B^P = 0.0889(C^P + 0.375 S_{op+k}^P) + 0.265 H^P - 0.0333 O^P$$
, $M^3/K\Gamma$.

3. Теоретический объем продуктов сгорания:

$$V_{r}^{P} = V_{RO_{2}}^{0} + V_{N_{2}}^{0} + V_{H_{2}O}^{0} , \, M^{3}/K\Gamma,$$

где теоретический объем сухих трехатомных газов

$$V_{RO}^{o} \! = V_{CO_2}^{o} + V_{SO_2}^{o} \! = 0,\! 01866 \; (C^P \! \! + \! 0,\! 375 \; S^P_{op+k}) \;, \;\; {\scriptstyle M}^3 \! / \! \kappa \Gamma, \label{eq:VRO_energy}$$

теоретический объем азота

$$V_{N_2}^0 = 0.79 \ V_B^0 = 0.8 \ \frac{N_2^P}{100}, \ M^3/K\Gamma,$$

теоретический объем водяных паров

$$V_{H_2O}^o = 0.111H^P + 0.0124 W^H + 0.0161 V_B^O$$
, $M^3/K\Gamma$.

4. Адиабатическая температура горения мазута:

$$t_a \!\!=\!\! rac{t_2^{max}}{\eta_n}$$
, °С, где $\eta_n = 0.8$.

5. Энтальпия при адиабатической температуре горения:

воздуха:
$$I_{\scriptscriptstyle B}^{\scriptscriptstyle O}=i_{\scriptscriptstyle B}\cdot V_{\scriptscriptstyle B}^{\scriptscriptstyle O}=C_{\scriptscriptstyle B}\cdot t_{\scriptscriptstyle a}\cdot V_{\scriptscriptstyle B}^{\scriptscriptstyle O}$$
 кДж/кг;

продуктов сгорания топлива:

6. Теплоемкость извести определяется по уравнению [5]
$$C_u = \frac{^{4,16}}{^{56}}(11,\!86+1,\!08\cdot 10^{-3}T_u-1,\!66\cdot 10^5\cdot T_u^{-2})\frac{^{\kappa\!\!\!/\!\!\!/\!\!\!/}_{\kappa\Gamma\,^{o}\!\!\!/\!\!\!\!C}}{^{\kappa\!\!\!/\!\!\!/}_{\kappa\Gamma\,^{o}\!\!\!\!C}}\,.$$

7. Количество теплоты, вносимой нагретым воздухом, при охлаждении извести в холодильнике от t_{ou} до t_{ou}^{\dagger} , определяется по балансу тепла в нем

$$\mathbf{q}_{\scriptscriptstyle \mathrm{B}} = \mathbf{L}_{\scriptscriptstyle \mathrm{B}} (\mathbf{I}_{\scriptscriptstyle \mathrm{BMX}} - \mathbf{I}_{\scriptscriptstyle \mathrm{BX}}) = \ \mathbf{C}_{\mathrm{u}} (\mathbf{t}_{\mathrm{ou}} - \mathbf{t}_{\mathrm{ou}}^{\dag}) \boldsymbol{\varphi}_{\mathrm{ou}} \, \boldsymbol{\kappa} \boldsymbol{\mathcal{A}} \boldsymbol{\mathsf{ж}} / \boldsymbol{\kappa} \boldsymbol{\Gamma}. \boldsymbol{\mathsf{u}} \boldsymbol{\mathsf{3B}}.$$

8. Предварительно задаются удельным расходом топлива

$$\theta$$
=(0,18-0,23) кг.т/кг.изв.

и определяют теплоту нагрева воздуха

$$\alpha I_{\rm B}^{\rm o} = \frac{{\rm q}_{\rm B}}{{}_{\rm B}} \, {\rm кДж/кг.топл.}$$

9. Удельная теплоемкость мазута [5]:

$$C_{M} = 4,19 (0,415 + 0,0006 \cdot t_{M}), кДж/кг^{\circ}C.$$

10. Тепловой баланс печи и определение коэффициента избытка воздуха:

$$(1-a_{M}) Q_{H}^{P} + C_{M}t_{M} + \alpha I_{B}^{O} = I_{r,r}^{O} + (\alpha - 1) I_{Br}^{O}.$$

11. Действительный объем продуктов сгорания при расчетном значении коэффициента избытка воздуха α :

$$V_r = V_r^0 + (\alpha - 1) V_R^0 M^3 / \kappa \Gamma$$
.

5.2. Материальный баланс печи

Приходные и расходные статьи материального баланса печи рассчитываются на g_{ou} =1 кг обожженной извести. При составлении материального баланса учитывают потери пылевидного материала, уносимого дымовыми газами, процент уноса летучих продуктов разложения извести, внешнюю и гидратную влагу.

Исходные данные для расчета известерегенерационной печной установки

	Обозначение	Номер варианта									
Наименование величины		0	1	2	3	4	5	6	7	8	9
Производительность печи по извести	G _u , т/ч	14	3	3,5	4	4,5	5	5,5	6	6,5	7
Температура извести после печи	t _{ou} ,°C	750	1200	1150	1100	1000	900	950	800	850	800
Температура мазута	t _m , °C	100	110	115	120	110	100	120	130	120	110
Влажность шлама	W,%	58	40	42	44	46	48	50	52	54	56
Температура шлама	t _{III} , °C	85	40	45	50	55	60	65	70	75	80
Недожог мазута	a _M	0,04	0,01	0,02	0,03	0,04	0,05	0,01	0,01	0,02	0,03
Потери извести при прокаливании	апп, %	4	3	4	5	6	7	8	6	5	4
Потери извести в результате уноса	у,%	5	1,5	2	1,5	2	2,5	3	3,5	4	4,5
Температура уходящих газов	t _{yx.r} , °C	200	210	220	200	210	220	200	210	220	215

На рис.3 показана схема приходных и расходных статей известерегенерационной печи.

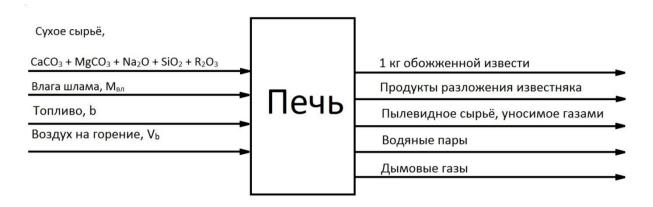


Рис. 3. Схема потоков материала в известерегенерационной печи

Приходная часть материального баланса

1. Расход сухого сырья:

$$G_{c.c} = 1$$
,0 $\frac{100}{100-a_{\pi\pi}} \cdot \frac{100}{100-y}$, $\frac{\text{кг сух.сырья}}{\text{кг.об.изв.}}$.

2. Количество влаги, содержащейся в шламе:

$$\mathrm{M_{BJI}} = \mathrm{G_{c.c}} \, \cdot \mathrm{U} = \, \mathrm{G_{c.c}} \, \frac{\mathrm{W_{III}}}{\mathrm{100-W_{III}}}, \, \mathrm{kg/kg}.$$

3. Удельный расход топлива на 1 кг обожженной извести:

В кг/кг

4. Расход воздуха на горение топлива при $\bar{t}_{\scriptscriptstyle B}$:

$$L_{_{B}}=~\alpha\cdot V_{_{B}}^{o}\cdot \rho_{_{B}}\cdot _{B}$$
 , кг/кг.

Расходная часть материального баланса.

- 1. Обожженная известь 1 кг.
- 2. Продукты разложения известняка:

$$G_{\text{пр}} = G_{\text{cc}} \left(1 - \frac{y}{100} \right) \frac{a_{\text{пп}}}{100}, \, \text{кг/кг}.$$

3. Количество сырья, уносимого с дымовыми газами:

$$G_{yH} = G_{cc} \left(\frac{y}{100} \right)$$
, kg/kg.

4. Количество влаги, удаляемой из печи с дымовыми газами:

$$\rm M_{\rm BJ} = \rm G_{\rm cc} \frac{W_{\rm ii}}{100-W_{\rm ii}}$$
 , kg/kg.

5. Расход дымовых газов при $t_{yx.г.}$:

$$G_{\Gamma} = V_{\Gamma} \cdot \rho_{\Gamma} \cdot B$$
, kg/kg.

5.3. Тепловой баланс печи

Тепловой баланс составляет на 1 кг обожженной извести

Приход теплоты:

1. Химическая теплота топлива:

$$q_{x.m.} = Q_{\mathrm{H}}^{\mathrm{p}} \cdot \mathrm{B}, \, \mathrm{кДж/кг}.$$

2. Физическая теплота топлива:

$$q_{\varphi. ext{ iny T}.}=i_M\cdot ext{ iny B}=C_M\cdot t_M\cdot ext{ iny B}$$
 , кДж/кг.

3. Теплота, вносимая воздухом, при нагреве его в холодильнике до $t_{\text{г.в.}}$:

$$q_{\scriptscriptstyle B} = \alpha \cdot I_{\scriptscriptstyle B}^{\scriptscriptstyle O} \cdot {}_{\scriptscriptstyle B}$$
 , кДж/кг.

4. Теплота, вносимая с влажным шламом при $t_{\rm m}$ и $C_{\text{C.C}}$:

$$C_{C,C} = 1,05$$
, кДж/кг°С

$$q_{III} = G_{C.C}(C_{C.C} + C_w \cdot U)t_{III}$$
, кДж/кг

Расход теплоты

1. Потеря теплоты с уходящими из печи газами при ${\sf t}_{{\sf yx}.{\sf \Gamma}}$ и ${\sf t}_{{\sf r}.{\sf B}}$:

$$\begin{split} q_{yx.\Gamma} &= \left[I_{yx.\Gamma.}^o + (\alpha-1) I_{\scriptscriptstyle B}^o \right]_{\scriptscriptstyle B} = [i_{RO_2} V_{RO_2} + i_{N_2} V_{N_2} + i_{H_{_2O}} V_{H_{_2O}} + (\alpha-1) i_{\scriptscriptstyle B} V_{\scriptscriptstyle B}^o]_{\scriptscriptstyle B} \quad , \\ \kappa \not \square \text{ж/кг}. \end{split}$$

18

2. Потеря теплоты от химического и механического недожога топлива:

$$q_H = a_H \cdot Q_H^P \cdot B$$
 , кДж/кг.

3. Потеря теплоты с удаляемой из печи обожженной известью при $g_{ou} = \frac{1\kappa\Gamma}{\kappa\Gamma}$:

$$q_{ou} = g_{ou} \cdot C_{ou} \cdot t_{ou}$$
, кДж/кг.

4. Затраты теплоты на испарение внешней влаги и перегрева образующегося пара:

$${
m q}_{{\scriptscriptstyle {
m B}}{\scriptscriptstyle {
m J}}}={
m M}_{{\scriptscriptstyle {
m B}}{\scriptscriptstyle {
m J}}}\cdot {
m r}={
m M}_{{\scriptscriptstyle {
m B}}{\scriptscriptstyle {
m J}}}({
m i}_{{\scriptscriptstyle {
m I}}}-{
m C}_{{\scriptscriptstyle {
m W}}}{
m t}_{{\scriptscriptstyle {
m III}}})={
m M}_{{\scriptscriptstyle {
m B}}{\scriptscriptstyle {
m J}}}\left({
m i}_{{\scriptscriptstyle {
m H}},{\scriptscriptstyle {
m I}}}+{
m C}_{{\scriptscriptstyle {
m I}}}{
m t}_{{\scriptscriptstyle {
m YX}},{\scriptscriptstyle {
m I}}}-{
m C}_{{\scriptscriptstyle {
m W}}}\cdot {
m t}_{{\scriptscriptstyle {
m III}}}\right),$$
 кДж/кг.

5. Потеря теплоты с механическим уносом сырья

$$\mathbf{q}_{\mathbf{y}} = \mathbf{G}_{\mathbf{y}} \cdot \mathbf{C}_{\mathbf{ou}} \cdot \mathbf{t}_{\mathbf{yx}.\Gamma}$$
 , кДж/кг.

6. Затраты теплоты на дегидрацию и перегрев пара при содержании $Al_2O_3 \approx 1,5\%$ [6]:

$$\mathbf{q}_{\mathrm{gr}} = \mathbf{q}_{\mathrm{g.r}}^{||} \cdot \frac{\mathrm{Al_2O_3}}{\mathrm{100}} \mathbf{G}_{\mathrm{C.C}}$$
, кДж/кг.

7. Расход теплоты на разложение карбонатов:

$$q_{g\kappa}=q_{g.k}^{|}\cdot g_{ou} rac{\text{СаO+MgO}}{_{100}}$$
, кДж/кг.

8. Затраты теплоты на нагрев продуктов разложения известняка (СО2)

$$q_{CO_2} = G_{\text{п.р}} \cdot C_{CO_2} \cdot t_{\text{ух.г}}$$
, кДж/кг.

9. Потеря теплоты в окружающую среду наружной поверхностью печи определяется формулой:

$$q_{oc} = rac{3,6 \cdot lpha \cdot H \cdot \Delta t}{G_u}$$
 , кДж/кг.

Так как поверхность печи неизвестна, принимаем

$$q_{oc} = 0.04 \cdot Q_H^P \cdot B$$
, кДж/кг.

10. Удельный расход топлива (в) определяем из теплового баланса печи:

$$q_{XJ} + q_{\varphi_T} + q_{\scriptscriptstyle B} + q_{\scriptscriptstyle III} = q_{y_{X,\Gamma}} + q_{\scriptscriptstyle H} + q_{o.u} + q_{\scriptscriptstyle BJ} + q_y + q_{g.r} + q_{g.\kappa} + q_{CO_2} + q_{o.c}.$$

Невязка

$$\Delta = \frac{B_{\text{прин}} - B_{\text{bacd}}}{B_{\text{прин}}} \cdot 100 \%$$

При невязке $\Delta > 5$ % произвести корректировку расчета. При этом необходимо принять новое значение (в) при расчете коэффициента избытка воздуха (α) и долю потери теплоты в окружающее пространство.

11. Удельный расход теплоты на 1кг обожженной извести:

$$q_{o.u.} = \mathbf{B} \cdot \mathbf{Q}_{H}^{p}$$
, кДж/кг.

12. При охлаждении извести в холодильнике вся ее теплота передается воздуху:

$$\mathbf{q}_{\scriptscriptstyle \mathrm{B}} = \mathbf{q}_{\scriptscriptstyle \mathrm{U}} = \mathbf{b} \cdot \mathbf{\alpha} \cdot \mathbf{V}_{\scriptscriptstyle \mathrm{B}}^{\mathrm{o}} \cdot \mathbf{C}_{\scriptscriptstyle \mathrm{B}} \mathbf{t}_{\scriptscriptstyle \mathrm{B}}$$
 , кДж/кг.

Отсюда температура нагретого воздуха при входе в печь

$$t_{\scriptscriptstyle B} = \frac{q_{\scriptscriptstyle B}}{{}_{\scriptscriptstyle B} \cdot \alpha \cdot V_{\scriptscriptstyle B}^{\scriptscriptstyle O} C_{\scriptscriptstyle B}}$$
 , °C.

Ранее была принята в расчет $t_{\scriptscriptstyle B}$.

5.4. Расчет теплообмена в известерегенерационной вращающейся печи

1. Часовой расход топлива на печь при заданной производительности:

$$B = B \cdot G_u$$
, кг/ч.

2. Объем продуктов сгорания:

$$V_{\text{VX.}\Gamma.} = B \cdot V_{\Gamma}, M^3/4.$$

3. Скорость движения газов в печи при внутреннем диаметре (в свету) $D_{\rm cp} = 3.6~{\rm M}$:

$$W_{\Gamma} = \frac{V_{yx.\Gamma.}}{3600 \cdot f_{xc}} = \frac{4 \cdot V_{yx.\Gamma.}}{3600 \pi \cdot D_{cp}^2}, \text{ m/c.}$$

4. Тепловая мощность печи:

$$Q = q_{ou} \cdot G_u$$
, кДж/ч.

5. Критерий лучистого теплообмена:

$$B_{o} = \frac{Q}{3.6 \cdot \delta_{o} \cdot T_{\alpha}^{4} \cdot F_{\Pi}}.$$

6. Коэффициент тепловосприятия теплоты материалом:

$$\chi = \frac{{}^{1\!/}_{\scriptscriptstyle{B}}[(1{-}a_{M})Q_{H}^{p}{+}C_{M}t_{M}{+}q_{\scriptscriptstyle{B}}{-}q_{yx.r.}]}{{}^{1\!/}_{\scriptscriptstyle{B}}[(1{-}a_{M})Q_{H}^{p}{+}C_{M}t_{M}{+}q_{\scriptscriptstyle{B}}]}\;.$$

7. Критерий относительной интенсивности лучистого и конвективного теплообмена:

$$\Pi = \frac{\delta_o \cdot T_a}{W_r^{0,8}} \ .$$

8. Общая поверхность теплообмена F_{π} определяется из критериальной зависимости:

$$\chi = \frac{1}{0.765 + B_0^{0.5} \cdot \Pi^{0.175}} \,.$$

9. Поверхность теплообмена ценной зоны печи, где происходит сушка шлама, при условном удельном тепловом потоке, отнесенном к 1 м² футеровки и цепей $q_{\rm ц}=1.7\cdot 10^4{\rm Bt/m}^2$:

$$F_{_{\rm II}} = \frac{Q_{_{\rm II}}}{3.6 \cdot q_{_{\rm II}}} = \frac{q_{_{\rm B,I}} G_u}{3.6 \cdot q_{_{\rm II}}} \ , \ _{M}^2. \label{eq:FI}$$

10. Длина цепной зоны при относительном увеличении поверхности теплообмена $K_{\rm u}=4$ за счет цепных панелей:

$$L_{\text{II}} = \frac{F_{\text{II}}}{K_{\text{II}} \cdot \pi \cdot D_{\text{II}}}$$
, м.

11. Длина зон нагрева и обжига материала:

$$L_{\text{oб}} = \frac{F_{\pi} \cdot F_{\pi}}{\pi \cdot D_{\pi}}$$
, м.

12. Общая длина:

$$L_{\Pi}=L_{II}+L_{Oar{O}}$$
 , м.

13. Объем печи:

$$V_{\scriptscriptstyle \Pi} = \pi \cdot D_{\scriptscriptstyle \Pi} \cdot L_{\scriptscriptstyle \Pi} \ , \, {\scriptscriptstyle M.}$$

14. Тепловое напряжение объема печи:

$$\mathbf{q}_{\mathbf{v}} = \frac{\mathbf{Q}}{\mathbf{V}_{\Pi}}$$
, кДж/м³ч.

Для сравнения полученных в расчете результатов в табл.1 представлены показатели работы известерегенерационных печей, установленных на отдельных целлюлозно-бумажных комбинатах отрасли [7].

Библиографический список

- 1. Тепловой расчет котельных агрегатов (нормативный метод)/ под ред. Н.В. Кузнецова. – М.: Энергия, 1973. -295 с.
- 2. Непенин Ю.Н. Технология целлюлозы. М.: Гослесбумиздат, 1963.-936 с.
- 3. Жучков П.А. Тепловые процессы в целлюлозно-бумажном производстве. М.: Лесная промышленность, 1978. -408 с.
- 4. Тяпкин В.Р. Регенерация извести в сульфатцеллюлозном производстве. М.: Лесная промышленность, 1973.- 113 с.
- 5. Липовков И.3. Сжигание сульфатного щелока. М.: Лесная промышленность, 1979. -186 с.
- 6. Технология целлюлозно-бумажного производства: в 3 т. Т. І. Сырье и производство полуфабрикатов. Ч. 2. Производство полуфабрикатов. СПб.: Политехника, 2003. -623 с.
- 7. Монастырев А.В., Александров А.В. Печи для производства извести. Справочник. – М.: Металлургия, 1979.- 232 с.

Приложение 1

Отдельные показатели работы печей целлюлозно-бумажных предприятий

<u>№</u> п/п	Показатель работы печи	Обозначе- ние	Размер- ность	Братский ЛПК-3 Архангельский ЦБК-1	Байкальский ЦЗ-2	Сыктывкарский ЛПК-2 ЦЗ Питкяранта-1 Амурский ЦКК-2
1	Производительность по обожженной извести	G_{Π}	кг/ч	10400	7000	6250
2	Диаметр печи	D_{Π}	М	3,6	3,2	3,0
3	Длина печи	L_{Π}	М	110	92	85
4	Длина цепной зоны	L _Ц	М	41,8	20	30
5	Поверхность футеровки	F_{Φ}	M ²	1243	810	694
6	Съем извести с поверхности футеровки	m_{U}	кг/м ² ч	8,36	8,62	9,0
7	Удельный расход теплоты	qo.u		9600	9300	8450
8	Тепловое напряжение объема печи	q _{K*10} -3		48	52	49

Приложение 2 Средняя объемная теплоемкость и плотность различных газов и воздуха

t,°C	Теплоем	кость °С, к	Плотность ρ , $\frac{K\Gamma}{M}_3$			
	RO ₂	N ₂	H ₂ O	Воздух абс.с	Воздух	Дымовые газы
0	1,5998	1,2946	1,493	1,2971	1,293	1,295
100	1,7003	1,2958	1,502	1,3004	0,946	0,95
200	1,7873	1,2996	1,5223	1,3071	0,746	0,748
300	1,8627	1,3067	1,5424	1,3172	0,615	0,617
400	1,9297	1,3163	1,5654	1,3289	0,524	0,525
500	1,9887	1,3276	1,5897	1,3427	0,456	0,457
600	2,0411	1,3402	1,6148	1,3565	0,404	0,405
700	2,0884	1,3536	1,6412	1,3708	0,362	0,363
800	2,1311	1,3670	1,6680	1,3842	0,329	0,330
900	2,1692	1,3796	1,6957	1,3976	0,301	0,301
1000	2,2035	1,3917	1,7229	1,4097	0,277	0,275
1100	2,2349	1,4034	1,7501	1,4214	0,257	0,257
1200	2,2638	1,4143	1,7769	1,4327	0,239	0,240
1300	2,2898	1,4252	1,8028	1,4432		
1400	2,3136	1,4348	1,8280	1,4528		
1500	2,3354	1,4440	1,8527	1,4620		
1600	2,3555	1,4528	1,8761	1,4708		
1700	2,3743	1,4612	1,8996	1,4867		
1800	2,3915	1,4687	1,9213	1,4867		
1900	2,4076	1,4758	1,9423	1,4939		
2000	2,4221	1,4825	1,9629	1,5010		

Оглавление

Введение	3
1. Назначение и конструкция известерегенерационной печи	4
2. Основные стадии и температурный режим обжига	7
3. Теплотехнологический эффект обжига извести	9
4. Расчетная работа	12
5. Методика расчета известерегенерационной печи	14
Библиографический список	22
Приложение 1	23
Приложение 2	24

Учебное издание

Ганичев Владимир Александрович Громова Екатерина Николаевна

РАСЧЁТ ИЗВЕСТЕРЕГЕНЕРАЦИОННОЙ ПЕЧНОЙ УСТАНОВКИ

Учебно-методическое пособие по выполнению курсовых работ

Редактор и корректор В.А. Басова

Техн. редактор Л.Я. Титова

Тематический план 2019 г., поз. 21

Подп. к печати 05.03.2019 г.

Формат 60х84/16. Бумага тип. №1.

Печать офсетная. Объем 1,75 печ.л.; 1,75 уч.-изд. л. Тираж 100 экз.

Изд. № 21. Цена «С». Заказ

Ризограф Высшей школы технологии и энергетики СПбГУПТД, 198095, Санкт-Петербург, ул. Ивана Черных, д.4