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BBEJAEHUE

YuebHoe mocobue mpeaHa3HaueHO JJIsd CTYJCHTOB 2 Kypca OYHOM (hOpMBI
oOydeHusi, oOydaroluxcs IO mporpamMme OakalaBpuaTa [0 HampaBICHUIO
nonroroBku 09.03.03 «Ilpukiagnas uHpopmaTuka», npoduib «VckyccTBeHHbIN
WHTEJUICKT B TH(POPMAIIMOHHBIX crcTeMax». [locoOre moaroToBieHo B COOTBETCTBUU
c paboueil mporpaMMoi W y4eOHBIM TUTAHOM JUCHUIUTUHBI «THOCTpaHHBINA S3BIK.
AHTTIMACKUHN A3bIK», YTBEPKICHHBIMU B BhICIIIEi 1IKOJIE TEXHOIOTUU U SHEPTETUKH.

TemaTuka TEKCTOB W3 pa3leliOB OTPAXaeT PEKOMEHIOBAHHYIO IS
HES3BIKOBBIX BY30B MPOTPaAMMy OOYy4Y€HHS WHOCTPAHHOMY SI3BIKY U COOTBETCTBYET
TpeOOBaHUSIM HOBOT'O IOCY/IAPCTBEHHOI'O CTaHAApTa BHICHIETO 00pa30BaAHMUS.

[Tocobue cocrout U3 16 ypoKOB C TEKCTaMU IJii YCTHOTO M MHUCHbMEHHOIO
MEPEBOJIA, C JEKCUYECKMMH M TpaMMaTUYECKUMHU 3amaHusamu 1o temam Il u IV
CEMECTPOB, COJEPKUT TpaMMaTUUeCKue TaOJauIbl Ui  CaMOCTOSITENIbHOM
MOATOTOBKH, a TAKXKE TJIOCCAPUM K TEKCTaM. B koHIIe mocoOus nmpeacTaBieH clIoBaph
JUISL IEPEBOJIA Y3KOCTIEUAIBbHBIX TEKCTOB.



LESSON 1

1. Words and word combinations to be remembered.
Write out the transcription and translation of the following words from the
dictionary. Memorize their pronunciation and meaning.

1. approach (n.) 21. intelligence (n.)
2. artificial (adj.) 22. interact (v.)

3. assumption (n.) 23. introduce (v.)
4. behavior (n.) 24. logic-based representations
5. concern (v.) 25. mention (v.)

6. control software 26. numerous (adj.)
7. corresponding (adj.) 27. objective (n.)
8. current (adj.) 28. perform (v.)

9. deal with (v.) 29. provide (v.)

10. define (v.) 30. readable (adj.)
11. definition (n.) 31. refer to (v.)

12. determine (v.) 32. require (v.)

13. disadvantage (n.) 33. resort to (v.)
14. distinguishable (adj.) 34. select (v.)

15. entail (v.) 35. several (adj.)
16. evidence (n.) 36. software agent
17. execute (v.) 37. uncertainty (n.)
18. execution (n.) 38. underlie (v.)
19. expected reward 39. usefulness (n.)
20. in order to 40. verification (n.)

2. Read the words in transcription, translate them into Russian.
[a:tr fif(o)1], [ 'kar(o)nt], [ko'rekt], [di't3:min], [ fank((o)n], [ mtor’akt], [ serfti].

3. Read and translate the rows of the same root words, defining the part of speech.
Artifice, artificer, artificial, artificially, unartificial.

Behave, misbehave, behaviour, behaviouristic.

Distinguish, distinguishable, distinguishability, undistinguishable.

Perform, performing, performed, performance, performable.

Read, readings, readable, unreadable, readability.

Certain, certainly, certainty, uncertainty.

Use, useful, useless, usefulness, uselessness.

4. Translate the attribute chains. Mind that the main word in these “chains” is the
last noun and all the previous nouns are used as attributes to the last one.
Software systems engineering, intelligent software agents, automated reasoning
systems, reasoning mechanisms, safety system controller, safety-relevant system, work
surface, field test.
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Match the following words with their correct definitions.

Assumption a)
Corresponding b)
Current C)
Disadvantage d)
Distinguishable e)
Entail f)
Numerous v))
Readable h)
Uncertainty
. Verification )
)

Clear or able to be identified as different.

Existing in large numbers.

Something that one cannot be sure about.

A Dbelief or idea accepted without proof.

To involve something that cannot be avoided.
Happening or existing now.

Clear and easy to read.

The act of showing or checking that something is true or
accurate.

Referring to something that is related or matched.
Something that makes a situation more difficult, or
makes you less likely to succeed.

. Revise the passive voice and translate the following sentences.
. The corresponding tasks is performed

will be performed

IS being performed by pure software agents.
had been performed

will have been performed

. The Turing test must be mentioned

had to be mentioned

will have to be mentioned in this context.
could be mentioned

doesn’t have to be mentioned

. The state that has the maximum usefulness was being determined.

has been determined
will be determined
should be determined.

. Translate the sentences into Russian defining the functions of the infinitives.
. We have included mathematical formulas and pseudocode algorithms to make the

key ideas concrete

. These models can be used as is, or can serve as a baseline to be customized with
your particular data for your particular application.
. Advanced techniques are required just to make the essentially continuous search

space finite.

. As Al systems find application in the real world, it has become necessary to consider
a wide range of risks and ethical consequences.
. A challenge for the future is to more smoothly combine learning and prior

knowledge.



6. Ironically, the new back-propagation learning algorithms that were to cause an
enormous resurgence in neuralnet research in the late 1980s and again in the 2010s
had already been developed in other contexts in the early 1960s.

7. Goals organize behavior by limiting the objectives and hence the actions to be
considered.

8. As a general rule, it is better to design performance measures according to what one
actually wants to be achieved in the environment, rather than according to how one
thinks the agent should behave.

8. Read and translate the text.

What is Artificial Intelligence?

Artificial Intelligence (Al) is a discipline that is concerned with the generation
of software systems that provide functions, the execution of which requires what is
typically referred to by the word intelligence. Thereby, the corresponding tasks can be
performed by pure software agents as well as by physical systems, such as robots or
self-driving cars.

As the term ‘“intelligence’ is already very difficult to define, the definition of Al
Is, of course, correspondingly difficult and numerous definitions can be found in the
literature. Among them are several approaches that are based on human behavior or
thinking. For example, the Turing test introduced by Alan Turing in 1950, in which the
actions generated by the system or robot should not be distinguishable from those
generated by humans, has to be mentioned in this context. Such a Turing test for
systems interacting with humans would then mean, for example, that a human could
no longer determine whether a conversation partner on the telephone is a human or
software.

However, most current Al systems aim to generate agents that think or act
rationally. To realize systems that think rationally, logic-based representations and
reasoning systems are often used. The basic assumption here is that rational thinking
entails rational action if the reasoning mechanisms used are correct.

Another group of definitional approaches deals with the direct generation of
rational actions. In such systems, the underlying representations often are not human-
readable or easily understood by humans. They often use a goal function that describes
the usefulness of states. The task of the system is then to maximize this objective
function, that is, to determine the state that has the maximum usefulness or that, in case
of uncertainties, maximizes the future expected reward. If, for example, one chooses
the cleanliness of the work surface minus the costs for the executed actions as the
objective function for a cleaning robot, then in the ideal case this leads to the robot
selecting the optimal actions in order to keep the work surface as clean as possible.
This already shows the strength of the approach to generate rational behavior compared
to the approach to generate human behavior. A robot striving for rational behavior can
simply become more effective than one that merely imitates human behavior, because
humans, unfortunately, do not show the optimal behavior in all cases. The disadvantage
lies in the fact that the interpretation of the representations or structures learned by the
system typically is not easy, which makes verification difficult. Especially in the case

7



of safety-relevant systems, it is often necessary to provide evidence of the safety of,
for example, the control software. However, this can be very difficult and generally
even impossible to do analytically, so one has to rely on statistics. In the case of self-

d

riving cars, for example, one has to resort to extensive field tests in order to be able

to prove the required safety of the systems.

9
1
2
3.
4
5
6

7.

. Answer the questions to the text.

. What is Al concerned with?

. Why is it difficult to define Al?

What is the Turing test based on?

. What approach is used to realise systems that think rationally?

. What is the task of the system based on direct generation of rational actions?

. Why might a robot that strives for rational behavior be more effective than one that
Imitates human behavior?

What is the disadvantage of direct generation of rational actions?

10. Decide whether the statements below are true or false.

1.
2.

3
4.
5

The Turing test was introduced in 1950 by Alan Turing.

Current Al systems are mainly focused on mimicking human behavior rather than
rational action.

. Rational thinking does not necessarily lead to rational action.

Rational behavior can sometimes be less effective than imitating human behavior.
. Verification of Al systems can often be done analytically.

11. Fill in the gaps with the correct form of the verb (sometimes more than one
variant is possible). Translate the sentences into Russian.

Entail, interact, introduce, perform, provide, require, resort to, underlie.

. The researcher had to ......... a new method for classifying the data to improve the
accuracy of the model.

. The software is designed to ....... various tasks automatically without human
intervention.

. This algorithm may .......... additional computing resources due to its complexity.

. When the data is incomplete, we often have to .......... estimation techniques to fill
the gaps.

. To ensure smooth operation, Al systems must be able to .......... efficiently with
their environment.

. The safety protocols .......... a series of checks to be carried out before deployment.

. The basic principles that .......... artificial intelligence are derived from computer
science and cognitive psychology.

. The final step is to ......... the most appropriate solution based on the criteria
provided.



12. Translate the text in writing with a dictionary.

Historically, researchers have pursued several different versions of Al. Some
have defined intelligence in terms of fidelity to human performance, while others
prefer an abstract, formal definition of intelligence called rationality — loosely
speaking, doing the “right thing”. The subject matter itself also varies: some consider
intelligence to be a property of internal thought processes and reasoning, while others
focus on intelligent behavior, an external characterization. From these two dimensions
—human vs. rational and thought vs. behavior — there are four possible combinations,
and there have been adherents and research programs for all four. The methods used
are necessarily different: the pursuit of human-like intelligence must be in part an
empirical science related to psychology, involving observations and hypotheses about
actual human behavior and thought processes; a rationalist approach, on the other hand,
involves a combination of mathematics and engineering, and connects to statistics,
control theory, and economics. The various groups have both disparaged and helped
each other.

LESSON 2

1. Words and word combinations to be remembered.
Write out the transcription and translation of the following words and word
combinations from the dictionary. Memorize their pronunciation and meaning.

1. activity (n.) 16. property (n.)

2. advent (n.) 17. record (v.)

3. apply (v.) 18. remarkable (adj.)
4. currently (adv.) 19. renowned (adj.)
5. destination (n.) 20. result from (v.)
6. environment (n.) 21. robust (adj.)

7. however (adv.) 22. significant (adj.)
8. impact (n.) 23. solution (n.)

9. improve (v.) 24. substantial (adj.)
10. incidentally (adv.) 25. successful (adj.)
11. increasingly (adv.) 26. upswing (n.)

12. initially (adv.) 27. usher in (v.)

13. machine learning 28. various (adj.)
14. participant (n.) 29. workshop (n.)

15. precisely (adv.)

2. Read the words in transcription, translate them into Russian.
[0:1'dau], ['karontli], [hau'evs], [1'nif(e)li], [ma’fi:n], [ri'naund], [rou'bast],
[sok'sesf(a)l].

3. Read and translate the rows of the same root words, defining the part of speech.
Develop, developer, development, developed, underdeveloped, developing.

9



Incident, incidental, incidentally, coincidentally.
Increase, increase, increased, increasing, increasingly.
Sign, signify, significant, significance, significantly.
Remark, remarkable, unremarkable.

Vary, variation, variety, various.

4. Translate the attribute chains. Mind that the main word in these “chains” is the
last noun and all the previous nouns are used as attributes to the last one.
Knowledge processing, knowledge representation, machine learning techniques,
support vector machines, classification problem, pattern recognition and image
processing, recognition algorithms, paradigm shift.

5

2.

o B

~

. Translate the sentences into Russian defining the functions of it.
1.

Breadth-first search expands the shallowest nodes first; it is complete, optimal for
unit action costs, but has exponential space complexity.

One way to deal with a continuous state space is to discretize it.

For this reason, it is common to characterize the performance of online search
algorithms in terms of the size of the entire state space rather than just the depth of
the shallowest goal.

To avoid traveling all the way to a distant state to expand the next node, it seems
better to expand nodes in a local order.

It was the success of the AlexNet deep learning system in the 2012 ImageNet
competition that propelled deep learning into the limelight.

Translate the sentences into Russian defining the functions of the infinitives.
The first question to answer is whether there is a finite horizon or an infinite horizon
for decision making.

One of the main criticisms of Al is that while computers can be trained to do a
limited number of things very well, it is much harder to teach a computer to be
adaptive in its learning.

The Turing Test, a foundational analysis to determine if responses to questions are
created by a human or machine, is implicitly biased toward language use as a
measure of intelligence.

Al is increasingly used to monitor our daily lives.

A larger issue that ethicists and philosophers raise is whether it is morally
acceptable to create sentient life for the sole purpose of having it serve the needs
of humans.

Researchers involved in the development of artificial intelligence systems should
work together to prioritize safety.

. Read and translate the text.

The History of Artificial Intelligence
Historically, the term Al dates back to 1956, when at a summer workshop called

the Dartmouth Summer Research Project on Artificial Intelligence, renowned scientists

10



met in the state of New Hampshire, USA, to discuss Al. The basic idea was that any
aspect of learning or other properties of intelligence could be described so precisely
that machines can be used to simulate them. In addition, the participants wanted to
discuss how to get computers to use language and abstract concepts, or simply improve
their own behavior. This meeting is still considered today to have been extremely
successful and has led to a large number of activities in the field of Al. For example,
in the 1980s, there was a remarkable upswing in Al in which questions of knowledge
representation and knowledge processing played an important role. In this context
expert systems became popular. Such systems used a large corpus of knowledge,
represented in terms of facts and rules, to draw conclusions and provide solutions to
problems. Although there were initially quite promising successes with expert systems,
these successes then waned quite a bit, leading to a so-called demystification of Al and
ushering in the Al winter. It was not until the 1990s when mathematical and
probabilistic methods increasingly took hold and a new upswing could be recorded. A
prominent representative of this group of methods is Bayesian networks. The systems
resulting from this technique were significantly more robust than those based on
symbolic techniques. This period also started the advent of machine learning
techniques based on probabilistic and mathematical concepts. For example, support
vector machines revolutionized machine learning. Until a few years ago, they were
considered one of the best performing approaches to classification problems. This
radiated to other areas, such as pattern recognition and image processing. Face
recognition and also speech recognition algorithms found their way into products we
use in our daily lives, such as cameras or even cell phones. Cameras can automatically
recognize faces and cell phones can be controlled by speech. These methods have been
applied in automobiles, for example when components can be controlled by speech.
However, there are also fundamental results from the early days of Al that have a
substantial influence on today’s products. These include the ability of navigation
systems to plan the shortest possible routes and navigate us effectively to our
destination based on given maps. Incidentally, the same approaches play a significant
role in computer games, especially when it comes to simulating intelligent systems that
can effectively navigate the virtual environment. At the same time, there was also a
paradigm shift in robotics. The probabilistic methods had a significant impact,
especially on the navigation of mobile robots, and today, thanks to this development,
it is well understood how to build mobile systems that move autonomously in their
environment. This currently has an important influence on various areas, such as self-
driving cars or transport systems in logistics, where extensive innovations can be
expected in the coming years.

8. Answer the questions to the text.

1. What was the basic idea of the Dartmouth Summer Research Project on Artificial
Intelligence?

2. Under what circumstances did expert systems become popular?

What are the characteristics of expert systems?

4. What is a prominent representative of mathematical and probabilistic method in
context of Al?

w

11



5. What revolutionized machine learning?
6. Where are face and speech recognition algorithms used nowadays?

9. Decide whether the statements below are true or false.

1. The focus of the 1956 Dartmouth workshop was primarily on developing expert
systems using large knowledge databases.

2. Expert systems, which became popular in the 1980s, used probabilistic methods to
draw conclusions.

3. Bayesian networks are an example of probabilistic methods that gained importance
in the 1990s.

4. Support vector machines were once considered among the best-performing
approaches for pattern recognition and image processing.

5. Probabilistic methods had no significant impact on the development of mobile
robots and self-driving cars.

10. Fill in the gaps with the missing words, translate the text into Russian.

Applied, increasingly, recorded, activities, solutions

The advancements in Al have been 1)......... in various fields, from healthcare
to finance. Researchers have 2) ......... these technologies to real-world problems,
leadingto 3) ......... innovative 4) ........ that improve efficiency and accuracy. These
developments have been well-5)........ In recent years, showing a clear trend toward

greater integration of Al in daily life.
11. Translate the text in writing with a dictionary.

The Inception of Artificial Intelligence

The first work that is now generally recognized as Al was done by Warren
McCulloch and Walter Pitts (1943). Inspired by the mathematical modeling work of
Pitts’s advisor Nicolas Rashevsky (1936, 1938), they drew on three sources:
knowledge of the basic physiology and function of neurons in the brain; a formal
analysis of propositional logic due to Russell and Whitehead; and Turing’s theory of
computation. They proposed a model of artificial neurons in which each neuron is
characterized as being “on” or “off,” with a switch to “on” occurring in response to
stimulation by a sufficient number of neighboring neurons. The state of a neuron was
conceived of as “factually equivalent to a proposition which proposed its adequate
stimulus.” They showed, for example, that any computable function could be
computed by some network of connected neurons, and that all the logical connectives
(AND, OR, NOT, etc.) could be implemented by simple network structures. McCulloch
and Pitts also suggested that suitably defined networks could learn. Donald Hebb
(1949) demonstrated a simple updating rule for modifying the connection strengths
between neurons. His rule, now called Hebbian learning, remains an influential model
to this day.

12



LESSON 3

1. Words and word combinations to be remembered.
Write out the transcription and translation of the following words from the
dictionary. Memorize their pronunciation and meaning.

1. achieve (v.) 14. persuasive (adj.)
2. agenda (n.) 15. plenty (n.)

3. articulate (v.) 16. pose (v.)

4. capability (n.) 17. quest (n.)

5. circumstance (n.) 18. response (n.)

6. detect (v.) 19. rigorously (adv.)
7. exactly (adv.) 20. sidestep (v.)

8. extrapolate (v.) 21. store (v.)

9. independently (adv.) 22. subsequent (adj.)
10. influential (adj.) 23. succeed (v.)

11. interrogator (n.) 24. surplus (n.)

12. objection (n.) 25. vagueness (n.)
13. perceive (v.) 26. warn (v.)

2. Read the words in transcription, translate them into Russian.
[1k'spertmont], [ kerpa'bilsti], ['p3:sn], ['hju:mon], [An'nesasari], [ intor'ak/n],
[sok 'si:d], ['toutl], [ earovdar nemiks], [ eara no:tikl].

3. Read and translate the rows of the same root words, defining the part of speech.
Experiment, experimental, experimentally experimentation, experimenter.

Vague, vaguely, vagueness.

Question, questionable, questionnaire, questioner.

Interrogate, interrogated, interrogative, interrogator, interrogation.

Rigour, rigorous, rigorously.

Necessary, necessarily, unnecessary, necessity, necessitate.

4. Translate the attribute chains. Mind that the main word in these “chains” is the
last noun and all the previous nouns are used as attributes to the last one.
Thought experiment, natural language processing, knowledge representation,
reinforcement learning, computer vision, speech recognition, neural network
computer.

5. Translate the sentences into Russian paying attention to the translation of the

word most.

1. The most important property of many computer-based systems is dependability.

2. For most Al researchers, the goal was not merely to create programs that processed
information in such a way that the product or outcome appeared to be the result of
intelligent behavior.

13



3. Bias in algorithmic systems has become one of the most critical concerns
surrounding the ethics of artificial intelligence.

4. Social concerns surrounding artificial intelligence and harm to humans have most
famously been represented by Isaac Asimov’s Three Laws of Robotics.

5. General Al, the kind most often encountered in science fiction, does not yet exist in
the real world.

6. Most new applications are based on machine learning (ML), and most of the Al
examples cited in the news are related to this subset of technologies.

»

. Translate the sentences into Russian paying attention to Complex Subject.

A good component is likely to be good in a variety of different designs.

2. This kind of reasoning is said to exhibit nonmonotonicity, because the set of beliefs
does not grow monotonically over time as new evidence arrives.

3. If the degree of deviation is statistically unlikely (usually taken to mean a 5 %

probability or less), then that is considered to be good evidence for the presence of

a significant pattern in the data.

Given the hypothesis prior, any other prediction is expected to be correct less often.

If the environment is partially observable, however, then it could appear to be

nondeterministic.

6. Currently, deep neural networks are very popular in this role and have proved to be
effective even when the input is a raw image with no human-designed feature
extraction at all.

7. These mechanisms are thought to form the basis for learning in the brain.

=

o B

\l

. Read and translate the text.

The Turing Test Approach

The Turing test, proposed by Alan Turing (1950), was designed as a thought
experiment that would sidestep the philosophical vagueness of the question “Can a
machine think?”. A computer passes the test if a human interrogator, after posing some
written questions, cannot tell whether the written responses come from a person or from
a computer.

Programming a computer to pass a rigorously applied test provides plenty
to work on. The computer would need the following capabilities:

—natural language processing to communicate successfully in a human language;

—knowledge representation to store what it knows or hears;

—automated reasoning to answer questions and to draw new conclusions;

—machine learning to adapt to new circumstances and to detect and extrapolate
patterns.

Turing viewed the physical simulation of a person as unnecessary to demonstrate
intelligence. However, other researchers have proposed a total Turing test, which
requires interaction with objects and people in the real world. To pass the total Turing
test, a robot will need:

—computer vision and speech recognition to perceive the world;
—robotics to manipulate objects and move about.

14



These six disciplines compose most of Al. Yet Al researchers have devoted
little effort to passing the Turing test, believing that it is more important to study the
underlying principles of intelligence. The quest for “artificial fight” succeeded when
engineers and inventors stopped imitating birds and started using wind tunnels and
learning about aerodynamics. Aeronautical engineering texts do not define the goal of
their field as making “machines that fly so exactly like pigeons that they can fool even
other pigeons.”

8. Answer the questions to the text.

What is the major objective of the Turing test?

What capabilities does a computer require to pass the Turing test?

What are the peculiarities of the total Turing test?

What have Al researches devoted little attention to passing the Turing test?
What analogy is used at the end of the text to explain the goal of Al research?

oW E

. Decide whether the statements below are true or false.

The Turing test was proposed to answer the question “Can a machine think?”

A computer that passes the Turing test must physically resemble a human.

Natural language processing is necessary for a computer to communicate in a

human language.

4. The total Turing test requires a robot to interact with objects and people in the real
world.

5. Al researchers believe that imitating birds is the best way to achieve artificial flight.

W=

10. Fill in the gaps with the correct word. Translate the sentences into Russian.

Simulate, capabilities, underlying, total, interaction, successfully

=

The Turing test checks if a computer can ...... communicate in a human language.

To pass the ...... Turing test, a robot must interact with the real world.

3. Natural language processing is one of the essential ...... needed for the Turing
test.

4. Al researchers focus on the ........ principles of intelligence rather than just

passing the test.

The total Turing test involves ........ with objects and people.

6. Turing believed it was unnecessary for a computer to physically ........ a person to

demonstrate intelligence.

N

o1
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11. Match the following words with their correct definitions.

1. Circumstance a) A person who asks questions, especially in a formal
2. Detect situation.

3. Exactly b) The quality of being unclear or not fully defined.

4. Extrapolate c) To avoid answering or dealing with something directly.
5. Interrogator d) A situation or condition that affects what happens.

6. Perceive e) To notice something that is not immediately obvious.

7. Plenty f) To imagine or predict based on known information.

8. Rigorously g) Ina precise or accurate manner.

9. Sidestep h) To understand or interpret something in a particular way.
10. Vagueness 1) A large or sufficient amount of something.

j) Inastrict or thorough manner.

12. Translate the text in writing with a dictionary.

Two undergraduate students at Harvard, Marvin Minsky and Dean Edmonds,
built the first neural network computer in 1950. The SNARC, as it was called, used
3000 vacuum tubes and a surplus automatic pilot mechanism from a B-24 bomber to
simulate a network of 40 neurons. Later, at Princeton, Minsky studied universal
computation in neural networks. His Ph.D. committee was skeptical about whether this
kind of work should be considered mathematics, but von Neumann reportedly said, “If
itisn’t now, it will be someday.” There were a number of other examples of early work
that can be characterized as Al, including two checkers-playing programs developed
independently in 1952 by Christopher Strachey at the University of Manchester and
by Arthur Samuel at IBM. However, Alan Turing’s vision was the most influential.
He gave lectures on the topic as early as 1947 at the London Mathematical Society
and articulated a persuasive agenda in his 1950 article “Computing Machinery and
Intelligence.” Therein, he introduced the Turing test, machine learning, genetic
algorithms, and reinforcement learning. He dealt with many of the objections raised to
the possibility of Al. He also suggested that it would be easier to create human-level
Al by developing learning algorithms and then teaching the machine rather than by
programming its intelligence by hand. In subsequent lectures he warned that achieving
this goal might not be the best thing for the human race.
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LESSON 4

1. Words and word combinations to be remembered.
Write out the transcription and translation of the following words from the
dictionary. Memorize their pronunciation and meaning.

1. AC 13. experiential (adj.)
2. acquire (v.) 14. express (v.)

3. aid (n., v.) 15. implementation (n.)
4. capture (v.) 16. pole (n.)

5. condition (n.) 17. pose (v.)

6. conduct (v.) 18. reasoning (n.)

7. contain (v.) 19. relevant (adj.)

8. daunting (adj.) 20. retrieve (v.)
9.DC 21. solution (n.)

10. distinguish (v.) 22. statement (n.)

11. elicit (v.) 23. store (v.)

12. emerge (v.)

2. Read the words in transcription, translate them into Russian.
[‘ju:zali], [1'm3:d3], [tek'nik], [keerokta'ristik], ['@lgoridoom], ['nolidz], [di'zain],
[d1's13n], [Mma'nipjulert].

3. Read and translate the rows of the same root words, defining the part of speech.
Human, humane, humanitarian, humanize, humanization.

Emerge, emerging, emergence, emergent.

Differ, different, indifferent, difference, differentiate.

Explain, explained, explanation, explanatory, self-explanatory.

Infer, inference, inferential, inferentially, inferencer.

Acquire, acquiring, acquired, unacquired, acquisition.

4. Translate the attribute chains. Mind that the main word in these “chains” is the
last noun and all the previous nouns are used as attributes to the last one.
Knowledge base, inference engine, inference process, promising application technique,
artificial intelligence research, computer-based knowledge system, knowledge
acquisition process.

5. Translate the sentences into Russian paying attention to modal verbs.

1. The problem-solving strategy must be preliminarily structured as part of the
program.

2. Asimov’s Three Laws of Robotics often are cited as guiding principles for artificial
intelligence and robotics: 1) A robot may not injure a human being or, through
inaction, allow a human being to come to harm. 2) A robot must obey orders given
to it by human beings except where such orders would conflict with the First Law.
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3) A robot must protect its own existence as long as such protection does not conflict
with the First or Second Law.

3. Superintelligences must be developed for the larger good of humanity, and not only

to advance the goals of one company or nation.

Voice recognition must be able to identify each unique individual user.

One of the main criticisms of Al is that while computers can be trained to do a

limited number of things very well, it is much harder to teach a computer to be

adaptive in its learning.

6. While computers can store vast quantities of information, they can only utilize what
has actually been programmed into them. In other words, they cannot adapt to
situations that programmers didn’t foresee.

7. A superintelligence should want to grant humankind happiness and fulfillment and
might even make the hard decisions that benefit the whole community over the
individual.

o B

D

. Translate the sentences into Russian paying attention to Complex Object.

1. We can let the inference procedure operate on the axioms and problem-specific facts
to derive the facts we are interested in knowing.

2. Some consider intelligence to be a property of internal thought processes and
reasoning, while others focus on intelligent behavior, an external characterization.

3. These considerations have led researchers to consider how to embed default
reasoning within probability theory or utility theory.

4. Every choice of ordering yields a valid algorithm, but different orderings cause
different intermediate factors to be generated during the calculation.

5. A proportional controller can cause the robot to apply too much force, overshooting
the desired path and zig-zagging back and forth.

6. The incorporation of learning allows one to design a single rational agent that will

succeed in a vast variety of environments.

7. Read and translate the text.

Expert Systems (1)

Expert systems solve problems that are usually solved by human experts. They
emerged as one of the most promising application techniques in the first decades of
artificial intelligence research. The basic idea is to capture the knowledge of an expert
into a computer-based knowledge system.

Several characteristics of expert systems can be distinguished:

—They use knowledge rather than data.

—Knowledge is often heuristic (e.g., the experiential knowledge that can be
expressed as rules of thumb) rather than algorithmic.

— The task of representing heuristic knowledge in expert systems is daunting.

—Knowledge and the program are generally separated so that the same program can
operate on different knowledge bases.
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—Expert systems should be able to explain their decisions, represent knowledge
symbolically, and have and use meta knowledge, that is, knowledge about
knowledge.

Expert systems almost always represent knowledge from a specific domain.
One popular application for expert systems is from the field of engineering and
engineering design, which attempts to capture the heuristic knowledge of the design
process in designing motors and generators. The expert system aids in the first step
of the design, where decisions such as the number of poles, AC or DC, and so on are
determined.

Two components define the basic structure of expert systems: the knowledge
base and the inference engine. While the knowledge base contains the knowledge of
the expert, the inference engine uses the knowledge base to arrive at decisions. The
knowledge is in this manner separated from the program that is used to manipulate it.
In creating the expert systems, knowledge first must be acquired and then understood,
classified, and stored. It is retrieved based on given criteria to solve problems. Four
general steps in the construction of an expert system can be distinguished: acquiring
knowledge, representing that knowledge, controlling reasoning with an inference
engine, and explaining the expert systems’ solution.

8. Answer the questions to the text.

1. What is the basic idea of expert systems?

2. What are the characteristics of expert systems?

3. Could you provide an example of the use of expert systems?

4. What components define the basic structure of expert systems?
5. How is the knowledge retrieved?
6. What are the basic steps in constructing an expert system?

9. Decide whether the statements below are true or false.

1. Expert systems only work with data, not knowledge.

2. Heuristic knowledge is often expressed as rules of thumb.

3. The knowledge base and the program are the same in expert systems.

4. An expert system can explain its decisions.

5. The expert system in engineering design helps in determining the design process
details.

10. Match the following words with their correct definitions.

1. Expert system a) Knowledge about knowledge, such as planning, tagging,
2. Inference engine and learning.
3. Meta knowledge b) A computer program that uses Al technologies to simulate
4. Knowledge base the judgment and behavior of a human or an organization
5. Algorithmic that has expertise in a particular field.
c) A component that uses the knowledge base to make
decisions.

d) A structured collection of expert knowledge.
e) Relating to a step-by-step procedure for solving problem
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11. Fill in the gaps with the necessary word. Translate the sentences into Russian.

Explain, inference, knowledge, constructing, decisions, separately, data, representing

1. Expert systems use ...... rather than ..... to solve problems.

2. The ....... engine is responsible for using the knowledge base to make.... .

3. One characteristic of expert systems is that they should be able to ...... their
decisions.

4. The process of ...... an expert system involves acquiring knowledge, ...... that

knowledge, controlling reasoning with an inference engine, and explaining the
solution.
5. In expert systems, knowledge is generally represented ...... from the program.

12. Translate the text in writing with a dictionary.

Representation of domain knowledge can be done using production (rule based)
or non-production systems. In rule-based systems, the rules in the form of IF-THEN-
ELSE statements represent knowledge. The inference process is conducted by going
through the rules recursively either using a forward chaining mechanism or backward
chaining mechanism. Given that the condition and rules are known to be true, forward
chaining asks what would happen next. Backward chaining asks why this happened,
going from a goal to the rules we know to be true. In simpler terms, when the left side
of the rule is evaluated first, that is, when the conditions are checked first and the rules
are executed left to right, then it is called forward chaining (also known as data-driven
inference). When the rules are evaluated from the right side, i.e., when the results are
checked first, it is called backward chaining (also known as goal-driven inference).

LESSON 5

1. Words and word combinations to be remembered.
Write out the transcription and translation of the following words from the
dictionary. Memorize their pronunciation and meaning.

1. assist (v.) 15. lighting (n.)

2. available (adj.) 16. modeling (n.)

3. backtrack (v.) 17. object-oriented (adj.)
4. choice (v.) 18. predicate (adj.)

5. come up with (v.) 19. procedural (adj.)
6. deliver (v.) 20. shell (n.)

7. encapsulate (v.) 21. taper off (v.)

8. entity (n.) 22. though (conj.)

9. expectation (n.) 23. totally (adv.)

10. helpful (adj.) 24. uncertainty (n.)
11. implementation (n.) 25. unique (adj.)

12. imply (v.) 26. user-friendly (adj.)
13. initially (adv.) 27. voltage (n.)

14. inside (prep.)
20



2. Read the words in transcription, translate them into Russian.
[ intor'aktiv], ['peeradaim], [wi'daot], ['paveful], [favn'derf(a)n], ['Orari], ['fazi],
['keept[a], [ meint(a)nans].

3. Read and translate the rows of the same root words, defining the part of speech.
Assist, assistant, assistance, assistive, assisting, assisted.

Certain, certainly, certainty, uncertainty, ascertain.

Imply, implied, implying, implication, implicit.

Maintain, maintained, maintaining, maintenance, maintainability.

Implement, implemented, implementing, implementation, implementer.

4. Translate the attribute chains. Mind that the main word in these “chains” is the
last noun and all the previous nouns are used as attributes to the last one.
Interactive development environments, user-friendly graphical user interfaces, logic
programming paradigm, expert system shell, real-world scenario, real-world entities,
Object Inference Knowledge Specification Language.

5. Translate the sentences into Russian, paying attention to because of and

because.

1. This strategy worked initially because microworlds contained very few objects and
hence very few possible actions and very short solution sequences.

2. A third difficulty arose because of some fundamental limitations on the basic
structures being used to generate intelligent behavior.

3. Fully observable environments are convenient because the agent need not maintain
any internal state to keep track of the world.

4. An environment might be partially observable because of noisy and inaccurate
sensors or because parts of the state are simply missing from the sensor data.

5. Episodic environments are much simpler than sequential environments because the
agent does not need to think ahead.

6. Many authors have studied this problem because of its importance in planning.

6. Translate the sentences into Russian paying attention to infinitives and

infinitive constructions.

1. It is important to note that bias in and of itself is not always problematic: bias can be
designed into a system in an effort to correct an unfair system or reality.

2. The idea is that it is impossible for programmers to anticipate every scenario that a
machine equipped with Al may face congruent with its actions and so it must be able
to adapt.

3. Without the ability to monitor and replan, an agent’s behavior is likely to be fragile
if it relies on absolute correctness of its model.

4. As artificial intelligences are programmed to learn from their own experiences and
data input, they are arguably becoming more autonomous.

5. A process of feature selection can be performed to discard attributes that appear to
be irrelevant.
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6. A controller is said to be stable if small perturbations lead to a bounded error
between the robot and the reference signal. It is said to be strictly stable if it is able
to return to and then stay on its reference path upon such perturbations. Our P
controller appears to be stable but not strictly stable, since it fails to stay anywhere
near its reference trajectory.

7. Read and translate the text.

Expert Systems (2)

Expert systems can be developed in several ways. Interactive development
environments involve user-friendly graphical user interfaces to assist programmers as
they code. Expert system development may also involve special languages. Two of
the most popular choices are Prolog (Programming in Logic) and LISP (List
Programming). Prolog is based on predicate logic, and thus prolog language belongs
to the logic programming paradigm. LISP is one of the earliest programming
languages in use for artificial intelligence applications. Programmers often rely on
expert system shells. A shell gives an environment where the knowledge can be coded
into the system. The shell, as the name implies, is a layer without the knowledge base.
JESS (Java Expert System Shell) is an expert shell written in the powerful Java
language.

There have been many attempts to combine different paradigms and come up
with hybrid systems. The object-oriented approach attempts to integrate logic-based
systems with object-oriented systems. Though object orientation lacks a formal
mathematical foundation, it is quite helpful in the modeling of real-world scenarios.
Knowledge is represented in the form of objects that encapsulate the data as well as
the methods to work on them. Object-oriented systems model real-world entities more
closely than procedural programming. One specific approach is OI-KSL Object
Inference Knowledge Specification Language. Even though other languages such as
Visual Prolog had integrated object-oriented programming, the approach taken in Ol-
KSL is unique. In Visual Prolog, the backtracking is inside the objects; that is, the
methods backtracked. In OI-KSL, backtracking is taken to a totally different level,
and the object themselves are backtracked. Sometimes probability theory, heuristics,
or fuzzy logic are used to deal with uncertainties in the available information. One
example of an implementation of fuzzy logic using Prolog involved a fuzzy electric
lighting system, in which the amount of natural light determined the voltage that
passed to the electric bulb. This made it possible for the system to reason under
uncertainty and with less information.

In the late 1990s, interest in expert systems began tapering off, in part because
expectations for the technology were initially so high and because of the cost of
maintenance. Expert systems could not deliver what they promised. Still, many areas
in data science, chatbots, and machine intelligence today continue to use technology
first developed in expert systems research. Expert systems seek to capture the
corporate knowledge that has been acquired by humanity through centuries of
learning, experience, and practice.
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. Answer the questions to the text.

What are the most popular special languages for the development of expert systems?
What are they based on?

What is the aim of the object-oriented approach?

Does procedural programming model real-world entities better than object-oriented
programming?

What does the abbreviation OI-KSL stand for?

What the example of an implementation of fuzzy logic using Prolog provided in the
text?

Why did the interest in expert systems decline?

Decide whether the statements below are true or false.

Prolog is based on object-oriented programming.

Expert systems were able to fully deliver on their initial promises.

Object-oriented programming lacks a formal mathematical foundation but is useful
in modeling real-world scenarios.

JESS is a programming language used in expert systems.

Fuzzy logic allows expert systems to handle uncertainty in information.

10. Match the following words with their correct definitions.

1
2
3
4
5.
6
7
8
9
1

0

. Backtrack a) A conceptual framework or approach.
. Encapsulate b) To move backward or reconsider a previous decision.
. Entity c) The state of being unsure or unpredictable.
. Initially d) Happening first, in the beginning.
Modeling e) To express or communicate an idea concisely.
. Object-oriented f) Denoting a system, programming language, etc., that
. Paradigm supports the use of objects, as an entire image, a routine,
. Uncertainty or a data structure.
User-friendly g) An element in a system, especially in an expert system.
. Voltage h) The degree of electrical potential in a circuit.

1) The representation, often mathematical, of a process,
concept, or operation of a system.

J) Easy for people to use, especially those with limited
technical skills.

11. Fill in the gaps with the necessary word. Translate the sentences into Russian.

1.

2.

3.
4, ... logic is used to reason under uncertainty and with less information.

Shell, languages, fuzzy, logic-based, corporate

Prolog and LISP are two of the most popular ..... used in expert system
development.

An expert system ..... provides an environment where knowledge can be coded into
the system.

The object-oriented approach integrates ..... systems with object-oriented systems.
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5. Expert systems seek to capture the ..... knowledge accumulated through centuries
of human learning and experience.

12. Translate the text in writing with a dictionary.

Expert system architectures based on nonproduction architectures may involve
associative/semantic networks, frame representations, decision trees, or neural
networks. An associative/semantic network is made up of nodes and is useful for
representing hierarchical knowledge. In frame architectures, frames are structured sets
of closely related knowledge. Decision tree architectures represent knowledge in a top-
down fashion. Blackboard system architectures involve complicated systems where the
direction of the inference process may be chosen during runtime.

Case-based reasoning involves attempts to analyze and look for solutions from
stored solved cases for a given problem. A vague analogy can be drawn between case-
based reasoning and judicial law, where the judgment of a similar but past case is
referred to in solving a present legal case. Case-based reasoning is typically
implemented as a frame and requires a more complicated process to match and retrieve.

There are three alternatives to building the knowledge base manually. Using
Interactive programs, the knowledge may be elicited by way of an interview with a
computer. A second alternative to manual construction of knowledge bases involves
text scanning programs that read books into memory. A third option still under
development is machine learning programs that develop mastery on their own, with or
without supervision from a human expert.

LESSON 6

1. Words and word combinations to be remembered.
Write out the transcription and translation of the following words from the
dictionary. Memorize their pronunciation and meaning.

1. application (n.) 13. memorize (v.)

2. approximate (v.) 14. moreover (adv.)

3. approximation error 15. performance (n.)

4. attribute (n.) 16. predominant (adj.)
5. boosting (n.) 17. present (v.)

6. clustering (n.) 18. procedure (n.)

7. data (n., pl.) 19. random forest (n.)
8. determine (v.) 20. require (v.)

9. explicit (adj.) 21. supervised learning
10. guess (n., v.) 22. thereof (adv.)

11. involve (v.) 23. unsupervised learning
12. map (v.)

2. Read the words in transcription, translate them into Russian.
['tipikalt], [mo:'rouva], [pra'si:dza], [de(a)'rov], [ minimaiz], ['dzen(a)ralaiz], [s3:tf],
(skwead], [an'si:n].
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3. Read and translate the rows of the same root words, defining the part of speech.
Decide, decided, undecided, decision, decisive, decisively.

Determine, determined, predetermined, determining, determination.

Involve, involved, uninvolved, involving, involvement.

Memory, memorize, memorable, memorably, memorization.

Dominate, dominant, predominant, dominance, predominance.

Require, requirer, required, unrequired, requirement.

4. Translate the attribute chains. Mind that the main word in these “chains” is the
last noun and all the previous nouns are used as attributes to the last one.
Decision trees, support vector machines, dimensionality reduction, market
segmentation, market basket analysis, image compression, recommendation engines,
data input, preprocessing data stage.

5. Translate the sentences into Russian defining the functions of one.

1. The Greek philosopher Aristotle was one of the first to attempt to codify “right
thinking” — that is, irrefutable reasoning processes.

2. Avristotle developed an informal system of syllogisms for proper reasoning, which
in principle allowed one to generate conclusions mechanically, given initial
premises.

3. One might say that to solve a hard problem, you have to almost know the answer

already.

A rational agent is one that does the right thing.

Surveys regularly rank Al as one of the most interesting and fastest-growing fields.

A rational agent is one that acts so as to achieve the best outcome or, when there is

uncertainty, the best expected outcome.

7. For example, in designing a self-driving car, one might think that the objective is to
reach the destination safely.

o 0k

6. Translate the sentences into Russian, define the type of conditional sentences

used.

1. If there are any patterns in the data other than the overall slope of a line, a linear
function will not be able to represent those patterns.

2. If we knew the data represented, say, the number of hits to a Web site that grows
from day to day, but also cycles depending on the time of day, then we might favor
the sinusoidal function.

3. If we knew the data was definitely not cyclic but had high noise, that would favor
the linear function.

4. If the problem is realizable, then variance decreases towards zero as the number of

training examples increases.

We don’t know what would have happened if there had been no human in the loop.

If the agent uses some randomization to choose its actions, then we would have to

try each sequence many times to identify the probability of each action.

o o
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7. Read and translate the text.

Machine Learning

Machine learning typically involves developing algorithms to improve the
performance of procedures based on data or examples and without explicit
programming. One of the predominant applications of machine learning is that of
classification. Here the system is presented with a set of examples and their
corresponding classes. The system must now learn a function that maps the properties
or attributes of the examples to the classes with the goal of minimizing the
classification error. Of course, one could simply memorize all the examples, which
would automatically minimize the classification error, but such a procedure would
require a lot of space and, moreover, would not generalize to examples not seen before.
In principle, such an approach can only guess. The goal of machine learning is rather
to learn a compact function that performs well on the given data and also generalizes
well to unseen examples. In the context of classification, examples include decision
trees, random forests, a generalization thereof, support vector machines, or boosting.
These approaches are considered supervised learning because the learner is always
given examples including their classes.

Another popular supervised learning problem is regression. Here, the system is
given a set of points of a function with the task of determining a function that
approximates the given points as well as possible. Again, one is interested in functions
that are as compact as possible and minimize the approximation error. In addition, there
Is also unsupervised learning, where one searches for a function that explains the given
data as well as possible. A typical unsupervised learning problem is clustering, where
one seeks centers for a set of points in the plane such that the sum of the squared
distances of all points from their nearest center is minimized.

8. Answer the questions to the text.

1. What does the term ‘machine learning’ involve?

2. What is the major application of machine learning?

3. What does classification mean?

4. What is the goal of machine learning?

5. What are the examples of supervised learning provided in the text?
6. What are the characteristics of unsupervised learning?

. Decide whether the statements below are true or false.

Machine learning always involves explicit programming to improve performance.
2. Memorizing examples is an effective way to ensure that a system generalizes well
to unseen data.

Support vector machines are an example of unsupervised learning.

Regression is concerned with finding a function that approximates a set of given
points.

5. Clustering is a common problem in supervised learning.

= ©
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10. Fill in the gaps with the necessary word. Translate the sentences into Russian.
Procedures, performance, attributes, supervised, approximation, random.

1. The ..... of the machine learning model improved significantly after applying the
new algorithm.

2. The ..... error was higher than expected, indicating that the model did not
generalize well to unseen data.

3. ... forests are commonly used in machine learning to increase prediction

accuracy.

Each example in the dataset has several ..... that describe its characteristics.

The ..... of the clustering algorithm were chosen to minimize the sum of squared

distances.

o B

11. Match each term with its correct definition.

1. Algorithm a) The task of finding a function that best approximates a set of

2. Classification points.

3. Generalization  b) A type of learning where the system is provided with

4. Regression examples and their corresponding outputs.

5. Supervised c) Grouping a set of points such that the sum of squared
learning distances from their nearest center is minimized.

6. Unsupervised d) The process of mapping attributes of examples to their classes
learning to minimize errors.

7. Clustering e) A procedure or set of rules used to solve a problem or perform

a task.

f) The ability of a system to perform well on unseen examples,
not just on the training data.

g) A type of learning where the system is not given specific
labels or outputs for the data.

12. Translate the text in writing with a dictionary.

What Is Unsupervised Learning?

Unsupervised learning uses machine learning algorithms to analyze and cluster
unlabeled data sets. These algorithms discover hidden patterns in data without the need
for human intervention (hence, they are “unsupervised”).

Unsupervised learning models are used for three main tasks: clustering,
association and dimensionality reduction.

Clustering is a data mining technique for grouping unlabeled data based on their
similarities or differences. For example, K-means clustering algorithms assign similar
data points into groups, where the K value represents the size of the grouping and
granularity. This technique is helpful for market segmentation, image compression, and
SO on.

Association is another type of unsupervised learning method that uses different
rules to find relationships between variables in a given data set. These methods are
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frequently used for market basket analysis and recommendation engines, along the
lines of “Customers Who Bought This Item Also Bought” recommendations.

Dimensionality reduction is a learning technique that is used when the number
of features (or dimensions) in a given data set is too high. It reduces the number of data
inputs to a manageable size while also preserving the data integrity. Often, this
technique is used in the preprocessing data stage, such as when autoencoders remove
noise from visual data to improve picture quality.

LESSON 7

1. Words and word combinations to be remembered.
Write out the transcription and translation of the following words from the
dictionary. Memorize their pronunciation and meaning.

1. computational (adj.) 19. mitigate (v.)

2. consideration (n.) 20. modify (v.)

3. constant (adj.) 21. momentum (n.)
4. convergence (n.) 22. overall (adj.)

5. decrease (v.) 23. overfit (v.)

6. dimensionality (n.) 24. overflow (v., n.)
7. diminishing returns 25. parallelism (n.)
8. ensure (v.) 26. particularly (adv.)
9. entire (adj.) 27. proceed (v.)

10. escape (v.) 28. randomly (adv.)
11. estimate (v.) 29. solution (n.)

12. exhibit (v.) 30. stochasticity (n.)
13. in favor of 31. tanh (n.)

14. inaccurate (adj.) 32. training set

15. incorporate (v.) 33. underflow (n., v.)
16. instability (n.) 34. variance (n.)

17. militate (adj.) 35. with respect to

18. minibatch (n.)

2. Read the words in transcription, translate them into Russian.
[ ' modifar], [kon sidoa'rerfn], [od va:ntidz], [, indr pendantli], ['lovkl], [ 'kpmpensert],
['veentf], [so'Tu, n], ['fedju:1], [o'drfonl].

3. Read and translate the rows of the same root words, defining the part of speech.
Optimize, optimization, optimized, optimizing, optimal, suboptimal.

Train, training, trained, retrain, self-training, trainable.

Calculate, calculation, calculated, calculating, recalculate, precalculation.

Classify, classification, classified, reclassify, misclassification.

Validate, validation, validated, validator, revalidate.

Incorporate, incorporation, incorporated, incorporating, reincorporate.
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4. Translate the attribute chains. Mind that the main word in these “chains” is the
last noun and all the previous nouns are used as attributes to the last one.

Loss function, training set, optimization algorithm, gradient descent process, gradient
contribution, stochastic gradient descent optimization algorithm, small minibatch size,
deep learning research, neural network parameter modification, numerical instability
mitigation strategies.

5. Translate the sentences into Russian, paying attention to the functions of that

and those.

1. Machine learning is a subfield of Al that studies the ability to improve performance
based on experience.

2. Since that time, each generation of computer hardware has brought an increase in

speed and capacity and a decrease in price.

It was not until 2011, however, that deep learning methods really took off.

The agent-design problems in multiagent environments are often quite different

from those in single-agent environments.

5. One reason that the problem of consciousness is hard is that it remains ill-defined,
even after centuries of debate.

6. The field of Al will need to develop technical and ethical standards at least
comparable to those prevalent in other engineering and healthcare disciplines where
people’s lives are at stake.

B w

6. Translate the sentences into Russian, define the type of conditional sentences

used.

1. If there are roughly equal numbers of examples for all four combinations of input
values, then neither attribute will be informative.

2. If we were only going to create one hypothesis, then this approach would be
sufficient.

3. If we are trying to predict a numerical output value, such as the price of an
apartment, then we need a regression tree rather than a classification tree.

4. A classifier with a 1 % error rate, where almost all the errors were classifying spam
as non-spam, would be better than a classifier with only a 0.5% error rate, if most
of those errors were classifying non-spam as spam.

5. If the test had failed, processing would have continued with the next test in the
list.

\‘

. Read and translate the text.

Learning Algorithms
Training a neural network consists of modifying the network’s parameters so as
to minimize the loss function on the training set. In principle, any kind of optimization
algorithm could be used. In practice, modern neural networks are almost always trained
with some variant of stochastic gradient descent (SGD).
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Here, the goal is to minimize the loss L (w), where w represents all of the
parameters of the network. Each update step in the gradient descent process looks like
this:

w «— w —aVwL(w),

where o is the learning rate. For standard gradient descent, the loss L is defined
with respect to the entire training set. For SGD, it is defined with respect to a minibatch
of m examples chosen randomly at each step.

It is worth mentioning a few important considerations that are particularly
relevant to training neural networks:

— For most networks that solve real-world problems, both the dimensionality of
w and the size of the training set are very large. These considerations militate strongly
in favor of using SGD with a relatively small minibatch size m: stochasticity helps the
algorithm escape small local minima in the high-dimensional weight space; and the
small minibatch size ensures that the computational cost of each weight update step is
a small constant, independent of the training set size.

— Because the gradient contribution of each training example in the SGD
minibatch can be computed independently, the minibatch size is often chosen so as to
take maximum advantage of hardware parallelism in GPUs or TPUs.

— To improve convergence, it is usually a good idea to use a learning rate that
decreases over time. Choosing the right schedule is usually a matter of trial and error.

— Near a local or global minimum of the loss function with respect to the entire
training set, the gradients estimated from small minibatches will often have high
variance and may point in entirely the wrong direction, making convergence difficult.
One solution is to increase the minibatch size as training proceeds; another is to
incorporate the idea of momentum, which keeps a running average of the gradients of
past minibatches in order to compensate for small minibatch sizes.

— Care must be taken to mitigate numerical instabilities that may arise due to
overflow, underflow, and rounding error. These are particularly problematic with the
use of exponentials in softmax, sigmoid, and tanh activation functions, and with the
iterated computations in very deep networks and recurrent networks that lead to
vanishing and exploding activations and gradients.

Overall, the process of learning the weights of the network is usually one that
exhibits diminishing returns. We run until it is no longer practical to decrease the test
error by running longer. Usually this does not mean we have reached a global or even
a local minimum of the loss function. Instead, it means we would have to make an
impractically large number of very small steps to continue reducing the cost, or that
additional steps would only cause overfitting, or that estimates of the gradient are too
Inaccurate to make further progress.

8. Answer the questions to the text.

1. How is training a neural network implemented?

2. What is the goal of SGD?

3. What does the small minibatch size ensure?

4. What method is used in order to improve convergence?
5. Why do numerical instabilities arise?
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6. Why does the process of learning the weights of the network usually exhibit
diminishing returns?

. Decide whether the statements below are true or false.

Stochastic Gradient Descent works by updating the parameters based on the entire
training set at once.

2. The use of small minibatches is always recommended, regardless of the hardware
being used.

A learning rate that decreases over time can help improve convergence.
Momentum helps in compensating for small minibatch sizes by maintaining a
running average of past gradients.

5. Numerical instabilities are commonly caused by the use of activation functions like
softmax and sigmoid.

= ©
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10. Match the following words with their correct definitions.

1. Stochastic a) The process of training a network to minimize the loss
Gradient Descent function using a random subset of training data at each
(SGD) step.

2. Learning Rate (a)  b) A very small dataset used at each step of stochastic

3. Momentum gradient descent.

4. Minibatch c) Atuning parameter that controls how much the network’s

5. Numerical parameters change during each update.
instability d) A scenario where machine learning models perform well

6. Overfitting on training data but poorly on unseen data.

e) A technique to improve convergence by keeping a
running average of past gradients.

f) Errors that occur due to limitations in how numbers are
represented in computer hardware.

11. Fill in the gaps with the verbs in the appropriate form. Translate the sentences
into Russian.

Decrease, estimate, exhibit, militate, modify, proceed.

1. Training a neural network consists of ........ the network’s parameters to minimize
the loss function.

2. The use of a learning rate that ........ over time is usually a good idea to improve
convergence.

3. One solution to improve training is to ........ with a larger minibatch size as the
process continues.

4. These considerations strongly ......... in favor of using stochastic gradient descent.

5. The process of learning the weights often ........ diminishing returns over time.

6. Gradient values ........ based on a minibatch of examples chosen at each step.
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12. Translate the text in writing with a dictionary.

Choosing a Network Architecture

A great deal of effort in deep learning research has gone into finding network
architectures that generalize well. Indeed, for each particular kind of data — images,
speech, text, video, and so on — a good deal of the progress in performance has come
from exploring different kinds of network architectures and varying the number of
layers, their connectivity, and the types of node in each layer.

Some neural network architectures are explicitly designed to generalize well on
particular types of data: convolutional networks encode the idea that the same feature
extractor is useful at all locations across a spatial grid, and recurrent networks encode
the idea that the same update rule is useful at all points in a stream of sequential
data. To the extent that these assumptions are valid, we expect convolutional
architectures to generalize well on images and recurrent networks to generalize well
on text and audio signals.

LESSON 8

1. Words and word combinations to be remembered.
Write out the transcription and translation of the following words from the
dictionary. Memorize their pronunciation and meaning.

1. absence (n.) 14. latter (adj.)

2. according to (prep.) 15. mimic (v.)

3. although (conj.) 16. pseudo (adj.)

4. application (n.) 17. reinforcement (n.)
5. assume (v.) 18. response (n.)

6. autonomous (adj.) 19. sequence (n.)

7. decision (n.) 20. sequential (adj.)
8. derive (v.) 21. state-action-reward
9. direct (adj.) 22. trial and error

10. ground truth 23. tuple (n.)

11. guidance (n.) 24. uncertain (adj.)
12. interact (v.) 25. underlie (v.)

13. label (n.)

2. Read the words in transcription, translate them into Russian.
[in'varronmont], [dar'rekt/do’rekt], [o:'tonamas], [si'kwenf(a)l], [Kon'tra:st],
[ bara'lodzikl], [tru:0], [ maeksimar zeifn].

3. Read and translate the rows of the same root words, defining the part of speech.
Reinforce, reinforced, reinforcing, reinforcer, reinforcement.

Autonomy, autonomous, autonomously, autonomize.

Absent, absently, absence, absentee, absenteeism.
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Guide, guided, guiding, guideline, guidance.
Actual, actually, actualize, actualized, actualizing, actualization.

4. Translate the attribute chains. Mind that the main word in these “chains” is the
last noun and all the previous nouns are used as attributes to the last one.
Reinforcement learning algorithms, decision-making settings, sequential decision-
making problems, artificial intelligence development, prediction accuracy
maximization, real-world biological learning methods, classification method, output
variables validation, recommendation engine.

5. Translate the sentences into Russian, paying attention to as well as, as long as,

as soon as.

1. In this section we discuss exact algorithms for computing posterior probabilities as
well as the complexity of this task.

2. Decision trees have a lot going for them: ease of understanding, scalability to large
data sets, and versatility in handling discrete and continuous inputs as well as
classification and regression.

3. As long as we keep track of paths and cut off ones that are cycles, eventually we
will reach every reachable state.

4. As soon as you successfully classify a batch of spam messages, the spammers will
see what you have done and change their tactics, sending a new type of message
you haven’t seen before.

6. Translate the conditional sentences into Russian, paying attention to the

conjunctions used.

1. Grey rectangles represent time intervals during which an action may be executed,
provided that the ordering constraints are respected.

2. Thus the first ultraintelligent machine is the last invention that man need ever make,
provided that the machine is docile enough to tell us how to keep it under control.

3. Butunless there are obviously no errors, it is better to formally evaluate your system

by running it on a test suite of queries and measuring how many you get right.

Typically, this approach is slow, unless the domain is small.

The software for a self-driving car wouldn’t be considered safe unless it can handle

unusual situations.

o s

. Read and translate the text.

\l

Reinforcement Learning

In reinforcement learning, an agent learns to make decisions by interacting with
an environment. It is used in robotics and other decision-making settings.

Reinforcement learning (RL) is a type of machine learning process that focuses
on decision making by autonomous agents. An autonomous agent is any system that
can make decisions and act in response to its environment independent of direct
Instruction by a human user. Robots and self-driving cars are examples of autonomous
agents. In reinforcement learning, an autonomous agent learns to perform a task by trial
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and error in the absence of any guidance from a human user. It particularly addresses
sequential decision-making problems in uncertain environments, and shows promise
in artificial intelligence development.

Literature often contrasts reinforcement learning with supervised and
unsupervised learning.

Supervised and unsupervised learning methods assume each record of input data
Is independent of other records in the dataset but that each record actualizes a common
underlying data distribution model. These methods learn to predict with model
performance measured according to prediction accuracy maximization.

By contrast, reinforcement learning learns to act. It assumes input data to be
interdependent tuples — i.e. an ordered sequence of data — organized as state-action-
reward. Many applications of reinforcement learning algorithms aim to mimic real-
world biological learning methods through positive reinforcement.

It should be noted that, although the two are not often compared in literature,
reinforcement learning is distinct from self-supervised learning as well. The latter is a
form of unsupervised learning that uses pseudo labels derived from unlabeled training
data as a ground truth to measure model accuracy. Reinforcement learning, however,
does not produce pseudo labels or measure against a ground truth — it is not a
classification method but an action learner. The two have been combined however with
promising results.

8. Answer the questions to the text.

1. Where is reinforcement learning used?

2. What is an autonomous agent? Could you provide examples?

3. What is reinforcement learning usually contrasted with?

4. What distinguishes reinforcement learning from self-supervised learning?
5. Is it possible to combine the two aforementioned methods?

9. Decide whether the statements below are true or false.

1. Reinforcement learning is used primarily for classification tasks.

2. In reinforcement learning, the agent learns by following human instructions.

3. Self-supervised learning uses pseudo labels to train a model.

4. Sequential decision-making problems are particularly addressed by reinforcement
learning.

5. Supervised learning and reinforcement learning assume input data are
interdependent.

10. Fill in the gaps with the correct verb in active or passive voice. Translate the
sentences into Russian.

Address, assume, derive, focus on, mimic, predict.

1. Reinforcement learning ........ decision-making by autonomous agents.
2. Autonomous agents ........ real-world biological learning methods through trial and
error.
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3. Supervised and unsupervised learning methods ......... that each record of input
data is independent of others.

4. Sequential decision-making problems in uncertain environments ......... by
reinforcement learning.

5. Inunsupervised learning, pseudo labels .......... from unlabeled training data.

6. Supervised and unsupervised learning methods learnto .......... with high accuracy.

11. Match the following terms with their correct definitions.
1. Reinforcement a) A system that can make decisions and act independently of

learning direct human instruction.
2. Autonomous b) A method where an agent learns by interacting with its
agent environment and receiving feedback.
3. Sequential c) Anordered sequence of data points that depend on each other.
decision-making d) A scenario where decisions must be made in a specific order
4. Interdependent over time.
tuples e) The actual or known correct information used to measure
5. Positive model accuracy.
reinforcement  f) The framework used in reinforcement learning where actions
6. Ground truth are chosen based on the current situation to maximize future
rewards.

12. Translate the text in writing with a dictionary.

The Main Difference between Supervised and Unsupervised Learning:
Labeled Data

The main distinction between the two approaches is the use of labeled data sets.
To put it simply, supervised learning uses labeled input and output data, while an
unsupervised learning algorithm does not.

In supervised learning, the algorithm “learns” from the training data set by
iteratively making predictions on the data and adjusting for the correct answer. While
supervised learning models tend to be more accurate than unsupervised learning
models, they require upfront human intervention to label the data appropriately. For
example, a supervised learning model can predict how long your commute will be
based on the time of day, weather conditions and so on. But first, you must train it to
know that rainy weather extends the driving time.

Unsupervised learning models, in contrast, work on their own to discover the
inherent structure of unlabeled data. Note that they still require some human
intervention for validating output variables. For example, an unsupervised learning
model can identify that online shoppers often purchase groups of products at the same
time. However, a data analyst would need to validate that it makes sense for a
recommendation engine to group baby clothes with an order of diapers, applesauce,
and sippy cups.
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LESSON 9

1. Words and word combinations to be remembered. Write out the transcription
and translation of the following words from the dictionary. Memorize their
pronunciation and meanings.

1. adapt (v.) 24. multiple input-multiple output
2. advantage (n.) (MIMO)
3. approximation (n.) 25. necessary (adj.)
4. attractive (adj.) 26. nonlinear (adj.)
5. capability (n.) 27. numerical (adj.)
6. computable (adj.) 28. obtain (v.)
7. computation (n.) 29. owing to (prep.)
8. consequently (adv.) 30. possess (v.)
9. conventional (adj.) 31. prior (adj.)
10. cumbersome (adj.) 32. properly (adv.)
11. detection (n.) 33. Quickprop and Resilient Back-
12. diagnosis (n.) propagation (RPROP)
13. effortless (adj.) 34. readily (adv.)
14. emerge (v.) 35. response (n.)
15. employ (v.) 36. run (n.)
16. especially (adv.) 37. sensor (n.)
17. fault (n.) 38. solely (adv.)
18. heuristic (adj.) 39. specify (n.)
19. impractical (adj.) 40. steady-state (adj.)
20. intermediate (adj.) 41. uncertainty (n.)
21. learning coefficient ratio 42. unnecessary (adj.)
22. learning rule 43. utilize (v.)
23. multilayered perceptron (MLP) 44, weight (n.)
45. yield (n.)

2. Read the words in transcription, translate them into Russian.
['dekerd], [1'spef(o)li], ['prara], [fi,nomi'nolodsi], [ji:ld], [ar dentifi kerf(a)n],
[keerokta 'ristiks], [a'd3ast], [ njuaron], [ koovt fif(a)nt].

3. Work with word formation. Fill in the table with the necessary nouns, verbs or
adjectives.

Noun Verb Adjective

attract

computation

necessary

relate

utilization

adaptable

know
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4. Translate the attribute chains. Mind that the main word in these “chains” is the
last noun and all the previous nouns are used as attributes to the last one.
Nonlinear process modeling, conventional regression model, model-free
approximation capabilities, generalization ability, soft sensor building, yield
maximization, fault detection and diagnosis, causal process variables, error-back-
propagation, transfer function, learning coefficient ratio, random number seed, root-
mean-squared-error.

5. Translate the sentences into Russian paying attention to passive voice.

1. Agents move through search space based on averaged velocity vectors that are
influenced by the global and local best-known solutions (positive feedback), the
agent’s previous direction, and a randomized direction.

2. Financial services are also affected by the introduction of many Al-related
innovations, such as roboadvisors.

3. The moment where Al takes over its own selfimprovement is referred to as the
Singularity or artificial superintelligence (ASI).

4. The Dartmouth Conference was followed by an international conference on the
“Mechanisation of Thought Processes” at the British National Physical Laboratory
(NPL) in 1958.

5. When problems come up, they are dealt with.

. While the rough distinctions outlined above between automated, semiautonomous,

and autonomous systems are generally agreed upon, ambiguity exists where these
system categories are present in actual systems.

(o]

6. Translate the sentences into Russian defining the functions of the gerunds.

1. Most nonparametric models have the advantage that it is easy to do leave-one-out
cross-validation without having to recompute everything.

2. Having a reliable, flexible, secure, data-handling pipeline is more critical to success
than the exact details of the machine learning algorithm.

3. We do agree that behaving intelligently will require some degree of awareness,
which will differ from task to task, and that tasks involving interaction with humans
will require a model of human subjective experience.

4. Critics contend that the Turing Test doesn’t measure intelligence; rather, it measures
how well a machine can simulate being a human.

5. Autonomous machines learn from their experiences and are in some ways capable
of reaching beyond their initial programming.

6. Chatbots can be written in almost any programming language, and there are a variety
of techniques available for creating them.

7. Read and translate the text.

Artificial Neural Networks
In the last decade, artificial neural networks (ANNS) have emerged as attractive
tools for nonlinear process modeling, especially in situations where the development
of phenomenological or conventional regression models becomes impractical or
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cumbersome. ANN is a computer modeling approach that learns from examples
through iterations without requiring a prior knowledge of the relationships of process
parameters and is, consequently, capable of adapting to a changing environment. It is
also capable of dealing with uncertainties, noisy data, and nonlinear relationships.

ANN modeling has been known as effortless computation and readily used
extensively because of its model-free approximation capabilities of complex decision-
making processes. The advantages of an ANN-based model are the following:

1. It can be constructed solely from the historic process input-output data
(example set).

2. Detailed knowledge of the process phenomenology is unnecessary for model
development.

3. A properly trained model possesses excellent generalization ability owing to
which it can accurately predict outputs for a new input data set.

4. Even multiple input-multiple output (MIMO) nonlinear relationships can be
approximated simultaneously and easily.

Owing to their several attractive characteristics, ANNs have been widely used
in chemical engineering applications such as steady-state and dynamic process
modeling, soft sensor building, process identification, yield maximization, nonlinear
control, and fault detection and diagnosis.

The most widely utilized ANN paradigm is the multilayered perceptron (MLP)
that approximates nonlinear relationships existing between an input set of data (causal
process variables) and the corresponding output (dependent variables) data set. A three-
layered MLP with a single intermediate (hidden) layer housing a sufficiently large
number of nodes (also termed neurons or processing elements) can approximate (map)
any nonlinear computable function to an arbitrary degree of accuracy. It learns the
approximation through a numerical procedure called network training, wherein
network parameters (weights) are adjusted iteratively such that the network, in
response to the input patterns in an example set, accurately produces the corresponding
outputs. There exists a number of algorithms — each possessing certain positive
characteristics — to train an MLP network, for example, the most popular error-back-
propagation (EBP), Quickprop and Resilient Back-propagation (RPROP). Training of
an ANN involves minimizing a nonlinear error function (e.g., root-mean-squared-error,
RMSE) that may possess several local minima. Thus, it becomes necessary to employ
a heuristic procedure involving multiple training runs to obtain an optimal ANN model
whose parameters (weights) correspond to the global or the deepest local minimum of
the error function. The building of a backpropagation network involved the
specification of the number of hidden layers and the number of neurons in each hidden
layer. In addition, several parameters, including the learning rule, the transfer function,
the learning coefficient ratio, the random number seed, the error minimization
algorithm, and the number of learning cycles had to be specified.

8. Answer the questions to the text.

1. What is ANN modeling?

2. What are the advantages of an ANN-based model?
3. Where can ANNS be used?
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4. What is MLP and what is its function?
. What algorithms are used to train an MLP network?
6. What did the building of a backpropagation network involve?

o1
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. Decide whether the statements below are true or false.

1. ANNSs require detailed knowledge of the process phenomenology for successful
modeling.

MLPs can only approximate linear relationships.

Backpropagation is the most commonly used method for training an MLP network.
An ANN with strong generalization ability can accurately predict new input-output
pairs that were not part of the training data.

Weights in a neural network remain constant throughout the training process.

The process of training an ANN may involve multiple runs to find the global
minimum of the error function.

Bown
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10. Match the following words with their correct definitions.
1. Phenomenological a) The numerical values that determine the strength and

model direction of connections between neurons in artificial neural
2. Generalization networks.

ability b) The layer in a neural network where information is processed
3. Backpropagation between input and output layers.
4. Hidden layer c) A mathematical procedure that allows ANNs to learn by
5. Neurons (nodes) updating weights based on the error in prediction.
6. Weights d) A numerical measure used to quantify the error in a model’s
7. Root-mean- prediction.

squared-error e) The ability of a trained model to correctly predict unseen

data.

f) Elements or processing units in a neural network that receive
and process input data.

g) A model built based on observed phenomena, rather than
pure theory or calculation.

11. Find in the text and translate:
a) sentences with the gerund as an adverbial modifier;
b) sentences with participle | as an attribute;
C) sentences with verbs in passive voice;
d) sentences with adjectives with negative affixes.

12. Translate the text in writing with a dictionary.

Network Architecture
The MLP network usually consists of three layers of nodes. The layers described
as input, hidden, and output layers comprise N, L, and K number of processing nodes,
respectively. Each node in the input (hidden) layer is linked to all the nodes in the
hidden (output) layer using weighted connections. In addition to the N and L number
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of input and hidden nodes, the MLP architecture also houses a bias node (with fixed
output of +1) in its input and hidden layers; the bias nodes are also connected to all the
nodes in the subsequent layer, and they provide additional adjustable parameters
(weights) for the model fitting. The number of nodes (N) in the MLP network’s input
layer is equal to the number of inputs in the process whereas the number of output
nodes (K) equals the number of process outputs. However, the number of hidden nodes
(L) is an adjustable parameter whose magnitude is determined by issues, such as the
desired approximation and generalization capabilities of the network model.

LESSON 10

1. Words and word combinations to be remembered. Write out the transcription
and translation of the following words from the dictionary. Memorize their
pronunciation and meanings.

1. break down (v.) 9. permit (v.)

2. complete (adj., v.) 10. prearranged (adj.)
3. extract (v.) 11. precede (v.)

4. hierarchical (adj.) 12. refers to (v.)

5. immense (adj.) 13. shallow(adj.)

6. intricate (adj.) 14. storage(n.)

7. lack (v.) 15. subsequent (adj.)
8. multiple (adj.) 16. subset (n.)

2. Read the words in transcription, translate them into Russian.
['mebad], [[eelov], ['viz(o)n], [1k'sartim], ['njuaron], ['maltip(a)l], [an'straktfad],
[ stari:z], [ pri:a'reindzd], [ haro'ra:kikl].

3. Translate the attribute chains. Mind that the main word in these “chains” is the
last noun and all the previous nouns are used as attributes to the last one.
Machine learning networks, computer hardware advances, speech recognition task
performance, deep learning algorithm complexity, natural language processing
application, multi-layered learning algorithm depth, fully connected layer structure.

4. Work with word formation. Fill in the table with the necessary nouns, verbs or
adjectives.

Noun Verb Adjective
complete
vision
recognizable
extract
association
structural
store
excitement
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5. Translate the sentences paying attention to the functions of have.

1. Unmanned vehicles are either preprogrammed by algorithms or remotely controlled
by a human operator, and they can have varying degrees of autonomy in their
operations.

2. Obviously, if the environment is unknown, the agent will have to learn how it works
in order to make good decisions.

3. Since the 1950s, researchers have explored two major avenues to artificial
intelligence: connectionism and symbolic representation.

4. There are two opposing opinions on the long-term effect that the development of Al-
based technologies will have on automation and human labor.

5. One might say that to solve a hard problem, you have to almost know the answer
already.

6. The problem-solving approach has been applied to a vast array of task environments.

6. Translate the sentences into Russian defining the functions of the gerunds.

1. It’s possible to reduce the layer size simply by having a fully connected layer with
fewer units than the preceding layer.

2. Having multiple sensors increases performance in general, and is particularly
important in conditions of poor visibility.

3. Making correct inferences is sometimes part of being a rational agent, because one
way to act rationally is to deduce that a given action is best and then to act on that
conclusion.

4. Having a belief about the human’s goal helps the robot anticipate what next actions
the human will take.

5. The concept of pruning — eliminating possibilities from consideration without
having to examine them — is important for many areas of Al.

6. Ambiguity in definitions of semiautonomous and autonomous systems mirrors the
many challenges in designing optimized user interfaces for these systems.

\l

. Read and translate the text.

Deep Learning (1)

Deep learning is a subset of methods, tools, and techniques in artificial
intelligence or machine learning. Learning in this case involves the ability to derive
meaningful information from various layers or representations of any given data-set
in order to complete tasks without human instruction. Deep refers to the depth of a
learning algorithm, which usually involves many layers. Machine learning networks
involving many layers are often considered to be deep, while those with only a few
layers are considered shallow. The recent rise of deep learning over the 2010s is
largely due to computer hardware advances that permit the use of computationally
expensive algorithms and allow storage of immense datasets. Deep learning has
produced exciting results in the fields of computer vision, natural language, and
speech recognition.

Acrtificial neural networks are the most common form of deep learning. Neural
networks extract information through multiple stacked layers commonly known as
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hidden layers. These layers contain artificial neurons, which are connected
independently via weights to neurons in other layers. Neural networks often involve
dense or fully connected layers, meaning that each neuron in any given layer will
connect to every neuron of its preceding layer. This allows the network to learn
increasingly intricate details or be trained by the data passing through each subsequent
layer. Part of what separates deep learning from other forms of machine learning is
its ability to work with unstructured data. Unstructured data lacks prearranged labels
or features. Using many stacked layers, deep learning algorithms can learn to
associate its own features from the given unstructured datasets. This is accomplished
by the hierarchical way a deep multi-layered learning algorithm provides
progressively intricate details with each passing layer, allowing for it to break down
a highly complex problem into a series of simpler problems. This allows the network
to learn increasingly intricate details or be trained by the data passed through
subsequent layers.

. Answer the questions to the text.

. What is deep learning?

. What machine learning networks are considered to be deep?

. Why have hardware advances been crucial to the rise of deep learning in the 2010s?
. What are some of the fields where deep learning has shown significant results?

. What is the most common form of deep learning?

. Does deep learning provide for working with unstructured data?

OO0 WNEFE O

. Decide whether the statements below are true or false.

1. Deep learning is a subset of artificial intelligence that works with only structured
data.

2. Fully connected layers in neural networks mean that each neuron in a layer connects
to every neuron in the preceding layer.

3. A shallow neural network is one with many layers of neurons.

4. Deep learning can process unstructured data, making it unique compared to
traditional machine learning.

5. Deep learning breaks down highly complex problems into simpler problems by
processing data in layers.

6. Computer vision is a field that has seen advancements due to deep learning

(o]

10. Find in the text and translate:
a) a sentence with the infinitive as an adverbial modifier of purpose;
b) sentences with Complex Object and Complex Subject;
C) sentences with participle | as an attribute;
d) a sentence with adjectives in superlative degree.
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11. Match the following terms with their correct definitions.
Deep learning a) A field of artificial intelligence that enables computers to
Unstructured data  interpret and understand visual information from the world.
Shallow networks b) A collection of structured or unstructured data used to train
Computer vision Al and machine learning models.
Data-set c) Networks involving a few layers in their architecture.
Natural Language d) A method in machine learning that uses many layers to learn
Processing (NLP)  from data without human guidance.

e) The application of computational techniques to the analysis

and synthesis of natural language and speech.
f) Data that lacks predefined labels or structured organization.

ok owdE

12. Fill in the gaps with the appropriate adjectives given below. Translate the
sentences into Russian.

Individual, hierarchical, connected, shallow, unstructured, significant

1. Adeep neural network uses dense or fully ...... layers, where each neuron connects
to every neuron in the previous layer.

2. ciinn learning allows deep learning algorithms to break down complex problems
Into a series of simpler tasks using a multi-layered approach.

3. The primary advantage of deep learning is that it can handle ...... data, extracting
features without human intervention.

4. Neurons are ........ processing units in artificial neural networks that pass
information between layers.

5 ... networks only involve a few layers, while deep networks have many.

6. Deep learning has achieved .......... breakthroughs in fields like computer vision

and speech recognition.

13. Translate the text in writing with a dictionary.

A network is trained through the following steps: first, small batches of labeled
data are passed forward through the network. The network’s loss is calculated by
comparing predictions versus the actual labels. Any discrepancies are calculated and
relayed back to the weights through back propagation. Weights are slightly altered with
the goal of continuously minimizing loss during each round of predictions. The process
repeats until optimal minimization of loss occurs and the network achieves a high
accuracy of correct predictions.

Deep learning’s ability to self-optimize its layers is what gives it an edge over
many machine learning techniques or shallow learning networks. Since machine or
shallow learning algorithms involve only a few layers at most, they require human
intervention in the preparation of unstructured data for input, also known as feature
engineering. This can be quite an arduous process and might take too much time to be
worthwhile, especially if the dataset is quite large.

For these reasons, it may appear as though machine learning algorithms might
become a method of the past. But deep learning algorithms come at a cost. The ability
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to find their own features requires a vast amount of data that might not always be
available. Also, as data sizes increase, so too does the processing power and training
time requirements needed since the network will have much more data to sort through.
Training time will also increase depending on the amount and types of layers used.
Luckily, online computing, where access to powerful computers can be rented for a
fee, allows anyone the ability to execute some of the more demanding deep learning
networks.

LESSON 11

1. Words and word combinations to be remembered. Write out the transcription
and translation of the following words from the dictionary. Memorize their
pronunciation and meaning.

1. associate (v.) 9. invariant (n.)
2. concise (adj.) 10. kernel (n.)

3. convnet (n.) 11. parse (v.)

4. convolutional (adj.) 12. pooling (n.)
5. currently (adv.) 13. repeat (v.)

6. extra (adj.) 14. retain (v.)

7. gain (v.) 15. sampling (n.)
8. intricate (adj.)

2. Read the words in transcription, translate them into Russian.
[ konva'lu:fn], [ karantli], [ 'k3:mn(a)1], ['sabsikw(a)nt], [ 1m1d3], [lo(v) kert], [wid aut],
[an'straktfod], ['@nolaiz], [ 'vearias].

3. Work with word formation. Fill in the table with the necessary nouns, verbs or
adjectives.

Noun Verb Adjective
inform
automation
complete
repeat
meaning
general
compute
ability
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4. Translate the attribute chains. Mind that the main word in these “chains” is the
last noun and all the previous nouns are used as attributes to the last one.
Convolutional neural network architecture, deep learning computer vision projects,
low-level feature extraction process, higher-level feature detection techniques, image
classification task, intricate detail analysis process.

o1

N

o O

. Translate the sentences paying attention to the functions of to be.

Propositional logic is a simple language consisting of proposition symbols and
logical connectives.

In each case, the algorithm reaches a point at which no progress is being made.
One way to construct the library is to learn the methods from problem-solving
experience.

Ironically, the new back-propagation learning algorithms that were to cause an
enormous resurgence in neuralnet research in the late 1980s and again in the 2010s
had already been developed in other contexts in the early 1960s.

Unfortunately, propositional logic is limited in what it can say.

What programming languages lack is a general mechanism for deriving facts from
other facts; each update to a data structure is done by a domain-specific procedure
whose details are derived by the programmer from his or her own knowledge of the
domain.

The idea is to understand the scope of the knowledge base, as determined by the
task, and to understand how the domain actually works.

Lyapunov analysis was originally developed in the 1890s for the stability analysis
of general nonlinear systems, but it was not until the early 1930s that control
theorists realized its true potential.

6. Translate the sentences into Russian, paying attention to the complex gerundial
constructions.

1.

2.

B~ w

The scientists’ recombining different network architectures helped to explore new
possibilities.

The researchers focused on automating the task of architecture selection, knowing
that their choosing the right network architecture would be challenging without
clear guidelines.

The team discussed the scientists’ recombining different network architectures.

By their treating the architectural possibilities as a continuous space, they were able
to apply gradient descent more effectively.

They attributed the project’s success to the team’s using evolutionary algorithms
for neural architecture search.

The key to speeding up the process lay in their learning a heuristic evaluation
function.

The team’s using evolutionary algorithms for neural architecture search led to more
efficient network design.
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7. Read and translate the text.

Deep Learning (2)

Convolutional neural networks (CNNSs) require extra types of hidden layers not
discussed in the basic neural network architecture. This type of deep learning is most
often associated with computer vision projects and is currently the most widely used
method in that field. Basic convnet networks will generally use three types of layers in
order to gain insight from the image: convolutional layers, pooling layers, and dense
layers. Convolutional layers work by shifting a window, or convolutional kernel, across
the image in order to gain information from low-level features such as edges or curves.
Subsequent stacked convolutional layers will repeat this process over the newly formed
layers of low-level features searching for progressively higher-level features until it
forms a concise understanding of the image. Varying the size of the kernel or the
distance in which it slides over the image are various hyperparameters that can be
changed in order to locate different types of features. Pooling layers allow a network
to continue to learn progressively higher-level features of an image by downsampling
the image along the way.

Without a pooling layer implemented among convolutional layers, the network
might become too computationally expensive as each progressive layer analyzes more
intricate details. Also, the pooling layer shrinks an image while retaining important
features. These features become translation invariant, meaning that a feature found in
one part of an image can be recognized in a completely new area of a second. For an
Image classification task, the convolutional neural network’s ability to retain positional
information is vital. Again, the power of deep learning regarding convolutional neural
networks is shown through its ability to parse through the unstructured data
automatically to find local features that it deems important while retaining positional
information about how these features interact with one another.

. Answer the questions to the text.

. Where are convolutional neural networks mainly used?

. What types of layer are generally used for basic convnet networks?

. Why are hyperparameters like kernel size and stride important in convolutional
neural networks?

. What is the function of the pooling layer?

. What is the significance of translation invariance in convolutional neural networks?

o1 b~ WN B~ 00
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. Decide whether the statements below are true or false.
1. Convolutional layers in CNNs scan the image using a small sliding window called a
kernel.

2. Dense layers in CNNs connect each neuron in one layer to every neuron in the
previous layer.

. The kernel size in a convolutional layer is a fixed value and cannot be changed.

. Pooling layers are optional but help prevent CNNs from becoming too
computationally expensive.

A W
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5. High-level features are detected in the early layers of a CNN, while low-level
features are detected in the later layers.
6. CNNs are able to parse through unstructured data like images automatically.

10. Find in the text and translate:
a) sentences with the infinitive as an adverbial modifier of purpose;
b) sentences with verbs in passive voice;
c) sentences with participle | as an adverbial modifier;
d) sentences with the gerund as an adverbial modifier.

11. Match the following terms with their correct definitions.
1. Convolutional a) Features such as edges or curves found in the earlier layers

neural network of a convolutional neural network.
2. Pooling layer b) A technique that reduces the size of an image while
3. Convolutional preserving important features.

kernel c) A deep learning network structure primarily used in
4. Low-level computer vision tasks.

features d) The ability of a network to recognize a feature in different
5. High-level locations within an image.

features e) A small sliding window used to detect patterns or features in
6. Downsampling an image.
7. Translation f) Features such as shapes or objects found in later layers of a

invariance convolutional neural network.

g) A layer that reduces the computational complexity by
downsampling the input while retaining important
information.

12. Translate the text in writing with a dictionary.

Recurrent neural networks are excellent at sequence-based tasks such as
finishing sentences or predicting stock prices. The underlying premise is that — unlike
the earlier examples of networks where neurons only pass information forward —
neurons in recurrent neural networks feed information forward and also periodically
loop back the output to itself during a time step. Since each time step provides
recurrent information of all previous time steps, recurrent neural networks can be
thought of as having a basic form of memory. This is often used with natural language
projects, as recurrent neural networks can process text in a method more akin to
humans. Instead of looking at a sentence as merely a bunch of separate words, a
recurrent neural network can begin to process the sentence’s sentiment or even
autonomously write the next sentence based on what was previously said.
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LESSON 12

1. Words and word combinations to be remembered. Write out the transcription
and translation of the following words from the dictionary. Memorize their

pronunciation and meanings.

1. attempt (n.)

2. attribute (n., v.)

3. challenge (n.)

4. choice (n.)

5. complete (adj., v.)
6. continuous (adj.)

7. cover (v.)

8. deploy (v.)

9. depth (n.)

10. determine (v.)

11. differentiable (adj.)
12. eliminate (v.)

13. estimate (v.)

14. frame (n., v.)

15. GPU

16. guideline (n.)

17. hill climbing

18. hyperparameter (n.)
19. improve (v.)

20. join (v.)

21

. judgment (n.)
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32,
33.
34,
35.
36.
37.
38.
39.
40.

multiple (adj.)
mutation (n.)
possibility (n.)
predict (v.)
procedure (n.)
recombination (n.)
reduce (v.)
remove (Vv.)

retain (v.)

retrain (v.)

score (n.)

sensible (adj.)
share (n., v.)
solution (n.)
speed up (v.)
straightforward (adj.)
subgraph (n.)
treat (v.)

tuning (n.)

2. Read the words in transcription, translate them into Russian.
[an"fo:tf(o)natlt], [ i:vo'luf(o)n(o)ri], ['o:tomert], ['gardlam], [ri: kombr nerf(s)n],
[beet(], [s3:tf], [ 'ri:z(a)nab(a)1], [ 'tfeehin(d)3], [ netws:K].

3. Work with word formation. Fill in the table with the necessary nouns, verbs or

adjectives.
Noun Verb Adjective
success
select
popular
value
continue
different
validation
predict
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4. Translate the attribute chains. Mind that the main word in these “chains” is the
last noun and all the previous nouns are used as attributes to the last one.

Neural architecture search, search techniques, architecture selection process, parameter
value, mutation operation, heuristic evaluation function, complete training procedure,
signal value, validation set.

5. Translate the sentences paying attention to the conjunctions both... and...,

either... or..., neither... nor... and to the determiners both, either, neither.

1. A variety of cognitive architectures have been developed in both academic and

industrial environments.

Hybrid networks with both discrete and continuous variables were investigated.

In both of these problems, there is a wide path to the goal.

The problem is that we know neither the assignments nor the parameters.

Neither forward nor backward search is efficient without a good heuristic function.

Neither strategy is optimal.

In standard logics, every sentence must be either true or false in each possible world

— there is no “in between.”

8. Unmanned vehicles are either preprogrammed by algorithms or remotely controlled
by a human operator.

9. The search is complete in either case.

No ko

6. Translate the sentences into Russian; decide whether the Ving-form used is a

gerund or a participle. Define the functions of Ving-forms.

1. Having specified the syntax of propositional logic, we now specify its semantics.

2. Social concerns surrounding artificial intelligence and harm to humans have most
famously been represented by Isaac Asimov’s Three Laws of Robotics.

3. Acquiring domain knowledge posed the biggest challenge to the expert system.

4. Many factors play a role in making the acquisition step difficult, but the complexity
of representing heuristic and experiential knowledge is probably the most
significant challenge.

5. The model’s performance improved significantly thanks to their training the
network on a smaller dataset.

6. The creators of the Asilomar principles, noting the high stakes involved, included
principles covering longer term issues.

7. The system having detected an anomaly, the Al alerted the team to potential issues.

\l

. Read and translate the text.

Neural Architecture Search
Unfortunately, there is no clear set of guidelines to help one choose the best
network architecture for a particular problem. Success in deploying a deep learning
solution requires experience and good judgment.
From the earliest days of neural network research, attempts have been made to
automate the process of architecture selection. We can think of this as a case of
hyperparameter tuning, where the hyperparameters determine the depth, width,
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connectivity, and other attributes of the network. However, there are so many choices
to be made that simple approaches like grid search can’t cover all possibilities in a
reasonable amount of time.

Therefore, it is common to use neural architecture search to explore the state
space of possible network architectures. Many of the search techniques and learning
techniques have been applied to neural architecture search.

Evolutionary algorithms have been popular because it is sensible to do both
recombination (joining parts of two networks together) and mutation (adding or
removing a layer or changing a parameter value). Hill climbing can also be used with
these same mutation operations. Some researchers have framed the problem as
reinforcement learning, and some as Bayesian optimization. Another possibility is to
treat the architectural possibilities as a continuous differentiable space and use gradient
descent to find a locally optimal solution.

For all these search techniques, a major challenge is estimating the value of a
candidate network. The straightforward way to evaluate an architecture is to train it on
a test set for multiple batches and then evaluate its accuracy on a validation set. But
with large networks that could take many GPU-days.

Therefore, there have been many attempts to speed up this estimation process by
eliminating or at least reducing the expensive training process. We can train on a
smaller data set. We can train for a small number of batches and predict how the
network would improve with more batches. We can use a reduced version of the
network architecture that we hope retains the properties of the full version. We can
train one big network and then search for subgraphs of the network that perform better;
this search can be fast because the subgraphs share parameters and don’t have to be
retrained.

Another approach is to learn a heuristic evaluation function (as was done for Ax
search). That is, start by choosing a few hundred network architectures and train and
evaluate them. That gives us a data set of (network, score) pairs. Then learn a mapping
from the features of a network to a predicted score. From that point on we can generate
a large number of candidate networks and quickly estimate their value. After a search
through the space of networks, the best one(s) can be fully evaluated with a complete
training procedure.

8. Answer the questions to the text.
1. Why is choosing a network architecture for a particular problem quite a difficult
task?
2. What search and learning techniques have been applied to neural architecture
search?
3. What is the straightforward way to evaluate an architecture and why is it unsuitable
for large networks?
. How can the estimation process of the network architecture be sped up?
. What is a heuristic evaluation function in the context of neural architecture search,
and how does it help in searching for the best network architecture?

[SalE =N
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9. Decide whether the statements below are true or false.

1. Neural architecture search is essentially a type of hyperparameter tuning.

2. Grid search is the most effective approach to neural architecture search.

3. Hill climbing methods incrementally adjust parameters to find local optima in
neural architecture search.

4. Training a large number of candidate networks to full completion is the fastest way
to evaluate network architectures.

5. Gradient descent can be applied to neural architecture search by treating the search
space as differentiable.

6. Subgraphs are small, fully trained networks that are created to speed up evaluation
during neural architecture search.

10. Match the following terms with their correct definitions.

1. Hyperparameter a) A type of optimization that searches through potential
tuning solutions based on learned probabilities.

2. Evolutionary b) A search method that finds a local optimum by
algorithm incrementally changing the current solution.

3. Bayesian ¢) An algorithm that improves a solution by combining or
optimization mutating network parts.

4. Hill climbing d) A function that predicts the value of a candidate network

5. Gradient descent without fully training it.

6. Heuristic e) A parameter optimization technique that involves
evaluation adjusting aspects like depth or width of a neural network.

f) The process of updating network parameters by
computing the error gradient and moving in the direction
that minimizes the error.

11. Fill in the gaps with an appropriate verb given below. Translate the sentences
into Russian.

To speed up, to predict, to automate, to evaluate, to search for, to explore

1. Neural architecture search is used ....... the process of finding the best neural
network architecture.

2. Techniques like evolutionary algorithms and hill climbing allow the search process
......... network architectures in a systematic way.

3. The challenge of computation time arises when attempting ...... large network
architectures due to the computational time needed for training.

4. Oneway ...... the search process is to train on a smaller data set, which reduces the
size of the training data.

5. An alternative approach to training large networks fully is ...... subgraphs that share
parameters and evaluate them.

6. Another method involves building a dataset of architectures and scores and then
using heuristic evaluation ....... the performance of new networks.
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12. Find in the text and translate:
a) sentences with the infinitive as an attribute;
b) sentences with an infinitive as an adverbial modifier of purpose;
c) asentences with verbs in passive voice;
d) a sentence with “have” as a modal verb equivalent;
e) sentences with the gerund as an adverbial modifier.

13. Translate the text in writing with a dictionary.

A feedforward network, as the name suggests, has connections only in one
direction that is, it forms a directed acyclic graph with designated input and output
nodes. Each node computes a function of its inputs and passes the result to its
successors in the network. Information flows through the network from the input
nodes to the output nodes, and there are no loops.

A recurrent network, on the other hand, feeds its intermediate or final outputs
back into its own inputs. This means that the signal values within the network form
a dynamical system that has internal state or memory.

Boolean circuits, which implement Boolean functions, are an example of
feedforward networks. In a Boolean circuit, the inputs are limited to 0 and 1, and each
node implements a simple Boolean function of its inputs, producing a 0O or a 1. In
neural networks, input values are typically continuous, and nodes take continuous
inputs and produce continuous outputs. Some of the inputs to nodes are parameters of
the network; the network learns by adjusting the values of these parameters so that the
network as a whole fits the training data.

LESSON 13

1. Words and word combinations to be remembered. Write out the transcription
and translation of the following words from the dictionary. Memorize their
pronunciation and meanings.

1. assess (v.) 13. overlap (v.)

2. conditionally (adv.) 14. path (n.)

3. consideration (n.) 15. predetermine (v.)
4. delineate (v.) 16. proceed (v.)

5. distinct (adj.) 17. receive (V.)

6. distinguish (v.) 18. reliance (n.)

7. former (adj.) 19. response (n.)

8. in advance 20. select (v.)

9. inclusive (adj.) 21. somewhere (adv.)
10. intent (n.) 22. tie (v.)

11. latter (adj.) 23. via (prep.)

12. obstruction (n.)
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2. Read the words in transcription, translate them into Russian.
[ semio:'tonomoas], [ko'ma:nd], ['samwes], [s3:kom'sten[(s)l], [m't3:n(a)l],
[ keetog(o)ri], [intor &kf(a)n], ['eksikju:t], [o'sesmant].

3. Work with word formation. Fill in the table with the necessary nouns, verbs or
adjectives.

Noun Verb Adjective
multiple
activity
rely
alternative
extent
receive
inclusive
sensor
obstruct

4. Translate the attribute chains. Mind that the main word in these “chains” is the
last noun and all the previous nouns are used as attributes to the last one.
Behavior regulation, decision-making capability, user interface, user input, user intent,
real-world example, robotics applications, manufacturing facility assembly line,
interplanetary exploration applications.

5. Translate the sentences into Russian, paying attention to the underlined
verbals.

A chatbot is a computer program that uses artificial intelligence to engage in
conversations with humans. The conversations can take place using text or voice input.
In some cases, chatbots are also designed to perform automated actions, such as
launching an application or sending an email, in response to input from a human. Most
chatbots aim to simulate the conversational behavior of a human being, although to
date no chatbot has_achieved that goal perfectly.

(o]

. Translate the sentences paying attention to the linking words of contrast.

1. ldeal AutoML methods may not have been developed as yet despite some promising
early examples.

2. Whereas roboethics, like computer ethics before it, considers technology to be a
more or less transparent tool or instrument of human moral decision-making and
action, robot ethics is concerned with the design and development of artificial moral
agents.

3. Although not in widespread use, caregiver robots are considered important in
nations with growing elderly populations.

4. In non-scalable decentralized systems, all-to-all communication is an essential part

of the coordination scheme that would, however, form a bottleneck in systems with

too many agents.
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5. The ability to generalize knowledge or skills, however, is so far still pretty much
only a human achievement. Nevertheless, an enormous amount of research in
General Al is currently underway.

6. Some have defined intelligence in terms of fidelity to human performance, while
others prefer an abstract, formal definition of intelligence called rationality — loosely
speaking, doing the “right thing.”

7. Read and translate the text.

Autonomous and Semiautonomous Systems

Autonomous and semiautonomous systems are generally distinguished by their
reliance on external commands for decision-making. They are related to conditionally
autonomous systems and automated systems. Autonomous systems are capable of
decision-making within a specified domain of activity without human input, whereas
semiautonomous systems rely upon a human user somewhere “in the loop” for
decision-making, behavior regulation, or circumstantial interventions. Conditionally
autonomous systems function autonomously under certain conditions.

Semiautonomous and autonomous systems (autonomy) are also distinct from
automated systems (automation). The former systems include decision-making
capability inclusive of assessing contextual inputs, whereas the latter systems’ actions
are predetermined sequences directly tied to specified inputs. Systems are considered
automated when their actions, and alternatives for action, are predetermined in
advance as responses to specific inputs. An example of an automated system is an
automatic garage door that stops closing when a sensor detects an obstruction in the
path of the door. Inputs can be received via not only sensors but also user interaction.
An example of a user-initiated automatic system would be an automatic dishwasher
or clothes washer where the human user specifies the sequences of events and
behaviors through a user interface, and the machine then proceeds to execute the
commands according to predetermined mechanical sequences.

In contrast, autonomous systems are those systems wherein the ability to
evaluate circumstances and select actions is internal to the system. Like an automated
system, the autonomous system still relies upon sensors, cameras, or user input to
provide information, but the system’s responses can be characterized by more
complex decision-making based upon the situated assessment of multiple
simultaneous inputs such as user intent, environment, and capability.

In considering real-world examples of systems, automated, semiautonomous,
and autonomous are categories that have some overlap depending on the nature of the
tasks under consideration and upon the specifics of decision-making. These
categories aren’t always clearly or precisely delineated. Lastly, the extent to which
these categories apply depends upon the scale and level of the activity under
consideration.
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. Answer the questions to the text.

What is the difference between autonomous, semiautonomous and conditionally
autonomous systems?

What are the peculiarities of automated systems?

What is the example of an automated system provided in the text?

Do autonomous systems have to rely on sensors, cameras or user input to provide
information?

Why is the distinction between automated, semiautonomous, and autonomous
systems not always clear?

What factors determine whether a system is automated, semiautonomous, or
autonomous?

. Find in the text and translate:
a) sentences with verbs in passive voice;
b) sentences with participle 11 as an attribute;
c) asentence with the infinitive as an adverbial modifier of purpose;
d) a sentence with the gerund as an adverbial modifier.

10. Fill in the gaps with the correct form of the verbs below. Translate the
sentences into Russian.

Predetermine, delineate, distinguish, overlap, proceed, select, assess

. Autonomous systems can ...... circumstances and make decisions without human
intervention.

. The categories of autonomous, semiautonomous, and automated systems sometimes
....... depending on the nature of the tasks.

. It can be challenging to ....... the boundaries between semiautonomous and
automated systems due to their similarities.

. When certain conditions are met, an automated system ....... according to a
predetermined sequence of actions.

. The human operator is required to ....... specific parameters when setting up a
semiautonomous system.

. In an automated system, the actions to be taken ...... In response to specific inputs.

. The characteristics that ....... autonomous systems from automated systems include

the ability to evaluate inputs and make decisions.
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11. Match the following words with their correct definitions.

1. Autonomous a) A system that requires human intervention for certain
system decisions or actions.
2. Semiautonomous  b) A system that operates without human input but within a
system specified domain of activity.
3. Conditionally c) A devices that detects and measures environmental
autonomous conditions, providing input to systems.
system d) A system that functions autonomously but only under
4. Automated specific conditions.
system e) A mechanism through which a human user interacts with
5. Decision-making and controls a system.
6. Sensor f) A system that performs actions based on pre-programmed
7. User interface responses to specific inputs.
8. Predetermined g) The process of evaluating inputs and choosing a course of
sequences action.
h) Actions and responses that are planned and programmed
in advance.

12. Translate the text in writing with a dictionary.

Autonomous Robotics

Examples of autonomous systems can be found across the field of robotics for
a variety of purposes. There are a number of reasons that it is desirable to replace or
augment humans with autonomous robots, and some of the reasons include safety (for
example, spaceflight or planetary surface exploration), undesirable circumstances
(monotonous tasks such as domestic chores and strenuous labor such as heavy lifting),
or where human action is limited or impossible (search and rescue in confined
conditions). As with automotive applications, robotics applications may be considered
autonomous within the constraints of a narrowly defined domain or activity space,
such as a manufacturing facility assembly line or home. Like autonomous vehicles,
the degree of autonomy is conditional upon the specified domain, and in many cases
excludes maintenance and repair. However, unlike automated systems, an
autonomous robot within such a defined activity structure will act to complete a
specified goal through sensing its environment, processing circumstantial inputs, and
regulating behavior accordingly without necessitating human intervention. Current
examples of autonomous robots span an immense variety of applications and include
domestic applications such as autonomous lawn care robots and interplanetary
exploration applications such as the MER-A and MER-B Mars rovers.
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LESSON 14

1. Words and word combinations to be remembered. Write out the transcription
and translation of the following words from the dictionary. Memorize their
pronunciation and meanings.

1. apply (v.) 16. intrinsic (adj.)

2. availability (n.) 17. look for (v.)

3. commonly (adv.) 18. multiple (adj.)

4. deploy (v.) 19. nonetheless (adv.)
5. digital (adj.) 20. open-source (adj.)
6. discrete (adj.) 21. plentiful (adj.)

7. discretization (n.) 22. random (adj.)

8. emerge (v.) 23. range (n., v.)

9. ensemble (n.) 24. randomness (n.)
10. equation (n.) 25. relatively (adv.)
11. error (n.) 26. remove (v.)

12. evaluate (v.) 27. stochastic (adj.)
13. exploration (n.) 28. tune (v.)

14. injection (n.) 29. unravel (v.)

15. intensive (adj.) 30. variable (n.)

2. Read the words in transcription, translate them into Russian.
[‘earta], ['latbrori], [ 'parplain], [dr'skri:t], [pa'reemita], [on'somb(a)l], [ reendomnis],
[1n't3:prit], [S1Sto’ meetik], [ 'mebad].

3. Work with word formation. Fill in the table with the necessary nouns, verbs or

adjectives.
Noun Verb Adjective
power
explore
random
equation
vary
familiar
creation
detect

4. Translate the attribute chains. Mind that the main word in these “chains” is the
last noun and all the previous nouns are used as attributes to the last one.
Open-source machine learning libraries, high-performance computing, software
package, machine learning pipelines, feature transformation algorithm, feature
engineering algorithm, ensemble methods, linear support vector machine, grid search,
configuration variables.
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5. Translate the sentences into Russian, paying attention to the underlined
verbals.

Chatbots can help to address a variety of needs across a range of settings. Perhaps
most obvious is their ability to save time and resources for humans by using a computer
program_to collect or dispense information instead of requiring a human to perform
these tasks. For example, a company might create a customer support chatbot that
responds to customer questions with information that the chatbot determines, using
artificial intelligence, to be relevant based on queries from customers. In this way, the
chatbot eliminates the need for a human operator to provide this type of customer
support.

6. Translate the sentences into Russian defining the part of speech of the words in

italics.

1. Inacompositional language, the meaning of a sentence is a function of the meaning
of its parts.

2. Semiautonomous systems are found near the middle of the spectrum. These systems
may be able to function independently of a human being, but only in limited ways.

3. Genetic algorithms involve the use of software to simulate and apply Darwinian
evolutionary theories to search and optimization problems in artificial intelligence.

4. A planner can be seen either as a program that searches for a solution or as one that
proves the existence of a solution.

5. The use of networks to represent probabilistic information began early in the 20th
century.

6. We can use decision theory to build a system that makes decisions by considering
all possible actions and choosing the one that leads to the best expected outcome.

7. The widespread growth of applications to real-world problems led to the
development of a wide range of representation and reasoning tools.

8. The applications of Al range from microelectronic devices to robotic planetary
explorers to online services with billions of users.

7. Read and translate the text.

Automated Machine Learning (1)

Automated machine learning is a relatively new area of study that has emerged
as a result of the availability of powerful open-source machine learning libraries and
plentiful high-performance computing. There are now multiple open-source and
commercial AutoML software packages available for use. Many of these packages
enable the exploration of machine learning pipelines that can include feature
transformation algorithms such as discretization (transforming continuous equations,
functions, models, and variables into discrete equations, functions, and so forth for
digital computers), feature engineering algorithms such as principal components
analysis (a process that removes large dimension “less important” data while retaining
a subset of “more important” variables), feature selection algorithms such as ReliefF
(a technique that minimizes error), and multiple different machine learning algorithms
along with their parameter settings. Stochastic search algorithms used in AutoML have
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included Bayesian optimization, ensemble methods, and genetic programming.
Stochastic search algorithms may be deployed in computational problems with
intrinsic random noise or deterministic problems unraveled by injection of randomness.
New approaches to remove the “signal from the noise” in datasets, and find insights
and make predictions, are being actively developed and evaluated.

One of the challenges of machine learning is that each algorithm looks at data in
a different way. That is, each algorithm detects and characterizes different patterns.
Some algorithms such as linear support vector machines are good at detecting linear
patterns while k-nearest neighbor algorithms can detect nonlinear patterns. The
challenge is that scientists do not know when they begin their work which algorithm(s)
to use because they do not know what patterns they are looking for in the data. What
most people do is choose an algorithm they are familiar with or choose one that seems
to work well across a wide range of datasets. Some may choose an algorithm because
the models that are generated are easy to interpret. There are lots of different reasons
that certain algorithms are chosen for a data analysis. Nonetheless, the chosen
algorithm may not be ideal for a given data- set.

One approach to this problem is to perform a grid search. Here, multiple machine
learning algorithms and parameter settings are applied to a dataset in a systematic way
and the results compared to identify a best algorithm. This is a commonly used
approach and can yield good results. The challenge with the grid search is that it can
be computationally intensive if many algorithms, each with several parameter settings,
need to be evaluated. Random forests are classification algorithms built from multiple
decision trees that have several commonly used parameters that must be tuned for
optimal performance on a given dataset. Parameters are configuration variables that the
adopted machine learning technique uses to adjust the data. A common parameter is
the maximum number of features that will be permitted in the decision trees that are
created and evaluated.

. Answer the questions to the text.

. What is automated machine learning?

. What can machine learning pipelines include?

. Where can stochastic search algorithms be deployed?

. What challenge does AutoML address in machine learning?

. Why s it difficult for scientists to choose a machine learning algorithm at the
beginning of a project?

. What is grid search and what is its primary limitation?

7. How do random forests and decision trees function within the context of AutoML?

Ol WN - 0
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9. Decide whether the statements below are true or false.

1. Principal components analysis is used to increase the number of variables in a
dataset.

2. Stochastic search algorithms introduce randomness in order to find solutions in
deterministic problems.

3. Grid search is computationally intensive because it involves applying only a single
algorithm to multiple datasets.
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4. Random forests are built from multiple decision trees, and their performance can be
optimized by tuning specific parameters.

10. Find in the text and translate:
a) sentences with the infinitive as an adverbial modifier of purpose;
b) sentences with verbs in passive voice;
c) sentences with participle Il as an attribute.

11. Match the following words with their correct definitions.

1. Discretization a) A classification algorithm that combines multiple decision
2. Principal trees.
components b) A feature selection algorithm used to minimize error in
analysis machine learning.
3. ReliefF ¢) The process of transforming continuous variables into discrete
4. Stochastic search ones for use in digital computers.
algorithms d) A process that reduces data dimensionality by retaining only
5. Grid search important variables.

6. Random forest e) A systematic method of applying different machine learning
algorithms and comparing results.
f) Methods deployed in problems with randomness to search for
solutions.

12. Fill in the gaps with an appropriate noun given below. Translate the sentences
into Russian.

Algorithms, number, randomness, transformation, parameter, data
1. Stochastic search algorithms are used when noise or ....... needs to be introduced in

machine learning problems.
2. A grid search is a method of selecting the best machine learning algorithm by testing

multiple ....... and parameter settings.

3. Feature ....... algorithms like discretization convert continuous ....... into discrete
forms.

4. Acommon....... in random forest models is the maximum ....... of features allowed

in decision trees.
13. Translate the text in writing with a dictionary.

Neuro-Fuzzy Systems
Neuro-fuzzy system (NFS) is a hybrid intelligent model that combines the
excellent predicting capabilities of the ANN with the human-like reasoning of the fuzzy
inference system (FIS). It is a realization of the fuzzy system by a connectionist
structure of an ANN. The amalgamation of two methods generates a learning system
that provides the advantages of both of the involved techniques while at the same time
dealing with their drawbacks. Another appealing property for the process industry
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application of the NFS models is that the technique is based on receptive fields and
thus intrinsically provides means for the building of local models. The evolving
variants of NFS are very well suited to dealing with dynamic environment.

These systems are called evolving because they adapt automatically together
with the changing environment represented by the data. An evolving system is thought
to be able to change its structure, to grow and shrink and to update its parameter. In
this way, the model is able to deploy new local models related to new states of the input
data if necessary.

LESSON 15
1. Words and word combinations to be remembered. Write out the transcription

and translation of the following words from the dictionary. Memorize their
pronunciation and meaning.

1. additional (adj.) 16. improve (v.)

2. beforehand (adv.) 17. limit (n., v.)

3. combinatorial explosion 18. manage (v.)

4. comparison (n.) 19. manageable (adj.)
5. computational (adj.) 20. modify (v.)

6. cross-validation (n.) 21. objective (n.)

7. depend on (v.) 22. prohibitive (adj.)
8. employ (v.) 23. repeat (v.)

9. examine (v.) 24. sample (n., v.)
10. expensive (adj.) 25. setting (n.)

11. exploration (n.) 26. single (adj.)

12. explore (v.) 27. so-called (adj.)
13. govern (v.) 28. specify (v.)

14. guide (n.) 29. suffer (v.)

15. heuristic (adj., n.) 30. value (n.)

2. Read the words in transcription, translate them into Russian.

[b1'forhaend], ['sa:mp(a)l], [,haipapa’remits], [ 'fi:tfa], [ hju(e) ristik], [sto'kastik],
['gav(a)n], ['sarontist], [o'lav], [ob'dzektiv].

3. Work with word formation. Fill in the table with the necessary nouns, verbs or
adjectives.

Noun Verb Adjective

explosion

separate

minimal

repetition

combine

manageable
user
set

61



4. Translate the attribute chains. Mind that the main word in these “chains” is the
last noun and all the previous nouns are used as attributes to the last one.
Parameter settings, hyperparameter configurations, hyperparameter combinations,
hyperparameter setting combinations, cross-validation strategy, random number
generator, stochastic search algorithm, performance objective.

5. Translate the sentences into Russian, paying attention to the underlined
verbals.

Ambiguity in definitions of semiautonomous and autonomous systems mirrors
the many challenges in designing optimized user interfaces for these systems. In the
case of vehicles, for example, ensuring that the user and the system (as developed by a
system’s designers) share a common model of the capabilities being automated (and
the expected distribution and extent of control) is critical for safe transference of
control responsibility. Autonomous systems are theoretically simpler user-interface
challenges insofar as once an activity domain is defined, control and responsibility are
binary (either the system or the human user is responsible). Here the challenge is
reduced to specifying the activity and handing over control.

6. Translate the sentences paying attention to the connectors of cause and effect.

1. Since the set of possible deals is finite, the agents cannot negotiate indefinitely.

2. These simple approaches can lead to errors due to the approximate nature of the
evaluation function.

3. Even with these algorithms, perfect rationality is usually unachievable in practice
because of computational complexity.

4. Roboethics is often utilized to identify a professional ethics for roboticists and

therefore is similar to other professional, applied ethics formulations such as

bioethics or computer ethics.

Operations on symbols are mechanical and thus can be assigned to computers.

Because the human experts’ knowledge is a mixture of skills, experience, and

formal knowledge, it is difficult to formalize the knowledge acquisition process.

Consequently, the experts’ knowledge is modeled rather than directly transferred

from human experts to the programming system.

7. The agents may be software agents or embodied agents in the form of robots, hence
forming a multi-robot system.

o o

7. Read and translate the text.

Automated Machine Learning (2)

Automated machine learning can help manage the complex, computationally
expensive combinatorial explosion in specific analyses that need to be run. A single
parameter might have, for example, ten different settings. A second parameter could
be the number of decision trees to be included in the forest, perhaps another ten
different settings. A third parameter could be the minimum number of samples that
will be allowed in the “leaves” of the decision trees, another ten different settings. This
example yields 1000 different possible parameter settings assuming the exploration of
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only three parameters. A data scientist investigating ten different machine learning
algorithms, each with 1000 possible parameter settings, would need to run 10,000
specific analyses.

On top of these analyses are so-called hyperparameters, which involve
characteristics of the analyses that are set beforehand and thus not learned from the
data. They are often specified by the data scientist using various rules of thumbs or
values drawn from other problems. Hyperparameter configurations might involve
comparisons of several different cross-validation strategies or examine the effect of
sample size on results. In a typical example, hundred hyperparameter combinations
might need to be evaluated. The combination of machine learning algorithms,
parameter settings, and hyperparameter settings could in this way yield a total of one
million analyses that the data scientist would need to perform. Depending on the
sample size of the data to be analyzed, the number of features, and the types of machine
learning algorithms selected, so many separate analyses could be prohibitive given the
computing resources that are available to the user.

An alternative approach is to use a stochastic search to approximate the best
combination of machine learning algorithms, parameter settings, and hyperparameter
settings. A random number generator is used to sample from all possible combinations
until some computational limit is reached. The user manually explores additional
parameter and hyperparameter settings around the best method before making a final
choice. This has the advantage of being computationally manageable but suffers from
the stochastic element where chance might not explore the optimal combinations.

A solution to this is to add a heuristic element — a practical method, guide, or
rule — to create a stochastic search algorithm that can adaptively explore algorithms
and settings while improving over time. Approaches that employ stochastic searches
with heuristics are called automated machine learning because they automate the
search for optimal machine learning algorithms and settings. A stochastic search
might start by randomly generating a number of machine learning algorithm,
parameter setting, and hyperparameter setting combinations and then evaluating each
one using cross-validation, a technique for testing the effectiveness of a machine
learning model. The best of these is selected, randomly modified, and then evaluated
again. This process is repeated until a computational limit or a performance objective
Is reached. The heuristic algorithm governs this process of stochastic search. The
development of optimal search strategies is an active area of research.

8. Answer the questions to the text.

1. What problems does automated machine learning (AutoML) help to solve when
running analyses with multiple parameters?

2. What are hyperparameters, and how do they differ from parameters in machine

learning?

. What can hyperparameter configurations involve?

4. Why can running multiple analyses with different algorithms, parameters, and
hyperparameters be prohibitive for data scientists?

5. Why are approaches employing stochastic searches with heuristics called automated
machine learning?

w
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6.

9.

What is cross-validation and how is it used in the context of evaluating machine
learning models during stochastic searches?

Find in the text and translate:

a) sentences with infinitives as 1) an attribute, 2) predicative;
b) sentences with verbs in passive voice;

c) sentences with modal verbs of possibility;

d) sentences with participle I as an adverbial modifier.

10. Fill in the gaps with the correct form of the verbs in active or passive voice.
Translate the sentences into Russian.

Examine, govern, specify, depend on, modify, explore, employ

. The computational limits of automated machine learning ...... the resources

available for analysis and the number of possible parameter settings.

. Stochastic search approaches often ...... heuristic methods to improve the

exploration of machine learning algorithms over time.

. Various cross-validation strategies ....... to determine their effect on the model's

performance.

. Data scientists ...... different parameter settings to optimize machine learning

models.

. The heuristic algorithm ....... the stochastic search process by directing the selection

of parameter and hyperparameter settings.

. Parameter settings ....... to find a configuration that meets the desired performance

objectives.

. Data scientists often ....... the values of hyperparameters based on rules of thumb

or experience with similar problems.

11. Match the following terms with their correct definitions.

1

2.
3.
4.

Hyperparameters a) A rule or guide that helps to find a solution more quickly,

Cross-validation though not necessarily perfectly.

Heuristic b) A type of algorithm or hardware device that can produce a

Combinatorial series of arbitrary numbers.

explosion c) Characteristics set before running an analysis, not learned
. Random Number  from the data.

Generator d) An exponential increase in possible combinations when
. Performance multiple variables are considered.

objective e) The limit or goal set for a machine learning model to achieve

optimal performance.
f) A technique for testing the effectiveness of a model by
splitting data into training and testing sets.
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12. Translate the text in writing with a dictionary.

The AutoML approach has numerous advantages. First, it can be more
computationally efficient than the exhaustive grid search approach. Second, it makes
machine learning more approachable because it takes some of the guesswork out of
selecting an optimal machine learning algorithm and its many settings for a given
dataset. This helps bring machine learning to the novice user. Third, it can yield more
reproducible results if generalizability metrics are built into the heuristic that is used.
Fourth, it can yield more interpretable results if complexity metrics are built into the
heuristic. Fifth, it can yield more actionable results if expert knowledge is built into
the heuristic.

Of course, there are some challenges with AutoML approaches. First is the
challenge of overfitting — producing an analysis that corresponds too closely to known
data but does not fit or predict unseen or new data — due to the evaluation of many
different algorithms. The more analytical methods that are applied to a dataset, the
higher the chance of learning the noise in the data that leads to a model unlikely to
generalize to independent data. This needs to be rigorously addressed with any
AutoML method. Second, AutoML can be computationally intensive in its own right.
Third, AutoML methods can generate very complex pipelines that include multiple
different machine learning methods. This can make interpretation much more difficult
than picking a single algorithm for the analysis. Fourth, this field is still in its infancy.
Ideal AutoML methods may not have been developed as yet despite some promising
early examples.

LESSON 16

1. Words and word combinations to be remembered. Write out the transcription
and translation of the following words from the dictionary. Memorize their
pronunciation and meaning.

1. accountability (n.) 17. enforce (v.)

2. acknowledge (v.) 18. engender (v.)
3. adopt (v.) 19. execution (n.)
4. applicability (n.) 20. fairness (n.)

5. assistance (n.) 21. fission (n.)

6. avoid (v.) 22. governance (n.)
7. beneficial (adj.) 23. ignore (v.)

8. combustion (n.) 24. implication (n.)
9. commonly-cited (adj.) 25. inequality (n.)
10. communicate (v.) 26. intend (v.)

11. contemplate (v.) 27. measurement (n.)
12. crop management 28. obligation (n.)
13. cut off (v.) 29. on-shore (adj.)
14. disruptive (adj.) 30. opportunity (n.)
15. emission (n.) 31. pollution (n.)
16. employment (n.) 32. prevention (n.)
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33. privacy (n.) 39. transparency (n.)

34. promote (v.) 40. unintended (adj.)
35. recover (v.) 41. uphold (v.)

36. responsibility (n.) 42. vague (adj.)

37. stakeholder (n.) 43. virtue (n.)

38. tedious (adj.) 44. wealth (n.)

2. Read the words in transcription, translate them into Russian.
[ ri:'saiklip], [ optimar'zeifan], [mouv'biloti], ['&kses], [wel6], [So’'sarati],
(ko leeba'rerfn], ['tfu:], [ kaltfs], [ok nolrd3].

3. Work with word formation. Fill in the table with the necessary nouns, verbs or
adjectives.

Noun Verb Adjective
obligation
ignore
preventive
assistance
respect
applicable
destruction
contribute

4. Translate the attribute chains. Mind that the main word in these “chains’ is the
last noun and all the previous nouns are used as attributes to the last one.
Pollution monitoring, fossil fuel emissions, internal combustion engine, low-cost
manufacturing, automated manufacturing facilities, governance decisions, software or
hardware systems, Al developers.

5. Match the following nouns with their correct definitions.

1. Accountability a) The state or fact of having a duty to deal with something
2. Applicability or of having control over someone.

3. Employment b) The way that organizations or countries are managed at
4. Governance the highest level, and the systems for doing this

5. Implication c) The fact of affecting or relating to a person or thing.

6. Prevention d) The work that is available in a country or area.

7. Responsibility e) The quality of being easy to perceive or detect.

8. Transparency f) The act of stopping something from happening or of

stopping someone from doing something

g) The effect that an action or decision will have on
something else in the future.

h) The fact of being responsible for what you do and able to
give a satisfactory reason for it.
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6. Translate the sentences into Russian, paying attention to the underlined
verbals.

The autonomy of Al programs is not the only aspect of autonomy that is being
considered with the advent of the technology. There are also concerns about the impact
on human autonomy as well as concerns about complacency regarding the machines.
As Al systems become better adapted to anticipating the desires and preferences of the
people, they serve the people who benefit from the choice of the machine becoming
moot as they no longer have to make choices.

7. Translate the sentences paying attention to the connectors of addition.

1. A system deployed with an incorrect objective will have negative consequences.
Moreover, the more intelligent the system, the more negative the consequences.

2. A robot can use inverse reinforcement learning to learn a good policy for itself, by
understanding the actions of an expert. In addition, the robot can learn the policies
used by other agents in a multiagent domain.

3. So convolution with multiple kernels finds multiple patterns; furthermore,
composite patterns can be detected by applying another layer to the output of the
first layer.

4. Artificial intelligence experts viewed human cognitive processes as a model for
their programs, and likewise, they believed Al would offer insight into human
psychology.

5. Besides the technical innovations must give a lot of credit to big data and big
computation.

6. Writing code that can process natural language is a challenging task that requires
expertise in computer science and linguistics, as well as extensive programming.

8. Read and translate the text.

The Ethics of Al

Given that Al is a powerful technology, we have a moral obligation to use it
well, to promote the positive aspects and avoid or mitigate the negative ones.

The positive aspects are many. For example, Al can save lives through improved
medical diagnosis, new medical discoveries, better prediction of extreme weather
events, and safer driving with driver assistance and (eventually) self-driving
technologies. There are also many opportunities to improve lives, such as applying Al
to recovering from natural disasters, pollution monitoring, measurement of fossil fuel
emissions, crisis counseling, suicide prevention, recycling, and other issues.

Al applications in crop management and food production help feed the world.
Optimization of business processes using machine learning will make businesses more
productive, increasing wealth and providing more employment. Automation can
replace the tedious and dangerous tasks that many workers face, and free them to
concentrate on more interesting aspects. People with disabilities will benefit from Al-
based assistance in seeing, hearing, and mobility. Machine translation already allows
people from different cultures to communicate. Software-based Al solutions have near
zero marginal cost of production, and so have the potential to democratize access to
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advanced technology (even as other aspects of software have the potential to centralize
power).

Despite these many positive aspects, we shouldn’t ignore the negatives. Many
new technologies have had unintended negative side effects: nuclear fission brought
Chernobyl and the threat of global destruction; the internal combustion engine brought
air pollution, global warming, and the paving of paradise. Other technologies can have
negative effects even when used as intended. Automation will create wealth, but under
current economic conditions much of that wealth will flow to the owners of the
automated systems, leading to increased income inequality. This can be disruptive to a
well-functioning society. In developing countries, the traditional path to growth
through low-cost manufacturing for export may be cut off, as wealthy countries adopt
fully automated manufacturing facilities on-shore. Our ethical and governance
decisions will dictate the level of inequality that Al will engender.

All scientists and engineers face ethical considerations of what projects they
should or should not take on, and how they can make sure the execution of the project
Is safe and beneficial. Every organization that creates Al technology, and everyone in
the organization, has a responsibility to make sure the technology contributes to good,
not harm. The most commonly-cited principles are:

— Ensuring safety

— Ensuring fairness

— Respecting privacy

— Promoting collaboration

— Providing transparency

— Limiting harmful uses of Al

— Establishing accountability

— Upholding human rights and values

— Avoiding concentration of power

— Acknowledging legal/policy implications
— Contemplate implications for employment

It should be noted that many of the principles, such as “ensure safety,” have
applicability to all software or hardware systems, not just Al systems. Several
principles are worded in a vague way, making them difficult to measure or enforce.
That is in part because Al is a big field with many subfields, each of which has a
different set of historical norms and different relationships between the Al developers
and the stakeholders.

9. Answer the questions to the text.

1. What are some positive aspects of Al mentioned in the text?

2. How does Al help improve people’s lives in the medical field?

3. What are some applications of Al that can help address environmental issues?

4. What are some of the negative side effects of Al that we should be aware of?

5. How might automation in wealthy countries negatively impact developing
countries?
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. What is the role of ethical and governance decisions in shaping the impact of Al on

income inequality?

. What are some of the key ethical principles for Al development mentioned in the

text?

. What responsibility do organizations and individuals developing Al technology

have?

. Why does the text compare Al to other technologies like nuclear fission and the

internal combustion engine?

10. Decide whether the statements below are true or false.

1

3.

. Al can help prevent natural disasters.
2.

Al has the potential to increase income inequality under current economic
conditions.

Automation can lead to job loss in wealthy countries, but it will have little impact
on developing countries.

. Al-based assistance can help people with disabilities in areas like mobility and

communication.

. Ensuring transparency and avoiding the concentration of power are important ethical

principles in Al development.

. All Al ethical principles are clear and easy to measure and enforce.

11. Find in the text and translate:

a) sentences with infinitives as attributes;

b) sentences with participle I as an adverbial modifier;
c) sentences with the gerund as an adverbial modifier;
d) sentences with verbs in passive voice.

12. Fill in the gaps with the correct form of the verbs in active or passive voice.

Translate the sentences into Russian.
Cut off, improve, suggest, ensure, generate

. Al has the potential to ...... medical diagnosis, new medical discoveries, and
technologies like driver assistance.

. Despite its benefits, Al can lead to income inequality if the wealth it ..... flows
primarily to the owners of automated systems.

. In developing countries, the traditional path to growth through low-cost

manufacturing may ...... due to the adoption of fully automated manufacturing

facilities in wealthy countries.

Some principles, such as “..... safety”, apply to both software systems and Al

systems.

N | SR that the ethical and governance decisions we make will affect how Al
Impacts income inequality.
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13. Translate the text in writing with a dictionary.

Machine ethics is the ethical discipline that scrutinizes the theoretical and ethical
issues that Artificial Morality raises. It involves a meta-ethical and a normative
dimension. Meta-ethical issues concern conceptual, ontological, and epistemic aspects of
Artificial Morality like what moral agency amounts to, whether artificial systems can be
moral agents and, if so, what kind of entities artificial moral agents are, and in which
respects human and artificial moral agency diverge.

Normative issues in machine ethics can have a narrower or wider scope. In the
narrow sense, machine ethics is about the moral standards that should be implemented
in artificial moral agents, for instance: should they follow utilitarian or deontological
principles? Does a virtue ethical approach make sense? Can we rely on moral theories
that are designed for human social life, at all, or do we need new ethical approaches for
artificial moral agents? Should artificial moral agents rely on moral principles at all or
should they reason case-based?

In the wider sense, machine ethics comprises the deliberation about the moral
implications of Artificial Morality on the individual and societal level. Is Artificial
Morality a morally good thing at all? Are there filads of application in which artificial
moral agents should not be deployed, if they should be used at all? Are there moral
decisions that should not be delegated to machines? What is the moral and legal status
of artificial moral agents? Will artificial moral agents change human social life and
morality if they become more pervasive?
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TEXTS FOR FURTHER READING
TEXT1

Big Data

Remarkable advances in computing power and the creation of the World Wide
Web have facilitated the creation of very large data sets — a phenomenon sometimes
known as big data. These data sets include trillions of words of text, billions of images,
and billions of hours of speech and video, as well as vast amounts of genomic data,
vehicle tracking data, clickstream data, social network data, and so on.

This has led to the development of learning algorithms specially designed to take
advantage of very large data sets. Often, the vast majority of examples in such data
sets are unllabeled; for example, in Yarowsky’s (1995) influential work on word-sense
disambiguation, occurrences of a word such as “plant” are not labeled in the data set to
indicate whether they refer to flora or factory. With large enough data sets, however,
suitable learning algorithms can achieve an accuracy of over 96 % on the task of
identifying which sense was intended in a sentence. Moreover, Banko and Brill (2001)
argued that the improvement in performance obtained from increasing the size of the
data set by two or three orders of magnitude outweighs any improvement that can be
obtained from tweaking the algorithm.

A similar phenomenon seems to occur in computer vision tasks such as filling in
holes in photographs — holes caused either by damage or by the removal of ex-friends.
A clever method for doing this was developed by blending in pixels from similar
images; it was found that the technique worked poorly with a database of only thousands
of images but crossed a threshold of quality with millions of images. Soon after, the
availability of tens of millions of images in the ImageNet database sparked arevolution
in the field of computer vision.

The availability of big data and the shift towards machine learning helped Al
recover commercial attractiveness. Big data was a crucial factor in the 2011 victory of
IBM’s Watson system over human champions in the Jeopardy! Quiz game, an event
that had a major impact on the public’s perception of Al.

TEXT 2

What Is Supervised Learning?

Supervised learning, also known as supervised machine learning, is a
subcategory of machine learning and artificial intelligence. It is defined by its use of
labeled data sets to train algorithms to classify data or predict outcomes accurately.

As input data is fed into the model, it adjusts its weights until the model has been
fitted appropriately, which occurs as part of the cross validation process. Supervised
learning helps organizations solve for a variety of real-world problems at scale, such
as classifying spam in a separate folder from your inbox. It can be used to build highly
accurate machine learning models.

Supervised learning uses a training set to teach models to yield the desired
output. This training dataset includes inputs and correct outputs, which allow the model
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to learn over time. The algorithm measures its accuracy through the loss function,
adjusting until the error has been sufficiently minimized.

Supervised learning can be separated into two types of problems when data
mining — classification and regression.

Classification uses an algorithm to accurately assign test data into specific
categories. It recognizes specific entities within the dataset and attempts to draw some
conclusions on how those entities should be labeled or defined. Common classification
algorithms are linear classifiers, support vector machines (SVM), decision trees, k-
nearest neighbor, and random forest.

Regression is used to understand the relationship between dependent and
independent variables. It is commonly used to make projections, such as for sales
revenue for a given business. Linear regression, logistical regression, and polynomial
regression are popular regression algorithms.

TEXT 3

Deep Learning

Deep learning is a technique that can learn from massive amounts of data to
provide effective solutions to a variety of machine learning problems. One of the most
popular approaches is the so-called deep neural networks. They are based on the neural
networks whose introduction dates back to Warren McCulloch and Walter Pitts in
1943. At that time, they tried to reproduce the functioning of neurons of the brain by
using electronic circuits, which led to the artificial neural networks. The basic idea was
to build a network consisting of interconnected layers of nodes. Here, the bottom layer
Is considered the input layer, and the top layer is considered the output layer. Each node
now executes a simple computational rule, such as a simple threshold decision. The
outputs of each node in a layer are then passed to the nodes in the next layer using
weighted sums. These networks were already extremely successful and produced
Impressive results, for example, in the field of optical character recognition. However,
even then there were already pioneering successes from today’s point of view, for
example in the No Hands Across America project, in which a minivan navigated to a
large extent autonomously and controlled by a neural network from the east coast to
the west coast of the United States. Until the mid-80s of the last century, artificial
neural networks played a significant role in machine learning, until they were
eventually replaced by probabilistic methods and, for example, Bayesian networks,
support vector machines, or Gaussian processes. These techniques have dominated
machine learning for more than a decade and have also led to numerous applications,
for example in image processing, speech recognition, or even human—machine
interaction. However, they have recently been superseded by the deep neural networks,
which are characterized by having a massive number of layers that can be effectively
trained on modern hardware, such as graphics cards. These deep networks learn
representations of the data at different levels of abstraction at each layer. Particularly
in conjunction with large data sets (big data), these networks can use efficient
algorithms such as backpropagation to optimize the parameters in a single layer based
on the previous layer to identify structures in data. Deep neural networks have led to
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tremendous successes, for example in image, video, or speech processing. But they
have also been used with great success in other tasks, such as in the context of object
recognition or deep data interpretation.

TEXT 4

What is backpropagation?

In machine learning, backpropagation is an effective algorithm used to train
artificial neural networks, especially in feed-forward neural networks.

Backpropagation is an iterative algorithm, that helps to minimize the cost
function by determining which weights and biases should be adjusted (Figure). During
every epoch, the model learns by adapting the weights and biases to minimize the loss
by moving down toward the gradient of the error. Thus, it involves the two most
popular optimization algorithms, such as gradient descent or stochastic gradient
descent.

Computing the gradient in the backpropagation algorithm helps to minimize the
cost function and it can be implemented by using the mathematical rule called chain
rule from calculus to navigate through complex layers of the neural network.

Adjustments of
weights through
backpropagation

Output

—
Output

layer

Hidden
layers

Figure — A simple illustration of how the backpropagation works by adjustments
of weights

Backpropagation as a fundamental algorithm in training neural networks offers
several advantages that make it a preferred choice for many machine learning tasks.
Let us consider them in more detail.

1) Backpropagation does not require prior knowledge of neural networks,
making it accessible to beginners. Its straightforward nature simplifies the
programming process, as it primarily involves adjusting weights based on error
derivatives.

73



2) The algorithm’s simplicity allows it to be applied to a wide range of problems
and network architectures. Its flexibility makes it suitable for various scenarios, from
simple feedforward networks to complex recurrent or convolutional neural networks.

3) Backpropagation accelerates the learning process by directly updating
weights based on the calculated error derivatives. This efficiency is particularly
advantageous in training deep neural networks, where learning features of a function
can be time-consuming.

4) Backpropagation enables neural networks to generalize well to unseen data
by iteratively adjusting weights during training. This generalization ability is crucial
for developing models that can make accurate predictions on new, unseen examples.

5) Backpropagation scales well with the size of the dataset and the complexity
of the network. This scalability makes it suitable for large-scale machine learning tasks,
where training data and network size are significant factors.

TEXT S5

Navigation

Mobile robots must be able to navigate their environments effectively in order
to perform various tasks effectively. Consider, for example, a robotic vacuum cleaner
or a robotic lawnmower. Most of today’s systems do their work by essentially
navigating randomly. As a result, as time progresses, the probability increases that the
robot will have approached every point in its vicinity once so that the task is never
guaranteed but very likely to be completed if one waits for a sufficiently long time.
Obviously, such an approach is not optimal in the context of transport robots that are
supposed to move an object from the pickup position to the destination as quickly as
possible. Several components are needed to execute such a task as effectively as
possible. First, the robot must have a path planning component that allows it to get
from its current position to the destination point in the shortest possible path. Methods
for this come from Al and are based, for example, on the well-known A* algorithm for
the effective computation of shortest paths. For path planning, robotic systems
typically use maps, either directly in the form of roadmaps or by subdividing the
environment of the robot into free and occupied space in order to derive roadmaps from
this representation. However, a robot can only assume under very strong restrictions
that the once planned path is actually free of obstacles. This is, in particular, the case
if the robot operates in a dynamic environment, for example in one used by humans. In
dynamic, real-world environments the robot has to face situations in which doors are
closed, that there are obstacles on the planned path or that the environment has changed
and the given map is, therefore, no longer valid. One of the most popular approaches
to attack this problem is to equip the robot with sensors that allow it to measure the
distance to obstacles and thus avoid obstacles. Additionally, an approach is used that
avoids collisions and makes dynamic adjustments to the previously planned path. In
order to navigate along a planned path, the robot must actually be able to accurately
determine its position on the map and on the planned path (or distance from it). For
this purpose, current navigation systems for robots use special algorithms based on
probabilistic principles, such as the Kalman filter or the particle filter algorithm. Both
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approaches and their variants have been shown to be extremely robust for determining
a probability distribution about the position of the vehicle based on the distances to
obstacles determined by the distance sensor and the given obstacle map. Given this
distribution, the robot can choose its most likely position to make its navigation
decisions. The majority of autonomously navigating robots that are not guided by
induction loops, optical markers, or lines utilize probabilistic approaches for robot
localization. A basic requirement for the components discussed thus far is the existence
of a map. But how can a robot obtain such an obstacle map? In principle, there are two
possible solutions for this. First, the user can measure the environment and use it to
create a map with the exact positions of all objects in the robot’s workspace. This map
can then be used to calculate the position of the vehicle or to calculate paths in the
environment. The alternative is to use a so-called SLAM (Simultaneous Localization
and Mapping) method. Here, the robot is steered through its environment and, based
on the data gathered throughout this process, automatically computes the map.
Incidentally, this SLAM technique is also known in photogrammetry where it is used
for generating maps based on measurements. These four components: path planning,
collision avoidance and replanning, localization, and SLAM for map generation are
key to today’s navigation robots and also self-driving cars.

TEXT6

Autonomous Vehicles

Machine learning and Al are foundational elements of autonomous vehicle
systems. Vehicles are trained on complex data (e.g., the movement of other vehicles,
road signs) with machine learning, which helps to improve the algorithms they operate
under. Al enables vehicles’ systems to make decisions without needing specific
instructions for each potential situation.

In order to make autonomous vehicles safe and effective, artificial simulations
are created to test their capabilities. To create such simulations, black-box testing is
used, in contrast to white-box validation. White-box testing, in which the internal
structure of the system being tested is known to the tester, can prove the absence of
failure. Black-box methods are much more complicated and involve taking a more
adversarial approach. In such methods, the internal design of the system is unknown to
the tester, who instead targets the external design and structure. These methods attempt
to find weaknesses in the system to ensure that it meets high safety standards.

As of 2024, fully autonomous vehicles are not available for consumer purchase.
Certain obstacles have proved challenging to overcome. For example, maps of almost
four million miles of public roads in the United States would be needed for an
autonomous vehicle to operate effectively, which presents a daunting task for
manufacturers. Additionally, the most popular cars with a “self-driving” feature, those
of Tesla, have raised safety concerns, as such vehicles have even headed toward
oncoming traffic and metal posts. Al has not progressed to the point where cars can
engage in complex interactions with other drivers or with cyclists or pedestrians. Such
“common sense” is necessary to prevent accidents and create a safe environment.
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In October 2015 Google’s self-driving car, Waymo (which the company had
been working on since 2009) completed its first fully driverless trip with one passenger.
The technology had been tested on one billion miles within simulations, and two
million miles on real roads. Waymo, which boasts a fleet of fully electric-powered
vehicles, operates in San Francisco and Phoenix, where users can call for a ride, much
as with Uber or Lyft. The steering wheel, gas pedal, and brake pedal operate without
human guidance, differentiating the technology from Tesla’s autonomous driving
feature. Though the technology’s valuation peaked at $175 billion in November 2019,
it had sunk to just $30 billion by 2020. Waymo is being investigated by the U.S.
National Highway Traffic Safety Administration (NHTSA) after more than 20 different
reports of traffic violations. In certain cases, the vehicles drove on the wrong side of
the road and in one instance, hit a cyclist.

TEXT7

Al-based Quality Control and Inspection

Artificial Intelligence (Al) is transforming quality control and inspection in
industrial manufacturing by enhancing accuracy, consistency, and efficiency. Al-
driven systems, particularly those utilizing machine learning and computer vision, are
revolutionizing the way defects are detected and quality is ensured throughout the
production process.

One of the primary applications of Al in quality control is visual inspection.
Traditional inspection methods rely heavily on human inspectors, who can be prone to
fatigue and subjective judgment. Al-powered visual inspection systems, on the other
hand, use advanced image recognition algorithms to analyze products in real-time.
These systems can identify defects, such as surface imperfections, misalignments, and
structural anomalies, with a level of precision and speed that far surpasses human
capabilities.

Machine learning plays a crucial role in improving the accuracy of these
inspections. By training on vast datasets of images and defect patterns, machine
learning models learn to recognize even the subtlest deviations from quality standards.
Over time, these models continue to improve as they are exposed to more data,
becoming increasingly adept at identifying defects that might have previously gone
unnoticed.

Consistency is another significant benefit of Al in quality control. Human
inspectors may have varying levels of expertise and may perform differently under
different conditions. Al systems, however, provide a consistent level of performance
regardless of external factors, ensuring that each product is inspected to the same high
standard.

Al also enhances efficiency in the inspection process. Automated inspection
systems can operate continuously without breaks, significantly increasing the
throughput of inspected items. This continuous operation not only speeds up the
production line but also reduces the likelihood of bottlenecks caused by manual
inspection processes.
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Furthermore, Al systems are capable of analyzing complex patterns and
correlations that might be missed by human inspectors. For instance, in the
semiconductor industry, Al can detect minute defects and variations in microchips that
are critical to the functionality of electronic devices. This capability is crucial in
industries where even the smallest defect can lead to significant product failures.

Al-driven quality control systems also facilitate real-time feedback and process
adjustments. When a defect is detected, the system can immediately alert operators or
automatically adjust the production parameters to correct the issue. This real-time
intervention minimizes the production of defective products and reduces waste.

In addition to visual inspection, Al is used in non-destructive testing (NDT)
methods such as ultrasonic, radiographic, and thermal imaging inspections. Al
algorithms analyze the data from these tests to identify internal defects that are not
visible to the naked eye, further ensuring the integrity and reliability of the final
product.

Thus, Al is revolutionizing quality control and inspection by providing
unparalleled accuracy, consistency, and efficiency. By leveraging machine learning
and computer vision, Al systems enhance defect detection, improve inspection speed,
and ensure high-quality standards across various industries. This transformation not
only boosts productivity but also ensures that products meet stringent quality
requirements, ultimately leading to greater customer satisfaction and reduced costs
associated with defective products.

TEXT 8

Automated Al-Based Predictive Maintenance

An automated Al-based Predictive Maintenance solution can prevent asset
failures and unplanned downtime. It consists of IloT hardware that connects physical
assets to each other, and an advanced analytics platform that analyzes the complex
machine data to predict failures and prevent unplanned downtime. Al-based Predictive
Maintenance solutions ensure remote condition monitoring and facilitate proactive
asset maintenance.

The goal of an automated Al-based Predictive Maintenance system is to maintain
and improve the performance of critical industrial assets, resulting in fewer failures,
reduced downtime, increased production and improved workplace safety. The Al-
based system uses machine output data, including historical performance as well as
real-time contextual data, and analyses it using machine learning algorithms to notify
maintenance and reliability professionals of the maintenance needs of different
equipment sets.

Automated Al-based Predictive Maintenance System is a powerful tool that can
help the maintenance & reliability professionals to streamline the extraction of
actionable information from the machine health and performance data, to improve the
overall manufacturing operations.

Automated Al-based Predictive Maintenance offers myriad benefits to the
manufacturing industry.
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The first big benefit of Artificial Intelligence in predictive maintenance is the
ability to detect faults before they happen. This means that organizations can prevent
costly equipment failures before they occur. This helps companies to save costs that
are associated with frequent maintenance activities.

Al-based predictive maintenance systems also help companies prevent
production losses from faulty equipment, and with fewer repairs needed, companies
will spend less on hiring outside contractors and service technicians.

Furthermore, it helps companies save time as it eliminates the need for manual
inspection checks or trips to the shop floor for diagnostics.

It also improves the workplace safety for engineers and technicians by collecting
automatically data from the machines in complex and hard-to-reach places.

All these factors make Al a much more cost-effective option than traditional
maintenance methods and other forms of redundancy like backups or replacements.
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Taoauna 1 — Tiaroa “to be”

I'PAMMATHUYECKHUE TABJINIBI

DyHKIUSA B MPEII0KEHUT
M 3HAYEHHE

IIpumepsl

IlepeBon

1. CMBICI0BOI1 TJIaroa «OBITHY, «SIBISTHCS,
«HAXOJIUTHCS.

1. A bit is the smallest part of information.

2. Many memorizing elements are on one chip.

1. but gaBngercda caMoi MaJIOH YacThIO

uHpOpMaLIUH.

2. MHOro0 3aIIOMHUHAIONINX 3JIEMEHTOB
HaxoAuTCd HaA OAHOM YHIIC.

2. BcriomoraTenbHBIH r1aroi asis 00pa3oBaHUs
CJIOKHBIX IJIaroJIbHbIX BpeMeH (Tpyrima
Continuous u Passive Voice). CamocTosITeIbHO
HE TICPEBOIUTCS.

1. Computer is storing information.
2. Bits are grouped in units that are called bytes.

1. KommsroTep XpaHut nH(HOPMAIIHIO.
2. buThl 00BEIMHSIOTCS B €IUHUIIBI, KOTOPHIE

Ha3bIBAIOTCS OAITHI.

3. MopaybHbIi 171aros (B COYETaHUH C
WH(OUHUTUBOM JIPYTOro TJIaroja ¢ YaCTHIICH
"to"). «Jlomxen», «Hy>KHOY.

The results of the experiment are to be checked.

Pe3ynbrarhl sKCiepuMeHTa J10JKHBL OBbITh

IIPOBEPEHBI.

4. B xouctpykuuu "there is (are)" —
«CYIIECTBYET», KUMEECTCS», «ECThY.

There are two methods of solving this problem.

CylllecTBYET ABAa METO/1a PEUICHUS 3TOU

3aga4u.
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Taoauua 2 — naroa “to have”

DyHKIUSA B IPEAJI0KEHHH U 3HAYeHH e

IIpumepnbl

IlepeBon

1. CMBICIIOBOII TJ1aroi «MMETH.

Each memory location has its own unique
address

Kaxxnas siuelika maMsITH UMEET CBOH
€AMHCTBEHHBIN azpec. (Y KaxI0# sueiku
MaMsATH €CTh CBOW €TMHCTBEHHBIN ajpec. )

2. BcnomoraTenbHbIH r1aron s 00pa3oBaHus
CJIOXHBIX IJIaroJIbHBIX BpeMEH (TpyIina BpeMeH
Perfect). CaMoCTOATEIEHO HE TIEPEBOIUTCS.

The invention has made people's work easier.

N300peTeHune 00aeryusio Tpya JoaeH.

3. MopaybHBIN 171arost (B COYETaHUH C
WH(OUHUTUBOM JIPYTOro TJIaroja ¢ YaCTHIICH
"to"). «Jlomxen», «BBIHYKICH.

For digital computer the information has to be

in the form of digits or numbers.

st mudpoBoro KommneroTepa nHGOpMaIus
OJDKHA OBITh B BUE LU(P UK YHUCEIL.
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Ta6auna 3 — CrpaagaTtenbHblii (MaccUBHBIN) 3aJ10T: riaaroa to be + Participle 11

MPOIIIEIIETO BpeMeHHU ¢ cyPphUKCoM -H uiu -T. ['1aros "ObITh" B HACTOSIIIEM
BPEMEHU HE yNOTPEOIAETCA.

was made

has been made
had been made
will be made

Crnioco0nI iepeBoia [Tpumepsl [TepeBon
1. Coueranue riarojia «ObITb» ¢ KPATKHM CTPaJaTeIbHBIM IPHYACTHEM The device is made by us. [Tpubop menaercs Hamu.

OBUI clelad
OBLI caeIaH
OBUI cIead
Oyzer chenan

2. I'maron Ha -csl B COOTBETCTBYIOLIEM BPEMEHHU, JIULIE U YUCIIE.

The machine-tool is operated by
the new electronic system.

CTaHOK PUBOAMUTCS B ICHCTBUE
HOBOM 3JIEKTPOHHOM CUCTEMOM.

3. 'maron HGﬁCTBHTGHBHOI‘O 3ajora B 3 JIMIC MHOXXCCTBCHHOI'O UK CJia B
HCOMMPCACIICHHO-IMYHOM MMPCATTOKCHUU.

The experiment was made last
year.

DKCIEPUMEHT IPOBEJIU B
IPOIILJIOM TOITY.

4. T'maroJibl ¢ OTHOCSIIIMMHUCS K HUM MIPEII0raM, KOTOPbIE TIEPEBOISATCS TaKKe
riaroyiaMu ¢ pesurorom: to depend on — 3aBucets oT; to insist on —
HactauBaTh Ha; t0 00K at — cmotpeTts Ha, to refer 1o — ccwrunarbes Ha; to rely
on — nosararbes Ha, to speak of (about) — rosoputs 0; to send for — mocats
3a; to deal with — umers neno ¢ u apyrue.

[TepeBoasTCs riiarojiaMu B HEOTPEISICHHO-THYHOM (hopMe, pruem
COOTBETCTBYIOIINI PEUIOT CTABUTCS TIEPE/] aHTJTHICKAM IO IICXKAIIIM.

This discovery is often referred
to.

This system is much spoken of.

Ha 510 oTKpBITHE YacTO
CChUIAIOTCA.

00 >TOi cucTeEME MHOT'O
TCOBOPAIT.

5. T'marosisl 06€3 pesIoroB, KOTOPhIE MEPEBOASATCS IIAr0JIaMHU C MPEJIOTaMu:
to affect — BusaTe Ha;

to act — neiictBoBarth Ha; t0 answer — oTBeyaTh Ha;

to attend — mpucyTcTBOBaTH Ha;

to follow — ciemoBars 3a; to influence — BiusaTe Ha u Apyrue.

[TepeBoasTCs riiaroyiaMu B JICHCTBUTEILHOM (aKTHBHOM) 3aJ10T€, IIPHYEM
MEPEeBOJI HAJI0O HAYMHATH C MIPEJIOTa, TOCTABUB €0 Mepe/l aHTTTHHCKUM
MO/JICHKAIIUM.

The work of this device is
affected by electricity.

Ha pa6oty sToro npu6opa
BJIHSIET SJICKTPUIECTBO.
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Taoauna 4 — MoaajabHBIE TJ1ar0JIbl

MOPAJIbHBIN JIOJIT)

checked. — Pe3ynbraT aToro
JKCIIEPUMEHTA CIIEAYyEeT IPOBEPUTH

MoaaabHblii IJ1aroJ1 3HayeHue Bpemena
U €ro 3JXBUBAJICHT
Present Past Future

must JIOJDKEH, HAZIO, must work - -

HYXXHO, BBIHYXJIEH, shall /will have
to have to TIPUXOTUTCS have (has) to work had to work to work
can MOT'Y, YMEIO can work could work -

shall /will be

to be able to am (is, are) able to work was (were) able to work | able to work
may MOTY, MOXHO, may work might work -

paspernieHo shall /will be
to be allowed to am (is, are) allowed to work was (were) allowed to allowed to work

work

to be to JOJIKEH, TIPEICTOUT am (is, are) to work was (were) to work -

(oOycioBneHO 3apaHee

HaMEUYEHHBIM I1JIAHOM)
should JIOJDKEH, TOJDKEH Obl, This device should be handled carefully.

CJIEMyeT, CJIeIOBAJIO ObI — C atuM nipubOpoOM cliieyer

(pexomeHanus) o0paraThCsi OCTOPOKHO.
ought to JOJIKEH, CIeyeT (COBeT, The result of this experiment ought to be
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Tadoanna 5 — [lpuuactus

Bua npuyactus, npumepbl

DyHKIUSA B IPEAJI0KEHHH U TIepPeBoI

passive voice.

being solved, being written

3anaua peiaercs.

(I o6pazoBaHust BpeMeH
rpymsl Continuous
MaCCUBHOTO 3aJI0Ta.
CaMocTosATENnbHO HE

NEPCBOAUTCA !

difficult.

Perraemast 3a1aua ObuTa TpyIHAS.
(ITpyyacTust HA _ -€MBII U
-MMBIA).

YacTb ckazyemMoro Onpenesienne O0cTOoAATENNIBCTBO
1 2 3 4
1. Participle I, He is solving a problem. The engineer solving this problem | (When, while) solving the problem he
active voice. OH perraer 3agayvy. works hard. read many books.
(It o6pazoBaHus BpeMeH Nuxenep, pelaroniui 3Ty 3aaavy, | Peias 3agady, OH MpoYuTagI MHOTO
solving, writing rpymmsr Continuous. paboTaeT MHOTO. KHUT.
CaMOCTOSTENbHO HE The operator examined the device | (/leempuuactue Ha -a, -51).
HEPEBONTCS). showing the disturbances.
OmnepaTtop ocMmoTpen mpudop,
[IOKa3aBUINN HAPYLICHUS B
pabore.
(ITpuyactus Ha -1UH,
-BIIIHIA).
2. Participle I, The problem is being solved. The problem being solved was (While) being solved, the problem

offered some unexpected aspects.
Korna ee pemanu (Bo Bpems
pelieHus), 3aja4a npejacTaBuia
HEKOTOPBIC HEOXKUIAHHBIC CTOPOHBI.
(IIpunaToyHoe 0OCTOSATENLCTBEHHOE
IPEJUIOKEHUE HITH O0CTOSATEIBCTRO,
BBIPAXKCHHOC CYINICCTBUTCIILHBIM C

OpeaAJIOroM).
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Oxonuanue mabn. 5

1

2

3

4

3. Participle II,
passive voice.

solved, written

1) He has solved the problem.
OH pemmi 3a1auy.

([nst oO6pazoBanust BpeMeH
Perfect. CamocTosTenbHO HE
LIEPEBOJIUTCS).

2) The problem is solved.
3agayva pelieHa.

([st 0OpazoBaHus TACCUBHOTO
3astora. CaMOCTOATENBHO HE

OEpECBOJAUTCA ).

1) The problem solved turned out
to be fundamental.

Penrennas 3amava okasa-iach
byHIaMEHTAIBHOM.

2) The problem discussed there
yesterday is very important.
[IpoGnema, oOcykaeHHAs
(oOcyxnaBmiasicsi) Buepa, O4CHb
Ba)KHA.

(Opuuactue Ha -IIHIACS,

-MbIi, -HbIH, -ThIH,

-BILIU#{CH).

If solved, the problem will offer
numerous consequences.

Ecnu ee permTs, 3amavya OyaeT UMETh
MHOT'OYHCJICHHBIC ITOCJIICACTBUA.
(O6CTO$IT6J'IBCTBCHHOC oOpuaaToyHocC

OPpECIAJIOKCHUC ).

4. Perfect Participle,
active voice.

having solved, having written

Having solved the problem he left the
classroom.

PewmuB 3ana4y, OH ylIel U3 Kiacca.
([eenmpuyacTuie Ha -UB, -aB).

5. Perfect Participle,
passive voice.

having been solved, having been
written

Having been solved, the problem
offered some unexpected
consequences.

ITocre Toro, Kak 3ajaya ObLIa
peleHa, OOHapYKUITUCh HEKOTOPhIC
€€ HCOXXUIAHHBIC CIICACTBUA.
(HDI/II[aTO‘IHOC 00CTOSITEILCTBEHHOE
NPEIIOKCHUE).
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Tadanna 6 — HezaBucuMblii NpUYACTHBIN 000pOT

IIpumepnbl

IlepeBon

1) The problem being difficult, they worked hard.

Tak kak 3an1a4a Gvlia TpyaHas, OHU PabOTAIH MHOTO.

2) The experiment being carried out, he cannot leave the laboratory.

Kozoa (m. K.) DKCIEDUMEHT #dent, OH HE MOKET YUTH U3
nabopaTopHH.

3) With the results being different, scientists had to repeat their
experiment.

IlockonbKy pe3yabTaThl 0bliu PA3HBIMU, YUYEHBIM MTPUILIOCH
MIOBTOPUTH CBOM IKCIIEPUMEHT.

4) He read two articles on this subject, the latter being more interesting.

OH mpoYMTaN ABE CTAThH HA 3Ty TEMY, HpUYEM TOCICTHIS ObLid
0oJiee HHTEPECHOM.
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Tadoauua 7 — I'epynamnii

DYyHKIUSA B MPeII0KEHUN

IIpumepnbl

IlepeBon

1. INomnexariee

Supervising the production is very
important.

Habmronenue (Habmoaate) 3a
MIPOU3BOJICTBOM OYE€Hb BAXKHO.
(CymecTtBuTenpHOE, UHPUHUTHUB).

2. Yactp ckazyeMoro

The main task is switching off the
system in time.

I'maBHas 3aJa4a — BBIKJIIIOUYCHUC

(BBIKJIIOYUTE ) CUCTCMY BOBpCMHI.

(CymecTtBuTenpHOE, UHPUHUTHUB).

3. [Ipsimoe nononHEeHNE

The production requires utilizing
supervisory system.

[Tpon3BoACTBO TPEOYET MCIIOTB30BAHHS
(MCTOIB30BATh) CUCTEMBI HAOJIOICHUS.
(CymecTtBuTenpHOE, UHPUHUTHUB).

4. OnpenencHue
(o6b1unO ¢ ipemyoramu Of, for mocie cyimecTBUTENBHOTO)

The property of influencing the
production run is studied carefully.

CBOMCTBO BJIMSATH Ha XOJ TPOU3BOICTBA
THIATEIBHO U3y4YaeTCs.
(MaduanTHUB).

5. O6CTOATENBCTBO

(00BI4HO ¢ TpeyIoramMu IN — IpH, B TO Bpemst Kak; on (Upon) — mo,
nocie; after — mocie; before — nepen; by — TBOpuTENBHBIN MaACK;
instead of — BMecTo TOTrO, YTOORI; fOr — MyIsT M T.71.)

The operator examined the machine
without diminishing its speed.

Oneparop 0CMOTpeEN MalluHy, HE
yMeHbIas (0e3 YMEHBIIIEHHUS) €€
CKOPOCTH.

(CymecTBuTENBHOE, IECTPHYACTHE).
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Ta6auna 8 — UnpuHuTHB

DOyHKUMA

IIpumepnbl

IlepeBon

1. INomnexarnee.

To design a good control system is not easy

CrpoeKkTUpOBaTh XOPOIIYIO CUCTEMY (TIPOSKTHPOBAHUE XOPOIICH
CUCTEMbI) YIIpaBJIEHUs HEMPOCTO.
(MaduHATHB, CYIIIECTBUTEILHOE).

2. Yacth cKkazyemoro:
a) 1mocJe riaaroja-
CBSI3KH,

0) mocie MOJAIBHOTO
rJarosa.

a) Their aim is to improve the control system.

0) You have to improve the control system.

a) Ux nenb — (COCTOUT B TOM, 4TOOBI) YCOBEPIICHCTBOBATE CHCTEMY
yIpaBiIeHUS.

(MuadunutHs).

0) BbI 10JKHBI YCOBEpPIIEHCTBOBATH CUCTEMY YIIPABJICHHUS.
(Muadunutus).

3. JlomonHexnwue.

The operator prefers to use the new device.

Omnepartop npeanoYnTaeT UCIOIb30BaTh HOBOE YCTPOMCTBO
(ucmonp30BaHME HOBOTO YCTPOWCTBA).
(MuuHUTHB, CYIIIECTBUTEIBHOE).

4. OnpenencHue.

1) They have the possibility to use this
system.

2) The new equipment to be used at our
laboratory has just arrived.

3) He was the first to begin this experiment.

1) V HuUX ecTh BO3MOXXHOCTb HCIIOJIb30BATh ITY CUCTEMY.
(MaduHATHB, CYIIIECTBUTEILHOE).

2) HoBoe o6opynoBanue, KOTOpoe OYIeT (JIOKHO ObITh)
HCIIOJIh30BaHO B HaIEH JJab0paTopuu, TOIBKO YTO MPUOBLIO.
(OnpenenurenbHOE NPUIATOYHOE IPEITIOKEHUE CO CKA3YEMBIM,
BBIPXKAIOIINM JIEHCTBUE, KOTOPOE JAOJKHO ObITh UM OyneT
COBEPILIEHO).

3) Ou mepBbIM HAaYaJ STOT IKCIICPHUMEHT.

5. O0cTosTensCcTBO
LIETH.

To design a good control system, you must
have good knowledge of electronics.

YroObl CIPOEKTUPOBATE XOPOIIYIO CUCTEMY YITPABICHHSI, BbI JOJDKHBI
HMCTH XOPOIIHEC 3HAHUA JICKTPOHUKH.
(MabUHUTHB ¢ COI03aMK YTOOBI, JUIS TOrO, YTOOH).
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Taboauua 9 — UnguHUTHBHBIE 000POTHI

IIpumepsbl IlepeBon
|. Ciao:xHoe moaJjiesxaiiee
1 2
[TepeBoauTcst AByMs crioco0amMu:
1. ILOHOJIHI/ITG.HBHBIM NpUAATOYHBIM NPCIAJIOKCHHUEM C COO3aMU
«ITOY, «ITOOBD», «Kak». THOUHUTHB IEPEBOTUTCS JTHIHOMN
TJIarojJbHON (HOpMOii.
is known HsBectHO , UTO 3TO YCTPOMCTBO
is likely BepositHo paboTaeT oueHb
IS certain Hecomuenno 3¢ PEeKTUBHO.
is found OOHapyKeHO
This device is reported to work very efficiently. | Coobmaror
is assumed JlonmyckaeTcst
is considered Cunraercs
is expected Osxumaercs
appears Oxka3sbIBaeTCs
seems Kaxercs
proved JlokazaHo

2. IIpocThIM IPEIOKEHUEM C BBOJIHBIM CIIOBOM,
COOTBETCTBYIOIIMM CKa3yeMOMY aHIJINACKOTO MPEII0KEHHUS.

This device is known to work very efficiently.

DTO yCTPOMCTBO, KAK U3BECTHO, paboTaeT o4eHb 3 (HEKTUBHO.
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Oxonuanue mabn. 9

1. Cro:xHoe 1omoiHeHue

1 2
1) They want (like) the plan to be fulfilled. 1) OHu XOTAT, YTOOBI ITaH OBLT BBITOJHEH.
2) * They see (hear) the engineer leave the room. 2) OHu BUAAT (CIBINIAT), YTO MHXKEHEP YXOIHUT U3 KOMHATHI.
3) Onu pHKa3bIBAIOT (ITO3BOJISAIOT, 3aCTABJISIOT), YTOOBI ITH
3) * They order, allow (let), cause, force (make) these data to be processed JAHHBIC OBLIM 00Pa00TaHbl HEMEIICHHO.
immediately. [TepeBOAUTCS MPUIATOYHBIM MTPETOKEHUEM C COI03aMH «UTO»,

«ITOOBI», «KaKky». IHPUHUTUB NEPeBOAUTCS JTUYHON

rJ1aroyibHOU (hopMoii.
* Tlocrte T71aroj0B 4yBCTBEHHOTO BocmpusTus (See, hear, feel
U T. 11.), a Taoke raaroiios let, make, have ucnonb3yercst uHpUHUTHB Oe3

yactuisl ""to".
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Tadoauua 10 — MHOrogpyHKUMOHAIBbHOE CJI0BO “one”

DyHKIMS, 3HAYCHHUE

IIpuMmepsl

IlepeBon

1. UncnureabHOE «OIHMHY, «OIHAY, «OITHO.

This design is one of the oldest.

DTa KOHCTPYKIUS — OJIHA U3 CAMbBIX CTapbIX.

2. ®opmanbHOe mojsIeKalee B He-
OIPEAETICHHO-INYHBIX MPEATOKCHUSAX.
CamocTOoATeNbHO HE IEPEBOIUTCS.

One knows

One believes

One can expect
One must expect
One may expect
One should expect

that the machine will
work well.

HzsectHo Cunraror
MoO>XHO 0XHIAaTh
HyxHo oxuaate
MoO>XHO 0XHIAaTh
Crnenyer 0XXuaaTh

, UTO MaIluHa OyaeT
paboTaTh XOpOILO.

3. CnoBo3amenutens. [lepeBoaurcs Tem
CYLLIECTBUTEIIBHBIM, KOTOPOE 3aMEHSET, WIH
OILYyCKAaeTCsl B IIEPEBOJIE.

The new way of processing data differs from the

old one.

HoBerit crioco6 00paboTku JaHHBIX
OTJIMYACTCS OT CTApPOro (cmocoba).

4. Mectonmenus B OpMe MPUTSHKATETLHOTO
majie’xa ONe's - cBo, COOCTBEHHBIM, YCH-TO.

No one likes when somebody reads one’s letters.

HI/IKOMY HC HpaBUTC, KOT'Ja KTO-JIM00 YUTaeT

€ro nmucbma.
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Ta6auna 11 — MuorogyHKIHoOHAJbHBIE c0oBa “that”, “those”, “this”, “these”

DyHKUMS ¥ 3HAYCHHE

IIpumepsl

IlepeBon

“that” — “those”

1. Vka3aTeapHOE MECTOMMEHHE
KTOT» — «TE», «ITOT» — KITHUN.

Those computers are used in manufacturing process.

ITH (Te) KOMIBIOTEPHI UCIIOJIB3YIOTCS B
IIPOU3BOACTBEHHOM IIPOLIECCE.

2. CJI0BO-3aMEHHTEIIb, IEPEBOAUTCS
TEM CYIIECTBUTEIbHBIM, KOTOPOE
OHO 3ameHsieT. lHorma omyckaercs.

The efficiency of the old apparatus is low compared with
that of the new device.

[Tpon3BOIUTENFHOCT CTAPOTO MPUOOPA HU3KAS
M0 CPABHEHUIO C NPOU3BOAUTETbHOCTHI)
HOBOTO yCTPOMCTBA (C HOBBIM YCTPOHCTBOM).

3. “that” — coro3HOE CII0BO
«KOTOPBII».

The device that was installed in our laboratory is
efficient.

YerpoiicTBO, KOTOPOE ObLTIO YCTAaHOBJICHO B
Hateit mabopatopuu, 3pPeKTHUBHO.

4. “that” — cor3 «4To», «4TOOKI.

One can say that this apparatus is the most useful.

MO>KHO cKa3aTh, YTQ 3TOT MPUOOP CaMbIit
HY’KHBIN.

“this” — “these”

1. Vka3aTeapHOE MECTOMMEHHE
QTOT» — <OTUM.

These systems will be installed at our mill.

ITH cucTeMbl OyTyT yCTAaHOBJICHBI HAa HAIlIEM
3aBOJIE.

2. These — "onn", 3aMeHUTEND
CYH.IGCTBI/ITGJ'H:HOFO.

The elements of the Periodic group IA are called “the
alkali metals". These are alike in having a single electron
on the outermost shell.

DJIEMEHTHI IEPUOINUECKON CUCTEMBI Tpymmbl 1A
Ha3bIBAIOTCS "MICIOYHBIMUA MeTautaMu'". OHH
CXOJIHBI TEM, YTO UMEIOT 10 OJTHOMY SJIEKTPOHY
Ha BHEIIHEH 000JI0UKe.
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Tadoanna 12 — MHoropyHkunoHajJbHOe CJI0BO “it”

DyHKUMS ¥ 3HAYCHHE

IIpumepsl

IlepeBon

1. JIuuHOEC MECTOMMEHHUE «OHY,
«OHaY, «OHOY (HEOTyIIEBICHHBIN
MIPEAMET).

A new device is created in the laboratory. It will be very
efficient.

Hogerit mpubop cozman B maboparopun. OH
OyneT oueHb 3(PPEKTUBHBIM.

2. YKazareilpHOE MECTOMMEHUE
«3TO».

The temperature is rising slowly. It means that...

TemnepaTypa MeAJICHHO OJHUMAETCS. ITO
03HAYaerT, uTo...

3. ®opmasibHOE TTOJIeKAIIEE
0€3TMYHOTO MPEeI0KEHUSI.

CaMOoCTOSTEIIFHO HE MNEPEBOAUTCA.

It is a common practice

It is essential

It is impossible to use this tool.
It is important

It is expected

OOBIYHO IPUHSATO
\

Baxxno HUCIOIb30BaTh
Heso3MmoxkHO - 9TOT
Baxno UHCTPYMEHT

/
Oxunnaercs (ucmosib30BaHUe

3TOr0 UHCTPYMEHTA)

4. ®opmabHOE JOTIOIHEHUE TTOCIIEe
HGKOTOpBIX TJ1aroJjioB.
He nepeBoauTcs.

The method makes it possible to obtain good productivity.

Merton nenaet BO3MOKHBIM MOTy4YEeHUE
XOpOIIEeH MPOU3BOIUTEIHLHOCTH.

5. Yactp amdaTnyeckomn
(BBLIEIUTENBHOI ) KOHCTPYKIWH "it IS
... that (which)".

[TepeBOAUTCST KUMEHHOY, «3TOY,
«TOJIBKOY, ¥ T. .

It is in our laboratory that the new design was created.

It was not until 1950 that the new technique entered into
practice.

HNMmeHHO (3T0) B HaIIe 1abopatopuu ObLT
CO3/1aH HOBBIN IPOEKT.

Toabko B 1950 r. HOBBIIT METOI BOLIEI B
ynotpeOieHue.
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Tabauua 13 — Tunsl yCJI0BHBIX NPUAATOYHBIX MPEAJI0KEHUH

Tun ycjJI0BHOIr0o NpuaaTOYHOrO,
ynorpeotJiseMble BpeMeHa

IIpumep

IlepeBon

0. HyneBoe ycioBue aiis onrcanus (pakToB
ITocre corosa (if) — Present Simple, B rmaBHOM
npeanoxenun — Present Simple

If you take the ice out of the refrigerator, it melts

Ecimu AOCTAaTh J€A U3 XOJOJUJIbHHUKA, OH TAaCT.

1. PeanpHOE ycnoBue.
ITocre corosa (if) — Present Simple, B rnmaBHOM
npeioxkenuu — Future Simple

If you give him the book, he will read it.

Ecau BBI AAJATC CMY KHUT'Y, OH €C IPOYUTACT.

2. He BiosiHe peanbHOE yCIIOBHE.

ITocne corosa (if) — Past Simple, B rmaBHOM
npemioxkenun— should, would, could, might +
Infinitive

If you gave him the book, he would read it.

Ecnu [0bl BB JaJIM €My KHUTY, OH OIpOYUTAal
ee.

3. HepeanbHoE yCIIOBHE B MPOLIIOM.

ITocme corosza (if) — Past Perfect, 8 rmaBamom
npemptokenun— should, would, could, might +
have + Participle Il cmpicoBoro rirarona

If you had given him the book yesterday, he
would have read it.

Ecin HaJid

Obl [BBI
IPOYMTAI ee.

€My BuYepa KHHUIY, OH

4. CMelaHHbIN THIL.

a) Hepeamphast cuTyanuss B MPOILIOM C
YCII0OBUEM, CITPAaBCJIMBBIM JJIS1 HACTOAIICTO.
ITocne corosa (if) — Past Simple, B rmaBHOM
npemioxkenun— should, would, could, might +
have + Participle Il cmbic0BOTO rITaroia.

0) HepeanbHast cuTyanuss B HACTOSIIEM WU
OyIylIieM C YCIOBHEM B TIPOIILIOM,

ITocme corosza (if) — Past Perfect, 8 rmaBaom
npemtokenun— should, would, could, might +
have + Infinitive cMmpiciioBoro riarona

If I were clever enough, | wouldn’t have done
this.

If 1 had won that lottery, 1 would now live in
France

byns s mocratouno ymeH, s | Obl | Tak He
MOCTYTIUJI.

Ecnu s BBIUTPA] B TOM JlOTEpee, o

ceryac xujl Bo OpaHiuu.
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CJIOBAPDH

A

absence (n.)

‘&bs(a)ns

OTCYTCTBHC

absentee (n.)

.&bson'ti:

IIPOTYJIBUIUK

AC (alternating
current)

‘o:ltonertiy” karont

MEPEMEHHBIN TOK

accelerate (v.) ok 'selorert YCKOPSTH(CS)

acceptable (adj.) ok 'septobl pHUEeMJICMbIH

access (n.) ‘&kses JOCTYII

accessible (adj.) ok 'sesab(a)l JOCTYIHBIN, TOCTHKUMBIH

accident (n.) ‘&eksid(a)nt cIrydan

according to (prep.) o'ko:dmto COrJIaCHO, B COOTBETCTBUU C

accordingly (adv.) 9'ko:diglr COOTBETCTBCHHO

accountability (n.) o'kaunta'brlrtr OTYETHOCTD, OTCJICIKUBAEMOCTh

accuracy (n.) ‘&Kjorast TOYHOCTh, KOPPEKTHOCTh

accurate (adj.) ‘&kjorat TOYHBIH, TOCTOBEPHBII

achieve (v.) a'ffiiv JOCTUTATh

acknowledge (v.) ok ‘nolidz MOJITBEPK/IaTh, IPU3HABATH

acquire (v.) o'kwaro 10JTy4aTh, NpUoOPETaTh

acquisition (n.) &kwr'zifn IpHOOpETCHHUE

action (n.) ‘&kf(o)n JICHCTBHE

actionable (adj.) ‘&k[(a)nob(d)l BBITMIOJTHUMBIH, OCYIIECTBUMBIM

activity (n.) ak tivitr neincTere, paboTta, aKTHBHOCTh

actual (adj.) ‘&kguol (haKTHYECKUH, TeHCTBUTEIIBHBIN

actualize (v.) ‘ektfuolaiz OCYIIECTBIISITh, PEATU30BBIBATH

actually (adv.) ‘eky(u)alr (aKTHYECKH, Ha CAMOM JIeJIe

acyclic (adj.) o'saiklik AIMKIMYHbIN, HEEPHOANYCCKHMA

adapt (v.) o' deept HACTPanBaTh, PUCIIOCA0IMBATh

additional (adj.) o' dif(a)nal JOTOIHUTEIIbHBIMN,
BCIIOMOTaTEJIbHBIN

additionally (adv.)

o' dif(o)nalt

AOIOJIHUTCIIBHO, KPOMEC TOT'O

address (v.) o'dres o0pamniarbcsi, pacCMaTPUBATh
adept (adj.) a'dept OTIBITHBIM, MOAXOISIIUI
adherent (adj.) ad hi(a)rant HPUJICT AN

(n.) HPUBEPIKCHEII, TTOCIIEA0BATEb
adjust (v.) o' dzAst PEryJINpPOBaTh, BHIBEPSThH
adjustable (adj.) o' dgastab(9)l peryIupyembIi,

npHUCIocabIinBaeMblil

adjustment (n.) o' dgastmant peryIupoBKa, HACTPOMKA
adopt (v.) a2 dopt OPUHUMATD, BBOJHUTD
advance (n.) ad'va:ns JIOCTHXKCHHE, YIyUIICHHUE,

(v.) IPOJABUIATHCS, IPOUCXOINUTD;
in advance 3apaHee
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advanced (adj.) ad'va:nst HepeI0BOH,
BBICOKOTEXHOJIOTHYHBIN

advantage (n.) ad 'va:ntidy IPEUMYIIIECTBO;

take advantage of BOCIIOJIb30BAThHCS

advantageous (adj.)

.&dvon 'terdzos

BBITOJTHBIN, OJIarONPUSTHBINA

advent (n.) ‘&edvent MOSIBJICHUE, HACTYTIJICHUE

adversarial (adj.) .&dvs: 'seariol KOH(DIUKTYFOIINN

agenda (n.) o' dzends MOBECTKA JIHs, IPo0JeMaTHKa

agent (n.) ‘erdz(o)nt areHT, KOHTPOJLIEP, YCTPOHUCTBO
yIpaBJICHUS;

software agent POTPAMMHBIH areHT

aid (n., v.) eid MTOMOIIIb, TTOIKPETICHUE,
CPEACTBO

aim (n.) erm 11eJTb, 3a]1a4a, HAMEPEHUE;

aimto (v.) OBITH HAIPaBJICHHBIM HA, UMETh
IEJTBI0

akin (adj.) a'kin HOXO0KUH, OJTU3KHIA

alert (adj.) a'l3:t] CUTHAJIbHBIH,
peaynpeIuTeIbHBINA

allow (v.) a'lau paspelarh, T0IyCcKaTh

alter (v.) 'o:lto MU3MEHSTH(Cs)

although (conj.) o:1'dau XOTs, HECMOTPS Ha

amalgamation (n.)

a'maelgo'merf(o)n

00beAUHEHHUE, CIIUSHUC

ambiguity (n.) .&mbi’'gju:oti HESICHOCTb, JIBYCMBICIICHHOCTD

amount (n.) 2 'maunt KOJIMYECTBO, BEJIMYMHA, 00BEM;

amount to (v.) COCTaBJISATh, PABHATHCS

ANN (artificial neural MCKYCCTBEHHAs! HEHPOHHAS CETh

network)

anomaly (n.) a'nomoalr aHOMAaJIus, OTKIIOHEHHE,
UCKaKEHUE

anticipate (v.) an tisipert MIPEABUICTD, MPEAYTaaaTh

appealing (adj.) a'pi:lm HpUBJIEKATEIbHBIH,

BLISBIB&IOIHI/Iﬁ HHTCPCC

appearance (n.)

a'pi(a)rans

BHCIHIHOCTD, ITOABJICHUC

applicability (n.)

o' plika bilitr

IMPUMCHUMOCTb, IPUT'OAHOCTD

application (n.)

‘&plr kerf(o)n

IIPUMEHEHHUE, TPUIOKECHHE

apply (v.) a'plar MIPUMEHSTH

approach (n.) a'proutf OJIXOJT

approachable (adj.) 2" prautfab(d)l JOCTYIHBIHN, TOCTHKUMBIH
appropriately (adv.) o' proupritls JOJDKHBIM 00pa30M, aJIeKBaTHO
approximate (v.) o' proksimert MPUOJIMKEHHO PaBHITHCS,

(adj.)

a'proksimat

npUOIIKATHCS;
npUOIU3UTENbHBIH,
ANIPOKCHUMUPYIOIIUI

95




approximation (n.)

a'prokst merf(a)n

allIIpoKCuManus, HpI/I6JII/I}K€HHaH
BCIIMYHWHA

arbitrary (adj.) ‘a:bitrart IPOU3BOJILHO BHIOPAHHBIH,
IIPOU3BOJIbHBIN, CTOXaCTUYECKUMN

arduous (adj.) ‘a:djuos TPYAHBIA, U3HYPUTEIbHBIN

area (n.) ‘e(a)rio 00J1aCTh, MOJIe

arguably (adv.) ‘a:gjuabli BEPOSITHO; TI0 MHEHUIO
HEKOTOPBIX

arise (v.) d'raiz BO3HUKATD, SIBJSATHCS
pe3yabTaTOM

articulate (v.)

a: tikjulert

4eTKO (hOpMYJIHPOBATH;

(adj.) a:'tikjolat SICHBIH, YSTKUH
artificer (n.) a: 'trfiso MacTep, MEXaHUK
artificial (adj.) ‘a:tr fif(9)l MCKYCCTBEHHBIN
assembly (n.) 5'semblr cOOpKa; KOMIUIEKT TpUOOPOB
assess (v.) 2'Ses OLICHHUBATD, ONPEACIIATh
assets (n., pl.) ‘®sets peCypChl, aKTUBBI, (DOHIBI
assign (v.) a'sain OIpeIeNATh, 3a1aBaTh,

IIPUCBAaNBATh

assignment (n.) 9'sarnmont 3a/TaHUE
assist (v.) 9 'sist IIOMOTaTh, COICHCTBOBATh

assistance (n.)

a'sist(a)ns

IMOMOIIlb, COACHCTBUE

associate (v.)

a'sousiert, o'soufiert

00BbeTUHATH(CSI), ACCOIMUPOBATH

association (n.)

9,Squsi erfan,
9,001 e1fon

CBSI3b, COTIPSDKEHUE, COSTUHECHHUE,
accolAaIns

assume (v.) a'sju:m JIOITYCKaTh, IPUHUMATh

assumption (n.) a'sampf(ao)n MIPEANOI0KECHHE, TOMYITICHUE

attack (v.) o 'teek MIPUCTYTIATH K PEIICHUIO

attempt (n.) o'tempt IBITATHCS, IeJaTh MOIBITKY;
(v.) HOTBITKA

attractive (adj.) o 'treektiv HpUBJIEKATEIbHBIH,

MIEPCIIEKTUBHBIN
attractiveness (n.) o 'traeektivnis PUBIIEKATEILHOCTD

attribute (n.) ‘etribju:t AIIEMEHT, MPU3HAK, KPUTEPHIL;
(v.) 9 'tribju:t MPUIHCHIBATh, OTHOCUTD

autoencoder (n.) "5:tou m 'kouda ABTOKOIUPOBIIUK

automate (v.) ‘o:tomert aBTOMAaTU3UPOBATh, IOABEPTraTh
aBTOMATHYECKON 00padoTKe

autonomous (adj.) 0:'tonoMas ABTOHOMHBIH

availability (n.) a'veilo bilitr JOCTYIHOCTD, HAJTUYHE

available (adj.) a'verlab(9)l JOCTYITHBIN, IMCIOIIUICS B
HAJTNYHH

avenue (n.) ‘®Vvonju: yTh, METOJT

avoid (v.) 2'vord n30erath, 00XOIUTh
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avoidance (n.)

2'vord(a)ns

n30exaHue, 00X0.1

awareness (n.)

2 'Weanas

UH()OPMUPOBAHHOCTD, YUET
0COOEHHOCTEN

B

backpropagation (n.)

baek "propa’gerf(o)n

oOpaTHOE pacrpocTpaHeHne
OIIUOKM

backtrack (v.) ‘baektraek OTCIIC)KUBATH B 0OPaTHOM
HOPS/IKE, OTCIICIKUBATH C
BO3BPATOM

backtracking (n.) ‘baek traekin MEXaHH3M Iepedopa ¢ BO3BpaTOM

backup (n.) "baekap pe3epBHas KOMHMsI, TEXHHUYECKOES
00CITyKUBaHUE

baseline (n.) ‘berslain OCHOBA, OPUEHTHD

batch (n.) beef MaKeT JaHHBIX, TapTUs

because (conj.) br'koz] MOTOMY YTO;

because of (prep.) u3-3a

beforehand (adv.) br'fo:heend 3apaHee, MPeIBapUTEIbHO

behavior (n.)

br'hervjo, -jor

MOBEJICHUE, XapaKTep, PeKUM
paboThI

belief (n.) br'li:f yOexIeHne

belong (v.) br'lon MIPUHAJICKATh, OBITh YaCTHIO

beneficial (adj.) ‘benr fif(9)l MOJIC3HBIN, YO PEKTUBHBIN

besides (prep.) br'sardz KpOMe;

(adv.) HOMHMO 3TOT'O

bias (n.) ‘baros CHUCTeMaTHYEeCKas OInOKa
BBIOOPKH, CMEIIICHUE,
OTKJIOHCHUE

biased (adj.) br'saidz HEOObEKTUBHBII

binary (adj.) "barnari JTBOMYHBIA, OMHAPHBIN

blackboard ‘blaekbo:d JIOCKa OOBSIBIICHHH,
nH(pOpMaLIMOHHAs TOCKa

black-box blaek 'boks «YEPHBIH SIIUK», O0BEKT
UCCIICIOBAHMSI C HCM3BECTHBIMHU
CBOMCTBaMU

boost (v.) bu:st HOBBIIIATH, YBEIIMYUBATH

boosting (n.) ‘bu:stiy MOBBINICHNE, YCUICHHE

bottleneck (n.) ‘botlnek MIPEMNSITCTBUE, YSI3BIMOE MECTO

bottom (n.) ‘botam HU3

brake (n.) breik TOPMO3

break (n.) breik nepeOoii, epepoiB

break down (v.) ‘breik 'daun J0MaTh(Cs)

breakthrough (n.) ‘breikfru: OTKPBITHE, TPOPHIB

bulb (n.) balb JaMITOYKa
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calculate (v.)

‘keelkjulert

BBIYUCJATH, IIOACYUTHIBATD

calculus (n.)

‘keelkjulos

BBIYHCJICHUEC, HCYUCIICHHUEC

capability (n.)

"kerpa' bilitr

CIIOCOOHOCTH, TEXHUYECKAS

BO3MOYKHOCTh

capable (adj.) ‘kerpab (o)l CIIOCOOHBIM

capture (v.) ‘keeptfo coOuparh (JTaHHBIC)

case (n.) kers ClIydaii, Kerc, IpumMep,
HpeIeIeHT

causal (adj.) 'ka:z(d)l Kay3aJIbHbBIN

certain (adj.) 's3:tn KOHKPETHBIHN, OTIPEICIICHHBIN,
HEKOTOPBIN

chain tfein 1eNb

challenge (n.) ‘feelindg 3aja4a, TPYAHOCTh, BHI30B

chaining 'tfeinin CIICTIIICHUE;

backward chaining 0OpaTHBII JIOTHYCCKUIT BBIBOJ

challenging (adj.) "feelindzm TPYAHBINA, HO HHTEPECHBIMH,
Tpedyronmii 0co00ro Noaxoaa

choice (n.) fo1s BBIOOD

circuit (n.) 's3:kit cxema

circumstance (n.) 's3:kamstaens 00CTOSATEIBCTBO

cite (v.) sait IIUTHPOBATh, CChIATHCS Ha

classifier (n.) ‘Kleesifaro KJIaCCHU(PHUKATOP

cleanliness (n.) ‘klenlinis YHCTOTA

clickstream (n.) "klik stri:m HCTOPHUS TIOCEIICHUI

cluster (v.) "Klasto 00BeTMHATH(CS) B KJIaCTEPHI,
KJIACTEPU30BaATH(CS)

clustering (n.) ‘Klastorm KJacTepu3alus, TPYMIUPOBAHKE

K-means clustering KJIacTepU3aus METO0M k-
CPEIHHX

cluttered (adj.) "Klatod MIPUBEJICHHBIN B OECIIOPSI0K

codify (v.) ‘koudrfar KOJMPOBATh, MU(PPOBATH

coexist (v.) kovig'zist COCYIIIECTBOBATH

coincidentally (adv.)

kou 1nsi'dentali

CIIyYalHO, 110 CIIy4YallHOMY
COBIIAJICHUIO

collaboration (n.)

ka'leba'rerf(a)n

COTPYJIHUYECTBO, COBMECTHAs
pabota

collision (n.) ka'li3(o)n CTOJIKHOBEHHE, aBapHsi
combine (v.) kom'bain 00BETMHSATD, COUCTATh
combustion (n.) kom 'bast(o)n TOpPCHHE

come up with (v.) npeJyiaraTh, IPUAYMbIBAThH
commonly (adv.) ‘Komoanlr 00BIYHO, KaK MPaBUJIO

commonly-cited (adj.)

‘komonli 'sartid

4aCTO YIIOMHHAKOUIUNCS

communicate (v.)

ko 'mju:nikert

coo0mIaTh(cs), mepeaaBaTh

98




comparable (adj.)

‘komparabl

COIIOCTaBUMBIN

compare (v.)

kom'pea

CpaBHUBATb, COIOCTABJIATH

comparison (n.)

kom 'paeris(a)n

CpaBHCHHC

complacency (n.)

kom plersnsi

CaMOYBEPEHHOCTh, OECTICUHOCTh

complete (adj.) kom'pli:t TIOJTHBIH;

(v.) 3aBepIIATh, BHITIOJIHATH
complex (adj.) kom'pleks / CJIOKHBIHM, KOMILIEKCHBIN

'ka:mpleks

complexity (n.) kom 'pleksitr CII0)KHOCTh
complicated (adj.) ‘kKomplikertid CJIOKHBIN, OCIOKHEHHBIN
compression (n.) kom 'pref(o)n CKaThe, KOMIPECCUS
comprise (v.) kom 'praiz COCTaBJIATh, BKIIIOYATh B CEOs
computable (adj.) kom pju:tob(o)l BBIYMCIIMMBIN, MAITHHOYNTAEMBIHT
computation (n.) ‘Kompju 'terf(o)n BBIUHCJICHHE
computational (adj.) "Kompju terf(a)nal BBIUHCIIMTEIbHBIN

computing (n.) kom'pju:tim NPUMEHEHHE KOMIIBIOTEPOB,
MH(QOPMAIIMOHHBIC TEXHOJIOTUH

conceive (v.) Kon'si:v IMOHUMATh, I10JIaraTh

concern (v.) kon's3:n KacaTbhCsl, 3aHUMAaThCS;

be concerned with HMMETH JIEJIO C, OBITH CBSI3aHHBIM;
(n.) MHTEPEC, BAKHOCTh, 3HAUCHHE

concise (adj.) kon'sais KpPaTKUH, COKAThIN

conclusion (n.) kon'klu:3n 3aKJIIOUEHHUE, BBIBOJI;

draw conclusions

JA€JIaThb BBIBOJbI

condition (n.)

kon'dif(a)n

YCJI0OBHEC, COCTOSIHUC

conditionally (adv.)

kon'dif(a)nalr

YCJIOBHO, IPH ONPEIETIECHHBIX
YCIIOBHSIX

conduct (v.) kon'dakt MIPOBOJINTH, BECTH;
(n.) ‘kondakt MTOBEJICHUE
confine (v.) ‘Konfain OrPaHUYUBATH
congruent (adj.) ‘Kpngruont COTJIACOBAHHBIM, KOHI'PYIHTHBIH

conjunction (n.)

kon'dzankf(a)n

COYCTaHUC, COCAMHCHHC

connect (v.)

ka'nekt

COCIUHATDH, CBA3bIBATH

connection (n.)

ka'nekf(a)n

COCIMHCHUC, CBA3b

connectionism (n.)

ka'nekfonizom

CBA3HOCTD

connectionist (adj.)

ko 'nekf(a)nist

HEUPOCETEBOM, ACCOLMATUBHBIN

connective (n.) ko'nektrv JIOTHYECKasl CBSI3Ka, BHIPAKCHHUEC
connectivity (n.) konek "tivoti CBS13b, CBSI3HOCTh

consciousness (n.) ‘Kpnfosnos CO3HAHUE

consequently (adv.) "konsikwontlx CJIeIOBATEILHO, TAKUM 00pa3oM
consider (v.) kon'sido CUUTATh, PACCMATPUBATh

consideration (n.)
under cosideration

kon'sida'reif(a)n

paccMOTpeHue, COOOpaKeHHE;
paccMaTpUBaeMbIi, TaHHbBIN

consist (v.)

‘konsist

COCTOATH,

99




consist in 3aKJIF0YaThCS

consistency (n.) kon'sist(o)nsr OCJICI0BATEIbHOCTD,
JIOTHYHOCTh

constant (adj.) ‘Konstont OCTOSTHHBIN

constraint (n.) Kon'streint OTpaHUYCHHE

contain (v.) Kon'tein COJIepKaTh

contemplate (v.) ‘kontomplert paccMaTpuBaTh

content (n.) k' ontent CoJiepIKaHue, COACPIKUMOE,

uHdopMarms

continuous (adj.)

Kon'tinjuas

HETIPEPBIBHBIN

continuously (adv.)

kon'tinjuasl

HENIPEPBIBHO, TOCTOSIHHO

contractor (n.)

kon'traekto

NOJIPSAYUK, Pa3pabOTUUK,
HCIIOJIHUTEIb

contribution (n.)

"Kontrr'bju:f(a)n

BKJIaJ, pacrpe/ieICHue

convenience (n.)

kon'vi:nions

y,Z[O6CTBO, I10JIb3a, BbII'Oda

convenient (adj.) Kon'vi:niant yIOOHBIT

conventional (adj.) kon'ven/[(a)nal OOBIUHBIH, TPOCTOM
convergence (n.) kon'v3:dz(o)ns CXOJMMOCTH

convnet (n.) ‘konv 'net KOHBOJTIOIIMOHHAS HEUPOHHAS

convolution neural
network

CCTb

convolutional (adj.)

‘konva'lu:fon (9)I

KOHBOJ’IIOHHOHHI)Iﬁ

correct (adj.)

(v.)

ka'rekt

IIPABUWJIbHBINA, COOTBETCTBYIOIINH;
UCIIPABIISITh

correctness (n.)

ka'rektnas

KOPPCKTHOCTDb, IPABHUJIbHOCTD

correlation (n.)

"Kort'lerf(o)n

COOTHOIICHHUEC, B3aUMOCBA3b,

KOPPEIIAIIUS
correspond (v.) "kor1'spond COOTBETCTBOBATh
correspondingly (adv.) | koris pondinl COOTBETCTBCHHO

cost (n.) kst IICHa, CTOMMOCTb, PAaCXO/;
(v.) CTOUTD
cover (V.) 'Kava OXBAaTBIBATh, TOKPHIBATH
create (v.) krr'ert CO3/1aBaTh
creation (n.) kri:"erf(o)n CO371aHue
critical (adj.) "Krrtikl KpaiiHe BayKHBII
crop (n.) krop CCJIbCKOXO3SIUCTBEHHAS KYJIbTYpa

cross-validation (n.)

Kkros veelr'deifn

nepeKpecTHas NpoBepka (Ha

JIOCTOBEPHOCTH )
crucial (adj.) ‘kru:f(d)l Ba)KHBIN, CYIIIECTBEHHBIH,
3HAYMMBIN
cumbersome (adj.) ‘kambas(a)m T'POMO3JIKH, TPYIOCMKHIA
current (adj.) "karant TEKYIINIA, AaKTUBHBIN
currently (adv.) "karantl B TEKYIIUIA MOMEHT, B JAHHOE

BpEMsI, cervac
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customize (v.) "kastomaiz HACTpanuBaTh, MOIU(DUIIUPOBATD
(B COOTBETCTBUH C TPeOOBAHUSIMHU
3aKa34rKa)

cut off (v.) "Kat'of npeKpalaTh, OTKIYATh

cycle (n.) ‘saik(9)l UK, asza

D

data (n.) ‘derto /'da:to JTaHHBIE, HHPOPMALIHUS;

input data BBOJIHBIC JAHHBIC;

output data BBIXO/IHBIC JJAHHBIC;

unlabeled data

HCPASMCUYCHHBIC JTaHHBIC

dataset (n.)

‘derto'set

MaCCHB JaHHBIX

daunting (adj.)

"do:ntin

HETATUBHBIN, MYTAIOIIUN

DC
direct current

dar'rekt ‘kar(a)nt

MOCTOSTHHBIN TOK

deal with (v.) di:l MMETh JIETIO C, paCCMaTpUBATh
decade (n.) ‘dekerd JCCATUIICTHE
decision (n.) dr'sr3(o)n] peleHne
decrease (v.) dizkr'i:s CHIDKAThCs, yOBIBATh;,
(n.) ‘di:kri:s CHIDKCHUE, YObIBAHHE
deduce (v.) dr'dju:s BBIBOJUTh, 3aKI/IIOYATh
define (v.) dr'famn OTIpE/IEIISATh, YCTAaHABIMBATD

definition (n.)

‘defr nif(a)n

OTIpEJICIICHUE; pa3pelieHue

deliberation (n.)

dr'libarerf(a)n

O6CY}K,Z[CHI/IC, OCMOTPUTCIIbHOCTD

delineate (v.) dr'linzert] OYEPUYUBATH, OMPEICIIATh

deliver (v.) di'lva IIOCTaBJIATh, TOOUBATHCS
pesynbrara

demanding (adj.) dr' ma:ndmy TPYAHBIA, TPYTOEMKHHA

denote (v.) dr'nout 0003HaYaTh

dense (adj.) dens IJIOTHBIN

depend (v.) dr'pend 3aBHCETbD;,

depending on

B 3aBUCHUMOCTHU OT

dependability (n.)

do penda’bilotr

(byHKIIMOHANTBHAS ) HATIEKHOCTD

dependent (adj.) dr'pendont 3aBHCHMBIH

depict (v.) dr'pikt OTHCHIBATH, N300pAKAThH

deploy (v.) dr'plor MIPUMEHSTh, UCIIOJIH30BAThH

depth (n.) dep6 riryonHa

derivative (n.) dr'rivativ POM3BOHAS (BEIUYMHA)

derive (v.) dr'rav 10JIy4aTh, BIBOJAMTD

descent (n.) dr'sent CITYCK;

gradient descent I'PaJIMEHTHBIN CITyCK

describe (v.) dis 'kraib OINKCHIBATH

design (n.) dr'zamn MPOEKT, KOHCTPYKIIHS;
(v.) MPOEKTUPOBATb,

KOHCTPYUPOBATh;

101




engineering design

TEXHUYCCKOC IMPOCKTUPOBAHUC

designate (v.) ‘dezignert 0003HAYATh, OMPEACIIATh
desired (adj.) dr'zarod KeJlaTeIbHbBIN, HYKHBIN
despite (prep.) drs 'part HECMOTPS Ha

destination (n.) ‘destr nerf(o)n 11€J1h, KOHEYHAsI TOYKA
detect (v.) dr'tekt 0OHapYKUBATh, BBISIBIISITh
detection (n.) dr'tekf(o)n oOHapyXeHHE, OTIPEICTICHUE
determine (v.) dr't3:min OIIPE/CIIATh, YCTaHABIMBATh

development (n.)

dr'velopmoant

pa3BUTHE, pa3paboTKa

deviation (n.)

‘di:vi'erf(o)n

OTKJIIOHCHHC

device (n.)
Imaging device

interpreting device
sensing device

dr'vais

YCTPOKCTBO, aIlapar;
YCTPOHCTBO 00pabOTKH
U300paXeHMi;

CEHCOPHOE YCTPOWCTBO

diagnosis (n.)

‘darog 'nousis

JAUarHoCTHKa, 06Hapy}KCHI/IC

HEUCIIPABHOCTEU
difference (n.) ‘dif(a)rans OTJIUYHE
differentiable (adj.) .difo renfiobl nuddepeHmpyemMbIii
differentiate (v.) difo'renfiert pa3nuyath, 1uddepeHnupoBaTh
digital (adj.) ‘didzit(9)l 1upoBor

dimension (n.)

d(a)r'menf(o)n

U3MEpEHUE, pa3Mephl

dimensionality (n.)

dar menfa'naelati /
do menfo'nelati

Pa3MEpPHOCTh; YUCIIO U3MEPEHUN

diminish (v.) dr' minif YMEHbBIIATH(Cs1)
direct (adj.) d(a)r rekt NPSIMOM, HETIOCPEICTBEHHBII
(v.) HAIPAaBIIATh, OPUEHTUPOBATh

direction (n.)

d(a)i'rekf(o)n

HaIlpaBJICHUE

directly (adv.)

d(a)1'rekth

HaIpsIMY10, HEOCPEICTBEHHO

disadvantage (n.)

‘disad 'va:ntids

HEAOCTAaTOK

disambiguation (n.)

.disembigjuerfon

paspenieHue NpOTUBOPEUHA

discrepancy (n.)

dis 'krep(a)nst

HECOOTBCTCTBHC, PACXOKICHHUC

discrete (adj.) drs 'kri:t JTUCKPETHBIN

discretization (n.) dis kri:t(a)r' zeif(e)n | nuckperusanus

discretize (v.) ‘diskri:taiz JTUCKPETU3UPOBATH

disparage (v.) dis ‘peeridy yYMaJIsiTh, HETATUBHO OT3bIBATHCSI

disruptive (adj.) dis 'raptiv JICCTPYKTUBHBIM,
pa3pyIINUTEIbHBIH

distance (n.) ‘dist(o)ns paccTosiHue

distinct (adj.)

drs tig(k)t

OTJIMYHBIN, YETKUH, SIBHBIN

distinction (n.)

dis tiy(k)[(a)n

OTIINYHC

distinguish (v.)

dis'tmgwif

OTJIN4YaTb, BBIACIIATH

distinguishability (n.)

dis tingwifa biriti

OTIIMYHMMOCTD, paCIIO3HABACMOCTDb
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distinguishable (adj.)

dis tmgwifabl

pa3JIMYUMBI, 3AMETHBIN

distribution (n.) "distrr bju:f(a)n pacnpeseieHme

diverge (v.) dar'vs:d3 OTKJIOHATBCS

docile (adj.) ‘dovsail IO IAFOIIMIACS, CITOCOOHBIN
domain (n.) da"mein 00J1aCTh

downsample (v.)

daun 'sa:mp(9)l

CHWIKATb pa3spCIICHHUC

downtime (n.) ‘dauntaim IPOCTOM, JUTUTEIBHOCTh OTKA3a
draw on (v.) ‘dro:'on HCXOJHMTh, OCHOBBIBATHCS HA
drawback (n.) ‘dro:baek HEJI0CTATOK
E
edge (n.) eds rpaHuIa, Kpan
effort (n.) ‘efot yCUIIHE
effortless (adj.) ‘efotlis HE TPEOYIOUIUI YCUITHIA,
OecrpensTCTBCHHBIH
elicit (v.) 1" lisit U3BJICKATh, BLIBOJUTh
eliminate (v.) 1 liminert UCKJII0YaTh, yCTPAHSITh,
JIMKBUIUPOBATH
emerge (v.) 1'M3:d3 BO3HUKATh, OSBIISATHCS
emission (n.) 1'mif(o)n BBIOPOC
employ (v.) m plor WCIIOJIH30BATh, TPUMEHSITH;

HaHMMATb

employment (n.)

m plormont

3aHSTOCTb, TPYJIOYCTPOICTBO

enable (v.) 1" nerb(d)l JaBaTh BO3MOYKHOCTD, IIO3BOJISATH
enabler (n.) 1'neibla(r) criocoOcTByIoNuUi (hakTop
encapsulate (v.) m 'kapsjulert 3aKJII0YaTh B ceOe

encounter (n.) m 'kaonto BCTpeYa, CTOJIKHOBEHUE;

(v.) BCTpeUaTh, CTAJIKUBATHCS
enforce (v.) m'o:s HIPUBOUTH B UCITOJIHEHUE
engender (v.) m’ dzendo HOPOXKIATh, TPOU3BOIUTH
engine (n.) ‘endzin MEXaHH3M, KOMITOHCHT, MaIlIMHAa,

inference engine
recommendation
engine

JIBUTATEIb;
MEXaHM3M JIOTUYECKOTO BBIBOJIA;
PEKOMEHATEIbHBIN CEPBUC

engineering (n.) end31'niarm KOHCTPYUPOBaHUE,
MAaIMHOCTPOCHHE

enhance (v.) m ha:ns YCHJIUBATh, COBEPIIICHCTBOBATH

enormous (adj.) 1'N2:mas OTPOMHBIH

ensemble (n.) on'somb(9)l aHcamOJIb

ensure (v.) m'[Uos o0ecreunBaTh, TAPAHTUPOBATh

entail (v.) m 'teil BJICYb 32 COOOH, BBI3BIBATh

enter (v.) ‘ento BBOJINTH

entire (adj.) I 'taro ICJIBIH, ITOJIHBIH, BECh

entity (n.) ‘entitr ¢IMHUIIA, CYOBEKT
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environment (n.)

m 'vai(a)ronmont

(oxpy>karorias) cpea, yCaoBUs

envision (v.) m'viz(a)n 3ayMBIBATh, IIPEIyCMATPHBATh

epoch (n.) 'I:pok AII0Xa, OT/ACIbHAS UTepPaIUs

equal (adj.) "1:kwol PaBHBII;

(v.) PaBHATHCS

equation (n.) 1" kwerz(o)n ypaBHEHUE, BRIPAKECHUE

equip (v.) 1'kwip 000pyI0BaTh,
YKOMIUICKTOBBIBATh

error (n.) ‘era omunoKa;

approximation error; OLIMOKA anmpOKCUMAIIIH;

classification error; omuoOKa Kiaccu(pHuKaIum,

root-mean-squared- CpeHsIsl KBaipaTudecKast

error (RMSE) ommuoOKa

error-back-propagation oOpaTHOE pacrpoCcTpaHEeHHE

(EBP) OIUOKH

escape (v.) 1'skeip n30erarb, yXOJIUTh OT

especially (adv.) 1'spef(o)l 0COOEHHO, IIIaBHBIM 00pa3oM

essentially (adv.) 1'senf(o)l 0 CYIIECTBY, CYIIECTBEHHBIM
obpazom

estimate (v.) ‘estr mert OLICHHUBATD, IIO/ICYMTHIBATD;

(n.) “estrmit OII€HKa, ITOJICUET

estimation (n.) ‘esti'merf(a)n OIICHKA, BBIYHCIICHUE OILICHKU

evaluate (v.) 1'vaeljuert OILICHMBATh, BHIYHCIISATh

eventually (adv.) 1'venfu(a)l B UTOTE, B PE3YJIbTATE

evidence (n.) ‘evid(o)ns CBHUJICTEIHLCTBO, OCHOBAHHE

evolve (v.) 1'Volv pa3BHUBaTh(Cs1), BBIpaOATHIBATh

exactly (adv.) 1g ' zaektli TOYHO, UMEHHO

examine (v.) 1g ' zemin MCCJIEI0BATh, AHATM3UPOBATH

exclude (v.) 1k 'sklu:d HCKITIOYATh

execute (v.) ‘eksikju:t BBITOJIHSTh

execution (n.) ‘ekst'kju:f(a)n BBINOJIHEHHE, TIPOBECHHE

exhaustive (adj.) 1g'7o:Stiv MCYEPIIBIBAIOIINN, BCCCTOPOHHUI

exhibit (v.) 1g ' zibit MOKa3bIBaTh, IEMOHCTPUPOBATH

expand (v.) 1k 'spaend paciupsTh(cs)

expectation (n.) ‘ekspek 'terf(a)n OXKUJIAHHE

expected reward OKUIa€MBIH BBIUTPHIII

expensive (adj.) 1K 'spensiv JOPOTOi

experience (n.) 1k ‘sprarions OTIBIT;

(v.) UCIIBITHIBATh

experiential (adj.) 1k 'sp1(o)rr'enf(o)l OTIBITHBIH, MPAKTHYECKUH,

OMIIMPUYECKUHI

expert system

‘eksps:t ‘sistom

IKCTIEPTHAsS CUCTEMA, CUCTEMA
00pabOTKH IKCHEPTHBIX 3HAHUHN
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expertise (n.) ‘eksps: 'ti:z OKCIIEPTHBIC 3HAHUS,
KOMITETEHTHOCTb

explicit (adj.) 1k 'splisit SIBHBIN, YETKUIN

explicitly (adv.) 1k ‘splisitlt SIBHO, OJTHO3HAYHO

explode (v.) 1k 'splood B3pbIBaTh, pa30MBATh HA YaCTH

exploration (n.) ‘eksplarerf(a)n HCCIICIOBAaHUE

explore (v.) 1k 'splo: M3y4aTh, HCCIICIOBATh

explosion (n.) ik ‘splouzn B3PBIB,;

combinatorial
explosion

KOMOWHATOPHBIN B3PbIB;
JaBUHOOOpA3HOE YBEJIMUYEHUE
3aTpar MalIMHHOTO BPEMEHU IIPU
HE3HAUYUTEITbHOM YCI0KHEHUH
3a/1a4u

exponential (adj.) .ekspa'nenf(v)l HKCIIOHEHIIMAIbHBII
expose to (v.) 1k 'spouz 1oJiBeprathb (BO3JCHCTBHIO)
express (v.) 1k 'spres BBIPAKATH

extent (n.) 1k 'stent CTENEHb, 00bEM

external (adj.) ik 'st3:n(o)l BHEIITHHUN

extract (v.) 1ks traekt M3BJICKATh

extraction (n.) 1k ‘straek[{(o)n W3BJICUCHNUC;

feature extraction

H3BJICUCHHUC ITPHU3HAKOB

extractor (n.)

feature extractor

1k 'straekta

mporpamMma JJist OTy4eHuUs
uHpOopMaIuy;

0JIOK BBIICJICHUS (XapaKTEPHBIX )
PU3HAKOB

extrapolate (v.)

1k ‘streepoalert

0000111aTh, PACIIPOCTPAHSITH B
JPYTyH0 001aCTh,
HKCTPANIOTHPOBATH

extremely (adv.) 1k 'stri:mlt KpaiiHe, Ype3BbIYaiHO
F

face (v.) feis CTaJIKUBATHCS
facial (adj.) ‘fer[(9)l JIUICBOM
facilitate (v.) fo'silitert CIoCO0CTBOBATH, 00JIEr4aTh
facility (n.) fo'silitr npeanpusTie, 000py0BaHue
fail (v.) feil naBaTh cOOM, TEPNETh HEYJauy
failure (n.) ‘ferljo HEHCIIPaBHOCTh, OTKa3, COOM
fairness (n.) ‘feanis CIIPABEJIUBOCTh
fatigue (n.) fa'ti:g YTOMJICHHE, YCTaJIO0CTh
fault (n.) fo:lt HEHCIIPABHOCTh, OTKA3
favour (n.) ‘fervo| 0J1b3a, HHTEPEC;

(v.) HOJIJICPYKUBATH, OJ00PSITh;
in favour of B M0JIb3Y, B MOJACPKKY
feature (n.) fiifo 0COOEHHOCTh, XapaKTEPUCTHKA,

IIPU3HAK
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feed (v.) fi.d 110/1aBaTh, MIepeaBaTh

feedback (n.) ‘fi:dbaek oOpaTHast CBSI3b

feed-forward (n.) “fi:d'fo:wad npsiMast CBSI3b, YIPEIKICHUC

fidelity (n.) fi'delitr JIOCTOBEPHOCTh

field (n.) fi:ld mosie, 00J1acTh

field test UCIIBITaHUS B YCIOBHSIX
SKCILTyaTaluu

finite (adj.) ‘farnart KOHCYHBIH

fission (n.) fif(o)n Jesenue, (SAepHbIN) pacias

fit (v.) fit HOJIXOUTh, TOI0UPATH,
MIOJITOHSTh, YCTAHABJINBAThH

fitting (n.) fitm 11o100p, MOATOHKA

flexibility (n.) ‘flekso ' bilitr TUOKOCTh

flexibly (adv.) ‘fleksiblr riOKO

focus (v.) ‘foukas KOHIICHTPUPOBATH(Cs),
COCpPEI0TaunBaTh(Cs)

former (adj.) ‘formo OBIBIIHH, TEPBBIii (U3 ABYX)

forward chaining

C NMPAMBIM JIOTUYCCKHUM BBIBOAOM

foundational (adj.) faun'derf(o)nal OCHOBOITOJIAr alOIIUI
fragile (adj.) ‘freedzail XPYIKAT
frame (n.), freim Kapkac, Gppenm;
(v.) IPEMOAHOCUTD
framework (n.) ‘freimws:k OCHOBA; KOMILIEKC HHCTPYMEHTOB
frequent (adj.) “fri:kwant JaCThIN
frequently (adv.) ‘fri:kwontli 94acTO, PETYJISIPHO
function (n.) ‘fagk/n byHKIHS;
goal function neneBast QyHKIIHS;
loss function (bYHKIHS IOTEPB;
cost function GYHKIUSA TI0TEPh, KPUTEPHIA
ONTUMAJILHOCTH;
transfer function nepenaTouHas QyHKIHS;
be a function of 3aBHCETH OT;
(v.) paboTaTh, ICHCTBOBATH
furthermore (adv.) 13:00'mo: KPOMeE TOT0, TaK)Ke
fuzzy inference system CUCTEMA HEYETKOTO JIOTHIECKOTO
(FIS) BBIBOJIA
G
gain (v.) gein OJIy4YaTh
gather (v.) 'gae09] coOHMpaTh
general (adj.) ‘dzen(o)ral OOIIH, OCHOBHOM
generalization (n.) ‘dzen(o)rolar zeif(a)n | o6oGIICHHE
given (prep.) ‘grv(o)n YUUTBIBAs], PU YCIOBHUH
goal (n.) gaul 11eJ1b, 3a7a4a

goal-driven (adj.)

‘gool drivon

yIpaBJIIeMbIN LEIIMU
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govern (v.) 'gAVan PYKOBOHUTh, PETyJINPOBATD,
HaNpaBJIsITh

governance (n.) 'gAVoNaNns yIpaBJICHUE, PYKOBOJCTBO

GPU, rpaduyecKuil mpoIeccop

graphics processing

unit

gradient ‘grexdront TPaCHT

granularity (n.)

.grenju’lerati

riyOvHa JAeTanu3aluu, ypOBEeHb
MOJYJIBHOCTH

graph (n.) greef rpad, rpaduk

grasp (v.) gra:sp CXBaTbIBATh, YSCHATH

grid (n.) grid CEeTKa

ground truth STAJIOHHBIC TaHHBIC

guess (n.) ges IIPEIIOJIOKECHHUE,
NpUOU3UTETBHBINA MTOICYET;

(v.) MperoaraTb, NPUOIN3UTEIHHO

TOJICUUTHIBATh

guesswork (n.) ‘geswi k JIOTaJIKH, IPEATOIO0KCHHS

guidance (n.) ‘gard(o)ns PYKOBOJICTBO, yIIPaBJICHHE

guide (n.) gard PYKOBOJICTBO, HA0OP
WHCTPYKIIWM;

(v.) HAIPABJIATh, ONPEACISAThH
guideline (n.) ‘gaidlain OPUHIINI, OOIIMH Kypc
H

handle (v.) ‘heend ()l 0o0pabaThIBaTh, MAHUITYJIUPOBATH

hardware (n.) ‘ha:dwea TEXHHYECKHE CPEJICTBA,
00OpyI0BaHuE, almapaTHOE
o0ecrieyeHue

head toward (v.) ‘hed to’'wo:d HAIPABJIATHCS

heavily (adv.) ‘hevilr CYIIIECTBEHHBIM 00pa3oM

helpful (adj.) "helpf(a)l TOJIC3HBIN, IICHHBIN

hence (adv.) hens CJIeIOBATEIILHO

heuristic (n.) hju 'ristik IBPUCTHYCCKUI aJTOPUTM;

(adj.) IBPUCTHYCCKUI

hierarchical (adj.) har'ra:kikl uepapXuIeCKuid

hill climbing hil "klarmin MOMCK BOCXOXKJIEHUEM K
BEPIIUHE, TOUCK MAaKCUMyMa
(yHKrm)

hit (n.) hit COBIIAJICHUE, PE3YJIbTAT ITOMCKA

house (v.) hauz BMEIIATh

however (adv.) hau'evo 0JIHAKO, TeM HE MEHee, KaK ObI TO
HU OBLIO

human (n.) "hju:mon YEJIOBEK

hyperparameter (n.) .haipopo'reemito TUIeprapaMerp
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identifier (n.)

ar ' dentrfaro

uaeHTUGUKaTOp

identify (v.) ar'dentifar pacro3HaBaTh, ONPEACIIATH
ignore (v.) 12 No: npeHeOperaTh, MPOMycKaTh
[1oT, industrial internet MPOMBINIJICHHBI UHTEPHET
of things BeIei
image (n.) ‘midz o0pas3, n300pakeHne
immediately (adv.) 1" mi:drotlh HEMEIJICHHO, MOMEHTAJIbHO
immense (adj.) 1'Mens OTrPOMHBIH
impact (n.) ‘impaekt BO3/ICHCTBHE, BIUSIHUE;
(v.) m pakt BIIUSTH, BO3/ICHCTBOBATH
imperfection (n.) 'Impa’fek[(a)n HECOBEPIICHCTBO, U3bsTH
implement (v.) ‘tmpliment BHEJIPSITH, OCYIIICCTBIISITH,

BBIITIOJIHATD

implementation (n.)

‘'tmpliman ‘terf(a)n

HCIIOJITHCHUEC, BHCAPCHUC,
peair3anusa

implication (n.)

ampli'kerf(a)n

IMOCJICACTBUC, HIOAHC

implicitly (adv.) mm plisith HENPSIMO, KOCBEHHO

imply (v.) 1m plar 1oJIpa3yMeBaTh, MPEANouaraTh

impossible (adj.) m 'posab (o)l HEBBITIOJTHUMBIN, HEBO3MOYKHBIN

impractical (adj.) m praktik(o)l HETPAKTUIHBIH,
Heleeco00pa3HbIi

impressive (adj.) m'presiv BIICYATIISAIONINI, BHYIIIMTEIbHBIN

improve (v.) m'pru:v yJIydIiaTh

in order to 4TOOBI

Inaccurate (adj.) m ' ekjurrt HETOYHBIN

inception (n.) m'sep[(o)n SEEEN

incidental (adj.) .1nsr'dentl CIIy4alHbIHN, SMTHU30 MY HbIH

incidentally (adv.) ‘nst ' dent(o)lr HEPUOIMYECKU; KCTATH

include (v.) m klu:d BKJTIOYATh

inclusive (of) (adj.) m 'klu:siv 3aKIoyaronui (B cede), ¢
YYETOM

incorporate (v.) m 'ko:p(o)rert BKJIFOYATh (B COCTaB),
00BETUHSATD

incorporation (n.)

m ko:pa'reifn

BKJIFOUEHUE, 00bEeTUHEHNE

increase (n.)

(v.)

‘mkri:s

yBEIIMYCHHE, POCT;
MOBBIIATH(CS1), YBEITUIUBATH(CS1)

increasingly (adv.)

m kri:simlt

BCE OOJIbIIIE, BCE Yalle

indeed (adv.)

m'di:d

JICMCTBUTEIILHO, B CAMOM JIeJIe

independent (adj.) 'indr' pendont HE3aBHCHMBbIN, aBTOHOMHBIT

independently (adv.) 'indr' pendoantl HE3aBHCHMO, aBTOHOMHO,
CaMOCTOSITEIILHO

independently (adv.) .1indr ' pendontli HE3aBHCHMO

industry (n.) "indastri POMBIIIIEHHOCTh, OTPACJIb
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inequality (n.) 1n1 kwolati HEPAaBEHCTBO

infancy (n.) "infonsi HavaJgbHas CTaaus Pa3BUTHUS
inference (n.) 'inf(a)rans JIOTHYECKHI BBIBOJI, 3aKJIFOUCHUE
inferencer (n.) ‘inf(a)ran(t)so MEXaHU3M BBIBOJIA

infinite (adj.) "infinat OECKOHEYHBIN

influential (adj.)

anflo'enf(d)l

ABTOPUTETHBIN, BIUATEIbHBIN

inherent (adj.)

m hi(a)ront

CBOMCTBECHHBIN, IPUCYIITAN

initially (adv.) 1'nif(o)l IIEPBOHAYAIILHO

injection (n.) m' dzek[(a)n BBEJICHHUE, BBO/I

input (n.) ‘nput] CUTHAJI Ha BXO/IE;

(v.) BBOJIUTH

inside (adv., prep.) 'insard BHYTpH; B

insight (n.) ‘nsart MMOHUMAaHNE

insofar as (conj.) 1nsa fair oz HACTOJIBKO, B TOM Mepe

inspection (n.) m 'spek[(a)n IPOBEPKa, OCMOTP

inspire (v.) In’'sparo BJOXHOBJIATH, BHYIIIATh

instability (n.) .1nsto’biloti HEYCTOWYNBOCTh

instance (n.) ‘nstons npumep, o0paserr;

for instance HaIpUMep

instead (adv.) m'sted BMECTO 3TOr'0, BMECTE C TEM;

instead of (prep.) BMECTO

integrity (n.) m'tegriti I[CJIOCTHOCTD, IMOJTHOTA

intelligence (n.) m 'telidz(o)ns HUHTEIICKT, pa3yM

intend (v.) m tend HaMepeBaThCs, MPEAHA3HAYATh

intensive (adj.) I 'tensiv 3aTpaTHBIN, EMKUHT

intent (n.) 1 'tent HaMepeHue, TUIaH

interact (v.) 'Into reekt B3aMMOJICHCTBOBATH

interconnected (adj.) .Intoko nektid B3aMMOCBSI3aHHBIN, COCTMHEHHBIMH

intermediate (adj.) .Into'mi:diot IPOMEKYTOYHBIH

internal (adj.) m't3:nl BHYTPEHHUH

interpret (v.) m't3:prit WHTEPIPETHPOBATh, TOJKOBATH,
aemndpoBbIBATH

interpretable (adj.) m 't3:pritobl MHTEPIIPETUPYEMBIH,
00BSICHUMBIN

interrogation (n.) m tera'gerf(o)n OIPOC, MOJyYEHUE CIIPABKH

interrogative (adj.) .Into ' rogotiv BOIIPOCHUTEJIbHBIN

interrogator (n.)

m teragerto

YCTPOMCTBO ONpPalIMBaHUs,
CUCTEMA OIpoca

intervention (n.)

inta'venf(o)n

BMCIIATCIBbCTBO

intricate (adj.)

‘ntrikert

CJIO’KHBIM, 3aMBICIIOBATHIN

intrinsic (adj.)

m'trinsik

XapAKTEPHBINA, CBOMCTBEHHbBIN

intrinsically (adv.)

m 'trinsik(a)lr

B CYOIHOCTH, B
HCﬁCTBHTCHBHOCTH

introduce (v.)

ntra'dju:s

BBOJUTDH
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invariant (n.) m've(a)ront MHBapHAHT

involve (v.) m'volv BKJIIOYATh B Ce€0s1, IIOBJICYb,
peyCMaTpUBaTh

irrefutable (adj.) 1r1 fju:tobl/i 'refjotabl | HeocopumbIii

issue (n.) 'fu: / '1sju po0JieMa, BOIpoc
iterative (adj.) 'ttorativ TIOBTOPSIONIHICS, NTEPATUHBBIH,
UKJINYECKUHN
iteratively (adv.) ‘ttorativi MHOTOKPATHO, UTEPATHBHO
J
join (v.) dzo1n 00BEIMHSATD, CBSA3BIBATH
judgment (n.) ‘d3adzmoant CYXKJIEHUE, PACCYIUTEIEHOCTD
judicial (adj.) dzu: "dif(9)l CyJeOHBIN, PABOBOM
K
keep track OTCJIC)KUBATH
kernel (n.) k3:nl PO
knowledge (n.) nolidy 3HAHUS
L
label (v.) ‘letb(a)l pasMeuars;
(n.) SIPITBIK
labor (n.) ‘letba(r) TPYA
lack (v.) leek UCIBITBIBATh HEJJOCTATOK,
HYXJIaThCs
latter (adj.) leeto HOCJICHUAN U3 ABYX
layer (n.) ‘lero CIION;
pooling layer 00bETMHSIONINN CITON
lead to (v.) li:d MIPUBOJTUTH K
learning (n.) 'I3:n1n oOyd4eHwue;
reinforcement learning oOyudeHue C MOAKPEIICHUEM;
supervised learning
unsupervised learning MaIlIMHHOE 00y4YeHHe Oe3
YUUTEIIS
level (n.) ‘lev(d)l ypOBEHB
leverage (v.) ‘levorids /| 'li:v(a)rid3 | apdexTuBHO HCITONB30BATH,
ONTUMH3UPOBATh
library (n.) larbr(a)r oubmmoTeka
lighting (n.) larti OCBEIICHHNE, OCBEIEHHOCTh
lightweight (adj.) ‘lartwert JICTKHH, YIIPOIIICHHBIH
likelihood (n.) 'larklthud BEPOSTHOCTD, ITPABIOI0I00HE
likewise (adv.) ‘lartkwaiz aHAJIOTMYHO, CXOAHBIM 00pa3oM
limelight (n.) ‘larmlart IIEHTP BHUMAaHUS
limit (n.) imit Mpeert;
(v.) OTpaHUYHMBATH
limitation (n.) limr'terf(a)n OTpaHUYCHHE
line (n.) lamn JIMHUS, KOHTYD;
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assembly line

(koHBeiepHas) TMHUSL COOPKU

linear (adj.) ‘linio JTUHCHHBIN
link (n.) link CB#13b, 3BC€HO, CCHLJIKA,;
(v.) COEJIUHATD, CBS3bIBATh

localization (n.) ‘loukalar’ zerf(a)n JIOKaIN3aIlns,
MO3UIIMOHUPOBAHHE,
pAacIOIOKEHUE

location (n.) lou'ketf(a)n MECTOHAXO0XKICHUS,
OOHapyKEHUE MECTOIOJIOKEHHSI

look for (v.) lok ' o:(r) HCKATh

loop (n.) lu:p HETIIsA, KOHTY, LEIb;

induction loop MHIYKIIMOHHAS METJIS;

loop back (v.) BO3BpAaT K HavaIy IUKJIa

loosely (adv.) lu:sh YCIIOBHO, TPUMEPHO

loss (n.) los norepsi

M

machine learning moa'[i:n MAIIIMHHOE 00yUYCHHUE

magnitude (n.) ‘maegnitju:d BEJIMYMHA

maintenance ‘meint(a)nans TEXHHYECKOE 00CITy)KHBaHHE,
HOJIJICPYKAHUE, COTPOBOKICHHE;
JIMAarHOCTUYECKOE

predictive maintenance ob6cmyxkuBanue, TO mo
TEKYIIEMY COCTOSIHUIO

majority (n.) ma’ dgoritt OOJIBIITTHCTBO

manage (v.) ‘maenidy yIPaBJIATh, PETYIHPOBAThH

management (n.) "‘maenidzmont yIpaBICHUE

manageable (adj.) ‘maenidzab(a)l yIOOHBIN B YIIPaBJICHHUH,
YIPaBISIEMbIH, IPUEMIIEMBIN

manual (adj.) ‘maenjuoal py4YHOM

manually (adv.) ‘maenjuali BPYYHYIO, B PYYHOM PEKHUME

map to (v.) map MPOCIIUPOBATh, YCTAHABIMBATH
COOTBETCTBHUE

mapping (n.) ‘maepin IPOEKIIUs, COOTHECEHHE,
npeoOpa3oBaHue TaHHBIX

marginal ‘ma:dzml npeeabHbIN

market basket noTpeOUTENbCKasl KOP3UHA

mastery (n.) ‘ma:st(o)rt YCBOCHHE, BJIaJICHUE

match (n.) meetf COBMAJICHHUE;

(v.) COBIAJIaTh, IPUBOIMTD B

COOTBETCTBUE, MOIOMPATh

mean (V.) mi:n 03HAYaTh

means (n., pl.) mi:nz CIoco0, CPeJICTBO

measure (n.) 'mez3o Mepa, CTeleHb, KpUTEPHil;

(v.) HU3MEPSThH
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measurement (n.) ‘mezomoant HU3MEPCHHE, BEIYUCICHUE

meet (v.) mi:t OTBEYaTh, COOTBETCTBOBATH

meet standards COOTBETCTBOBATH CTaHAApTaM

memorize (v.) ‘memoraiz 3aIIOMHUHATh, [IEPe1aBaTh B
aMsITh

mention (v.) ‘menf(o)n YIOMHWHATh, CChIJIAThCS HA

merely (adv.) ‘mialt MIPOCTO, TOIBKO

metric (n.) ‘metrik OKa3aTellb

microchip (n.) ‘maikro(u)tfip MHUKPOYHII, MUKPOIIPOIIECCOP

militate (v.) ‘militert CBUICTEILCTBOBATh

mimic (v.) "mimik MOBTOPSITh, UMUTHPOBATb,
MO/ICIIUPOBATH

minibatch (n.) ‘min1’baey MUHH-0aT4 (HEOOJIBIIIOE
MIOIMHOKECTBO TPEHHUPOBOYHOT'O
Habopa)

mining (n.) 'maininy n00bIYa, IOUCK, aHAITN3,

data mining I00BIYA TAHHBIX, U3BICYCHUE
MH(POPMALIUU 13 MacCUBa
JTAHHBIX; aHATIU3 U 00paboTKa
JIAHHBIX

minute (adj.) mar nju:t MeTbYaNIImiA

mirror (v.) ‘miro OTpaxaTh

misalignment (n.)

‘'misa’ latnmant

HECOBIIaACHHUC, HCCTBIKOBKA,
OTKJIOHCHHUEC OT OCH

misbehave (v.) .misbr herv HENPaBUILHO (DYHKIIMOHUPOBATH

miss (v.) mis pOIyCKaTh, HE MOMAAaTh

mitigate (v.) ‘mitigert CMSIT4aTh, YMEHbBIIIATD,
HUBEJINPOBATH

modeling (n.) ‘modliy MOJICIIUPOBAHUE

modern (adj.) modn COBPEMEHHBII, HOBBIT

modify (v.) "‘modrfar WU3MEHSTh, MOU(DHUITPOBATH

momentum (n.)

mo(u) mentom

HMITYJIBC, TOJIYOK

monotonous (adj.)

ma'not(a)nas

MOHOTOHHBIN, OJTHOOOpA3HBII

moot (adj.) mu:t CHOPHBIN

moreover (adv.) mo: 'rouvo Oosiee TOTO, HApSLY C ATHM, K
TOMY XK€

motion (n.) ‘mouf(o)n JIBDKEHUE, XOJ]

movement (n.) ‘mu:vmont JBHKCHHE, TIEPEMEIICHUE

multilayered ‘malti'lerad MHOTOCJIOMHBIHN MePCEHTPOH

perceptron (MLP) pa’septron

multiple (adj.) ‘maltip(o)l MHOTOYHCJICHHBIH,

MHOT'OKPATHBIN, CEPUMHBIN

multiple input-multiple

output (MIMO)

‘maltip(o)l "mpot
‘maltip(o)] "avtpot

MHOT'OKaHAJILHBINA BXOJ —
MHOT'OKAHAJILHBINA BBIXO]I
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mutation (n.)

mju: terf(o)n

MyTalus, USMCHCHHC

myriad (n.) ‘miriod HEHCUHCIMMOE MHOYKECTBO
N

naked eye ‘neikid a1 HEBOOPY)KEHHBIN TJ1a3

navigate (v.) ‘naevigert nepememath(cs),
OPHEHTHPOBATHCSI

necessarily (adv.) ‘nesas(a)ril 00s13aTeIbHO, HEU30EIKHO

necessary (adj.) ‘nesis(a)r HEOOXOMMBII

necessitate (n.) nr'sesitert TpeOOBaTh, JIe1aTh
HEOOXOIUMBIM

negotiate (v.) ni'gavfiert J0TOBapUBATHCA, O0CYKIATh
YCIIOBHSI

network (n.) ‘netws:k CETh;

associative network;
feed-forward neural
network;

semantic network

aCCOLMAaTUBHAs CETh;
HEUPOHHAsI CETh IPSMOI0
pacpoCTpaHeHus;
CEMaHTUYECKas CETh

neuro-fuzzy

‘nju(a)ra(u) ‘fazr

HEUPO-HEUYETKUMN

neuron (n.) ‘nju(a)ron HEHPOH
nevertheless (adv.) .nevoda'les TEM HE MCHEe
node (n.) naoud y3e,

input node BXOJTHOM y3eT,;

output node

y3CJI BBIBOJIA

non-destructive testing
(NDT)

Hepa3pyLIAIIUA METO
KOHTPOJIS, 1ePEKTOCKONUs

nondeterministic (adj.) | nondr t3:m1 nistik HEIETEPMUHUCTCKHIA
nonetheless (adv.) 'nanda’les TEM HE MEHEe

nonlinear (adj.) .non'linis HEJIMHCHHBIN
nonmonotonicity (n.) ‘non mpnata'Nisati HEMOHOTOHHOCTD
nonparametric (adj.) .Nnon para metrik HeTmapaMeTPUIeCKU
non-scalable (adj.) .non'skeilobl HeMacCIITaOMpyeMbIii
notable (adj.) "noutab ()l 3HAYUTEIIbHBIN, TPHUMeUaTeIbHBIN
notify (v.) ‘noutrfar YBEIOMJISITh, U3BEIATh
novel (adj.) "nov(d)l HOBBIM, MHHOBAITMOHHBII
novice (adj.) "NoViIS HEOIBITHBIN

number (n.) ‘namba YHCJI0, KOJTMYECTBO;

a number of psiJI, HECKOJIBKO

numerical (adj.)

nju: merik(o)l

YHMCJIIOBOM, UM CIICHHBIN

numerous (adj.)

‘nju:m(a)ras

MHOTOYHMCJICHHBIN
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O

objection (n.)

ob'dzek((a)n

BO3PaAXXCHHC

objective (n.)

ob’ dzektv

11eJIb, 3a/1a4a

objective function

1eneBast PyHKIHS

object-oriented (adj.)

'pbdzikt o:rientid

00BEKTHO-OPUEHTUPOBAHHBIM

obligation (n.)

.oblr'gerfn

00513aTEIBCTBO

observable (adj.)

ab'z3:vabl

HaOII0/1aeMbli, pa3InUUMbIN

observation (n.)

'obzo'verf(a)n

HaOII0eHUE; COOII0ICHNE

observe (v.)

ab'z3:v

Ha0II0aTh, COOJII0IaTh

obstacle (n.)

"obstok(d)l

ImoMcxa, NNpCrusATCTBUC

obstruction (n.)

ob 'strakf(a)n

IIPEIATCTBUE, 3ATPYAHECHHE

obtain (v.) ob 'tein MOJTy4aTh, IOCTUTATh
obviously (adv.) ‘obvriasl OYEBHUHO, SIBHO
occupy (v.) okjupar 3aHHMATb
occur (v.) a'ks3: CIIy4aThCsl, IPOUCXOIUTh
occurrence (n.) a'kar(o)ns 4aCTOTHOCTD; CIIyJai
offer (n.) 'ofo MIPEIJIOKECHUE;

(v.) MpeiaraTh
OI-KSL (Object SI3BIK CIIeIU()UKAIIMY 3HAHUN
Inference Knowledge
Specification
Language)
once (adv.) WANS OJHAXIbI, KOTJa-TO;

(n.) OJIMH pas3;

(prep.) KaK TOJIBKO
oncoming (adj.) 'on 'kamiy MPUOJIVDKAIOIIUNCS, Oy TyIIHiA
on-shore (adv.) 'pnfo: Ha cyIlle, Ha Oepery
open-source QuPan 'so:s 0OIIEIOCTYITHBIH;

C OTKPBITBIM HCXOJIHBIM KOJIOM
operate (v.) ‘oparert yIpaBJIsiTh, padOTaTh
opportunity (n.) ‘DPa'tjuinati BO3MOKHOCTb
outcome (n.) ‘avtkam pe3yibTaT
outline (v.) ‘avtlain KpPAaTKO M3JIaraTh
output (n.) ‘autput BBIXO/IHAs BEJIMYMHA,

(v.) BBIBOJIUTH
outweigh (v.) aot'wer IePEBENINBATh, IPEBOCXOAUTh
overall (adj.) Quvar ol HUTOTOBBIM, OOIIIHIA,

PE3yIbTUPYIOLINI
overcome (V.) o0V kam IPE0I0JICBaTh
overfitting (n.) Quvo ity nepeTpeHNpPoBKa (HEHPOHHOU

CETH); Upe3MepHOe O0yUCHHE
overflow (n.) 2oVva'flov MIEPETIOTHCHHUE;

(v.) MEePENOTHATD
overlap (n.) Qova'laep JaCTHYHOE MIEPECCUCHHE;
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(v.)

YaCTHUYHO COBIIadaThb

owing to (prep.) ‘suitu n3-3a, BCJICJICTBUE, Oaroaaps
P

package (n.) ‘paekids COBOKYITHOCTD, TTAKET;

software package MaKeT MPOrPaMMHOTO
o0ecrnevyeHus

paradigm (n.) 'paeradaim napajurma, moaxos

parallelism (n.) ‘peeralelizom napajuIeIn3M

parse (v.) pa:.z aHAJIM3UPOBATh (CHHTAKCHUC)

participant (n.) pa: tisipant Y4aCTHHUK

particular (adj.) pa'tikjula YaCTHBIN, OTICIbHBIH,
KOHKPETHBIN

particularly (adv.) pa tikjulal 0COOCHHO, B YaCTHOCTH

path (n.) pa:f yTh, MAPUIPYT

pattern (n.) ‘peetn 11abJs10H, oOpaserr, oopas

pedestrian (n.) pr destrron HEIIeX0/]

perceive (v.) pa'si:v BOCIIPUHUMATh, IOHUMATh

perception (n.) pa’'sep/n BOCITPUSITHE

perform (v.) pa'fo:m BBITIOJTHSTH, pa00TaTh,
(GYHKIIMOHUPOBATh

performable (adj.) pa ' fo:mabl BBITTOJTHUMBIN

performance (n.) pa'fa:mons 3¢ (HEeKTHBHOCTD,
POU3BOIUTEILHOCTD,
MCIIOJTHEHUE

permit (v.) pa'mit 03BOJISATh, pa3peliaTh

persuasive (adj.) pa’sweisiv yOeIUTEeIbHBIN

photogrammetry (n.) ‘foutou’ greemitrr dboTorpammerpus

pickup (n.) "pIkap B3SITHE, 3aXBAaT;

pickup position 3a)KUM I'yOOK CXBaTa

pipeline (n.) ‘paiplain KOHBEHeEp

plentiful (adj.) ‘plentif(o)l 0oJjiee YeM JI0CTaTOYHBIH,
OOMJIBHBIM

plenty (n.) ‘plenti] MHOKECTBO, Macca

point (n.) point TOYKA, MyHKT;

data point TOYKa (BBOJIA) TAHHBIX

pole (n.) paul TIOJTFOC

pollution (n.) pa'lu:fn 3arpsI3HCHUE

polynomial (adj.) "poli’ naumral HOJUHOMUHAJIbHBIH,
MHOTOWICHHBIN

pool (v.) pu:l 00bETMHATDH, HAKAIJINBATh

pose (Vv.) pauz 3aJ1aBaTh, IIOPOXKIATH;

pose challenges OBITH IPOOJIEMATHYHBIM

possess (V.) pa’zes o0anaTh

possibility (n.) 'Posa’bilrtr BO3MOKHOCTh, BEPOSITHOCTh
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posterior (adj.) pD 'Stiorio HOCIIC Y OIITHI

power (computing ‘pave CHJIa, MOIIIHOCTD

power)

powerful (adj.) ‘pavaful MOIIHBIN, CUIIbHBIH,
3¢ deKTUBHBIN

prearranged (adj.) pri:a'remndszd 3aIIaHUPOBAHHBIN,

IIPEAYCMOTPEHHBIN 3apaHee

precalculation (n.)

pri: kelkju'lerfn

MPEIBAPUTEIbHBIN NOACUYET

precede (v.) pri'si.d IPE/IIECTBOBATh

precisely (adv.) pri'saisl TOYHO

predetermine (v.) pri:dr't3:min peoNPeCIIATh

predicate (adj.) ‘predikot TIPEINKATHBIH

predict (v.) pri dikt MIPOTHO3UPOBATH,
PEIBBIYUCIISATh

prediction (n.) pri dikf(a)n IPOIHO3, IPEABbIUHCICHHIE

predictive pri diktiv HPOrHOCTHYCCKHI

predominant (adj.) pri'’dominant peo0J1aJaroIIHi

prefer (v.) pri'fs: IPEIOYUTATh

preference (n.) ‘prefrons MPEANOYTEHUE

premise (n.) ‘premis MIPEANOCHUIKA, YCTIOBUE

preprocessing (n.) 'pri: prousesin npenBapuTelibHas 00paboTka

present (v.) pri‘zent PEICTaBIISTh;

(adj.) ‘preznt HACTOSIIMHI, JTaHHBIN

preserve (V.) pri'zs:.v COXPAHATH

prevalent (adj.) ‘prevalant pe00JIaTaroNIHiA

prevent (v.) pri'vent MPEI0TBpAIIaTh

prevention (n.) pri'venfn MPEAOTBPAICHUE, YITPEKICHHEC

previously (adv.) pri:vioslt paHee, 710 3TOro

primarily (adv.) ‘praim(a)rilr / B IICPBYIO OYepe/ib, [NIABHBIM

prar'merali oOpa3om

prior (adj.) ‘praio IPEIIECTBYIONIUH, TPSKHUN

privacy (n.) ‘prarvasi / 'privosi KOH()MICHIIMATEHOCTD, TaitHa
JIMYHOW JKU3HU

proactive (adj.) prou’ &ktiv AKTUBHBIN, YITPEKTAFOIINH

probabilistic (adj.) ‘probaba’ listik BEPOSTHOCTHBIN

probability (n.) proba’bilati BEPOSTHOCTD

probably (adv.) ‘probabli BEPOSITHO

procedural (adj.) pra'si:dz(o)ral IPOIEAYPHBIN

procedure (n.) pro'si:d3o npoueaypa

proceed (v.) pra'si:d MIPOJIOJKATH(CsT), MPUCTYIIATH

process (V.) 'prouses o0OpabaTbIBaTh

processing (n.) 'prausesin o0OpaboTKa

progress (V.) pra‘gres HPOMCXOUTh, IPOJIBUTAThCS

prohibitive (adj.)

pra'hibitiv

HEBO3MOKHBIN, HEAONYCTUMBIN
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projection (n.) pra’dzekf(o)n IUTaH, IEPCIEKTUBHBIN MPOTHO3

prominent (adj.) ‘prominant BBIJIAIOIIUICS

promise (V.) ‘promis oberiarp

promising (adj.) ‘promisiy MEePCIEKTUBHBINA, UMEIOTIIAN
MOTEHITHAI

promote (v.) pra’moot MIPOJIBUTATh, CTIOCOOCTBOBATH

prone to (adj.) praun CKJIOHHBIH

proof (n.) pru:f JI0Ka3aTeJIbCTBO

propel (v.) pra'pel CTHUMYJIMPOBATh, IBUraTh

properly (adv.) ‘propalr JOJKHBIM 00pa30M, IIPABHIILHO

property (n.) ‘propat CBOMCTBO

proposition (n.)

propa‘zif(a)n

IIPOIIO3HIIMS, BBICKA3bIBaHHUE,
YTBEPKJICHHE

prove (v.) pru:v JI0Ka3bIBaTh; OKa3bIBATHCS
provide (v.) pro'vaid o0ecrneunBaTh, IPEI0CTABIIATh
pruning (n.) ‘pru:nin oTceucHue (BeTBe B JiepeBe

MOMCKa WK repedopa)
pseudo- (adj.) 'sju:doau TIICEBJIO-
pseudocode (n.) ‘sju:dou koud IICEBIOKOJ, CHMBOJIMYCCKHH KO
purchase (n.) 'p3:41s MOKYTIKa,

(v.) MOKYTaTh, IPUOOpETAThH
purpose (n.) 'P3:pas 11eJ1b, HA3HAYCHHE
pursue (v.) pa’sju: IPECICI0BaTh, MPUIACPIKUBATHCS
pursuit (n.) pa'sju:t MIOKCK, CTPEMIICHHUE
Q

quality (n.) "kwolitr KadeCTBO, CBOMCTBO
query (n.) "‘kwiori / "kwiri 3ampoc
quest (n.) kwest HOUCKH
questionable (adj.) "kwestfonabl HEIPOBEPEHHBIN, COMHUTEIILHBIMH
questionnaire (n.) LKwest[a'nes aHKeTa
quickprop kwikp'rop aNTOPUTM OBICTPOTO

pacripoCTpaHeHHSI

R

radiate to (v.) ‘rerdrert pacIpoCTPaHSITHCS
raise (V.) reiz HOBBIIIATh
random (adj.) ‘reendom] CITyJaliHbIHI

random forest

CIIly4alHBbIE JIEPEBbS PEILICHUN,
QITOPUTM CIIY4aMHOTO Jeca

randomization (n.)

‘reendomar ' zeif(9)n

paHIOMU3aNus, Xa0TH3aLUs

randomize (v.) ‘reendomaiz pPaHIOMU3HUPOBATh, BHOCUTD
AJIEMEHT CIIy4alHOCTH

randomly (adv.) ‘reendomli CIIy4aliHBIM 00pa3oM,
POM3BOJILHO

randomness (n.) ‘reendomnis IPOU3BOJIBLHOCTD, CTy4aliHOCTh
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range (n.) reinds JMara3oH;
(v.) BapbUPOBATHCS, HAXOIUTHCS B

JMara3oHe

rate (n.) rert CKOPOCTb, TEMII

ratio (n.) ‘rerfiou KO3((UILIUEHT, CTENIEHb

reachable (adj.)

readable (adj.) ri:dab ()l YUTACMbIi, CYUTHIBACMBII

readily (adv.) ‘redil JICTKO, OTIePaTHBHO

reading (n.) 'ri:tfobl JOCTHKUMBIT

realizable (adj.) 'ri:olarzabl OCYIIIECTBUMBIi

reason (n.) ri:z(o)n MpUYHHA

reasoning (n.) ri:z(o)nim MOCTPOEHUE JJOTUIECKOTO

case-based reasoning

BbIBOJ1a, POpPMUPOBAHUE
pacCyXIeHUN;
paccyxJeHHne Ha OCHOBE
MPEIEeACHTOB/aHAIOTHIHBIX
CJIy4aeB

recalculate (v.)

11 keelkjulert

INEPECUYUTHIBATD

receive (V.)

r'si:v

IMOJIy4aThb

recent (adj.)

ri;s(o)nt

HEJIaBHUU, OCISIHUMN

receptive (adj.)

It septiv

BOCITPUUMYHBBIN, CIIOCOOHBIT
MIPUHUMATH

reclassify (v.)

ri: ' klaestfar

nepexiIaccuuIupoBaTh

recognition (n.)
pattern recognition

'ri:ekoag 'nif(o)n

pacno3HaBaHKe; PU3HAHUE;
pacno3HaBaHue 00pa3oB

recognize (v.)

‘rekognaiz

paciio3HaBaTb, IPU3HABATDH

recombination (n.)

‘ri:kombi'nerf(a)n

peKOMOUHAIUS

recompute (v.)

i klaesifar

BBIYHCJIATH 3aHOBO

record (n.) 'reko:d 3aMKCh, TaHHBIC,

(v.) rr'ko:d 3aMyChIBaTh, PUKCUPOBATH
recover (v.) ' kava BOCCTAHABIIMBATh; U3BJICKATh
rectangle (n.) ‘rektaengl IPSIMOYTOJIBHUK
recurrent (adj.) rr'karoant PEKYPPEHTHBIHN, IMKINYCCKUH,

MTOBTOPSFOLIAMNCS
recursively (adv.) r'ks:sivli PEKYPCUBHO, PEKYPPEHTHO
reduce (v.) rr'dju:s CHWKaTh, COKpaIIaTh

reduction (n.)
dimensionality
reduction

rr' dakf(o)n

CHUXEHUE, COKPAIIIEHUE;
COKpallleHHE Pa3MEPHOCTU

redundancy (n.) rr’dandansi AyONHpOBaHKE, Pe3CPBUPOBAHHE,
3armac MOIIHOCTH

refer to (v.) rr'fs3: CCBUIATHCS, YIIOMUHATH;

refer to as Ha3bIBaTh, 0003HAYATH

regard (v.) rr'ga:d paccMaTpuBaTh
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regardless (adv.)

ri'ga:dlis]

HE3aBHCUMO OT, HCCMOTPS Ha

regression (n.)
polynomial regression

rr'gref(a)n

perpeccus;
MOJIMHOMUHAJIbHASL perpeccus

reinforce (v.)

i fo:s

IMOAKPCILIATE, YCUIINBATD

reinforcement (n.)

'ri;zm ' fo:smoant

IMOAKPCIJICHUC, YCHIICHUC

relate (v.) rr'lert yCTaHaBJIMBATh OTHOIIEHNUE;
relate to KacaTbCs
related (adj.) rr'lertrd CBSI3aHHBIN, CONYTCTBYIOIIHIA
relationship (n.) rr'lerf(a)nfip (B3aMO)OTHOIICHHE, CBS3b
relatively (adv.) ‘relotivii] OTHOCHUTEIILHO
relay (v.) 11:'ler nepeaaBaTh, TPAHCIUPOBATH
relevant (adj.) ‘reliv(o)nt aKTyaJIbHBIH, COOTBETCTBYOIINN
reliability (n.) rr’' lara " bilitr HaJIC)KHOCTH, 0€30TKa3HOCTh
reliance (n.) rr'larons] 3aBHCHMOCTb, IOJIaraHue
rely on (v.) ra'lar on 10JIaraThCs Ha
remain (v.) I’ mein 0CTaBaTbhCsl, COXPAHATHCS
remarkable (adj.) rr' ma:kab(a)l 3HAYUTEIIbHBIN, 3aMETHBIHI
remote (adj.) T mout yIanEHHBINA
remotely (adv.) T mootli yIanEHHO
remove (v.) ' mu:v yAamsTh, yCTPAHATD
renowned (adj.) rr'naund M3BECTHBIM, BBIIAIOIIUICS
rent (v.) rent apeH/I0BaTh
repair (n.) r’'pes PEMOHT, UCTIPaBJICHHE;

(V) PEMOHTUPOBATDH, UCIIPABIISITh
repeat (v.) r'pit MTOBTOPSITH
replace (v.) rr'plers 3aMEHSTh
replacement (n.) rr'pleismont 3aMeHa
replan (v.) ri: 'plaen] HeperIaHuPOBaTh
replicate (v.) ‘replikert HOBTOPSITh, 1yOIMPOBAThH
represent (v.) ‘repri’ zent MIPEICTABIISATH, N300paXKaTh

representation (n.)
knowledge
representation

‘reprizen ‘terf(o)n

MIPEICTABIICHUE, N300PaKCHHE;
MPEJICTABICHUE 3HAHUN

reproduce (v.) ‘ri:pra’dju:s BOCIIPOU3BOINTH, TyOJIHPOBATH

reproducible (adj.) ri:pra’dju:sab BOCIIPOU3BOAMMBIH,
ITOBTOPSIEMBIN

request (n.) rr'kwest 3arpoc, mpockoa;

(v.) TpeOOBaTh, OTIPABIIATH 3aMPOC
require (v.) rr'kwaro TpebOBaTh, HYKAAThHCS
requirement (n.) rr’ kwaramont TpeboBaHme
requirer (n.) MIPOCUTEITH
rescue (n.) ‘reskju: CIIaCeHHE;

(v.) criacathb, H30aBJISATh
researcher (n.) rr's3:fo HCCIIeI0BATEIb
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resilient (adj.) rr’ zilront OTKa30yCTOMYHNBBHIH

resort to (v.) r'zo:t npuberathb K, 00paIaThes

respect rr'spekt BHUMAaHUE, OTHOIICHUE;

with respect to YTO KacaeTcsi, B OTHOIICHUH

respectively (adv.) rr' spektivli COOTBETCTBEHHO

response (n.) I1'spons OTBET, PEAKITUS

responsibility (n.) It sponsa’ bilati OTBETCTBEHHOCTH

restriction (n.) rr'strikfn OrpaHUYCHHUE

result (v.) rr'zalt IPOUCXOANTH (B pe3yJibTaTe);

result from SIBIIATHCS PE3YJIbTATOM;

result in PUBOUTH K

retain (v.) rm'tein COXPaHSTh

retrain (v.) ri: trein nepeodyvaThb

retrieve (v.) I'tri:v MOJTy4YaTh, M3BJIEKATH

return (v.) r't3n BO3BpaIarh(cs);

(n.) n0xo11, 3hdexr

revalidate (v.) i 'validert HEPENPOBEPATH, IOATBEPIKIATh

reward (n.) rr'wo:d BO3HATPAXKICHUE

rigorous (adj.) 'rig(a)ros CTPOTHH, TINATEIHHBIN

rigorously (adv.) ‘rigorasl CTPOTO, THIATEIILHO

rigour (n.) 'rgo CTPOTOCTh, TOYHOCTH

roadmap (n.) rovd 'maep CTpaTEerMYeCKUil IIaH, OPUCHTHP

robust (adj.) rou ' bast KPEIKUI, HaIeKHBIH,
YCTOWYMBBIN

roughly (adv.) ‘rafli MPUOJIM3UTENHO

route (n.) rut MapupyT

rule (n.) MpaBuIIo;

chain rule IIETTHOE TIPABUIIO;

learning rule oOyuaroliee MpaBuo;

rule of thumb IPAKTHYECKOE MPABUIIO

run (n.) ran POroH (MMporpamMmbl);

(v.) 3aIyCKaTh, PYHKIIMOHUPOBATD,

IPOBOJTUTH

runtime (n.) ‘rantaim BpEMSI BBITIOJIHEHUS TPOTPAMMBI

S
safe (adj.) serf 0e30macHbIM, HaJCKHBIN

safety-relevant (adj.)

‘serftr ‘reliv(o)nt

BaKHBIN/CYIIIECTBEHHBIN IS
0€e301macHOCTH

sample (n.) 'sa.mp(a)l oOpasell, BLIOOPKA;
(v.) IPOBOJUTD BBEIOOPKY,
MCIIBITHIBATh
sampling (n.) ‘Sa:mpoaliy MIPOBE/ICHIE BHIOOPKHU

satisfaction (n.)

Seetrs' ek n

YIOBIIETBOPEHUE, BHIMTIOJTHEHUE
(ycnmoBuii)
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scalability (n.) skerlo'biloti MacIITaOuPyeMOCTh
scale (n.) skeil Maciirao; 1mkaa
scope (n.) skoup JMarna3oH, 001acTh
score (n.) sko: OIICHKA
scrutinize (v.) ‘skru:tonaiz THIATENBHO MPOBEPATH,
BHUMAaTEJIbHO U3y4aTh
search (n.) s3:tf MIOKCK;
breadth-first search HOWCK B IIUPHHY/IIOUCK 110
BEPIIMHAM T0/ICPCBHCB;
grid search CCTOYHBIN ITOMCK, ITepedop
apaMeTPOB IO CETKE
secure (adj.) st'kjua 0e30IaCHbIif;
(v.) o0ecreunBaTh, 3aMUNIAThH
seed (n.) si:d HaYyaJIbHOE YHCIIO
seek (v.) si:k HCKaTh, CTPEMUTHCS
select (v.) s1'lekt BBIOMpAThH
semiconductor (n.) .semikon’dakta(r) HOJTYITPOBOTHUK
sense (n.) sens CMBICI;
(v.) OIIyIIATh, CYUTHIBAT;
make sense MMETh CMBICIT
sensible (adj.) 'sensabl pa3yMHBIH, 11eJIeCO00pa3HbIi
sensor (n.) 'Sensa JATYHK
sentiment (n.) ‘sentimoant HYMOITMOHAJIbHAS OKPACKa,
TOHAJILHOCTb
separate (V.) ‘seporeit pas3aeiaTh, pa3inyaTh,
(adj.) 'seprot OTJICIIbHBIH
sequence (n.) 'si:kwans MOCJICI0BATEIbHOCTh
sequential (adj.) s1'kwen/l IIOCJIEI0OBATEIbHOCTHBIH,
MHOTOCTAIMMHBIN
service (n.) 'S3:VIS ciryx0a, yciayra
set (n.) set Habop;
(v.) yCTaHABJINBATh;
data set 00bEM JTaHHBIX, HA0OP TaHHBIX;
validation set BAJIMIALIMOHHOE MHOXKECTBO
setting (n.) 'setin yCTaHOBKA; IMapaMeTp HaCTPONKHU
several (adj.) ‘sevral HECKOJIbKO
shallow (adj.) [eelou HEBBICOKHI, MaJIOM MOITHOCTH
share (n.) Jes JOJIS;
(v.) TEATH(CST)
shift (n.) Jift CMEHa, CJIBUT;
(v.) CMEIIATh, IEPEHOCHUTD
shell (n.) Jel 000J104Ka;

expert system shell

000109Ka BKCHCpTHOﬁ CHUCTCMBI,
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He3amnoJIHeHHas (IycTas)
DKCIIEPTHAS CUCTEMA

shop floor Jop 'flo:(T) POU3BOCTBCHHBIN 1€X
shrink (v.) Jrink YMEHBIIATH(Cs1), CBOPAYNBATH
sidestep (v.) ‘sardstep OTTECHSTH, YKIIOHITHCS OT
sigmoid (adj.) 'sigmoid CUTMOMIAJIbHBIH

significant (adj.)

sig ‘nifikont

3HAYUTENbHBIN, CYIIECTBEHHbIN

significantly (adv.)

sig 'nifikantli

3HAYUTECIBHO

signify (v.) ‘signifar 0003HAYATh

similar (adj.) ‘similo| MOXO0KUH, MOA0OHBIH

similarity (n.) .S1ma ' laerati 1mo1001e, CXOACTBO

simplicity (n.) sim 'plisati MPOCTOTA

simplify (v.) ‘'simplifar YOPOIIATh

simulate (v.) ‘'simjulert UMUTHPOBATh, MOJICIIUPOBATH,
BOCIIPOU3BOIMTh

simultaneous (adj.) s(a)iml 'teinias OJTHOBPEMEHHBIH

since (conj.) sIns C TeX IOp, KakK; Tak Kak,
IOCKOJIbKY

single (adj.) 'sig(a)l OJINH, €IMHCTBEHHBIN

slope (n.) sloup HAKJIOH (()yHKITUN)

smoothly (adv.) ‘smu:0li IUTABHO

SNARC CTOXACTUYECKUI HEHPOHHBIM

(Stochastic Neural aHAJIOTOBBIH KaJIbKYJISATOP C

Analog Reinforcement HOJIKpEIUICHUEM

Calculator)

so-called (adj.) sou 'ko:ld TaK Ha3bIBa€MbIi

softmax 'soft macks MHOTOIIepeMeHHast
JIOTUCTHYECKast PYHKIIHS

software (n.) ‘softwea IporpaMMHOE 00€eCIIeUCHHE;

control software YIPaBJISIOIICe MPOrPaMMHOE
oOecrieyeHne

solely (adv.) ‘soulli UCKIIOYUTEIHHO, TOJIbKO

solution (n.) so'lu;fn peleHne

solve (v.) solv pemniarh

somewhere (adv.) 'SAmwes IJIe-TO

span (v.) spa&n OXBaTHIBATh

space (n.) speis IPOCTPAHCTBO

spatial (adj.) ‘speil POCTPAHCTBEHHBIMH

specify (n.) ‘spesifar OIPE/ICIIATh, YCTaHABIMBATh

speed up (v.) spi:d’'Ap YCKOPSTH

state (n) stert COCTOSIHHE;

(v.) YTBEPKIATh
statement (n.) ‘stertmont yTBEPIKICHHE
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steady-state (adj.)

‘stedr 'stert

YCTaHOBUBUIUICS, CPABHUTEIBHO
YCTOWYMBBIN

steer (v.) stro yIPaBJIsATh, HAIPABJIATh

stochastic (adj.) sto'keestik CTOXaCTHYECKHUH,
BEPOSATHOCTHBIN, CITyYaHBIN

stochastic gradient CTOXaCTUYECKUHN TPaIMEHTHBIN

descent (SGD) CITYCK

stochasticity (n.) Stokae'stisati CTOXaCTUYHOCTh

storage (n.) 'Sto:rid3 3alIOMUHAHKE; XPAHHUJIUIIE

store (v.) sto: XpaHUTh, BMEIIIATh

straightforward (adj.) strert' fo:wod pSIMOM, HETOCPEICTBEHHBIM

stream (n.) stri:m ITOTOK

streamline (v.) ‘stri:mlain MOJIEpPHU3UPOBATb,
COBEPIIIEHCTBOBATh

strength (n.) strenkO CHJIA, IPOYHOCTh, MPESUMYIIECTBO

strenuous (adj.) ‘strenjuas TPeOYIOIIMIA YCHITHH,
HANPSKCHHbIN

stringent (adj.) ‘strindzont KECTKHUH, CTPOrHii

strive (v.) strarv CTapaThCsl, MpUJIaraTh yCUIUs

subgraph (n.) 'sabgra.f, -greef noarpad

subsequent (adj.) 'sabsikwoant MOCIICAY IO

subset (n.) 'sabset HOJIKJIACC, MOATPYIINa

substantial (adj.) Sab 'steen(l CYIICCTBCHHBIN

subtle (adj.) ‘satl HCYJIOBMMBIH, €/1Ba Pa3IMYNMBIi

succeed (v.) sok'si:d JTOOUTBCS ycIexa

successful (adj.) sok 'sesfl YCIICTITHBINA

successor (n.) Sok 'sesa MIPEEMHHK

suffer (v.) 'safo CTpajaTh, MOJABEPraThCsl
BO3JEUCTBHUIO

sufficiently (adv.) so fifntli J0CTATOYHO

suggest (n.) So'dzest npeJyiaraTh; MPeANoaraTh

suit (v.) s(ju: MOIXO/INTh, YAOBIETBOPSThH

suited

suitable (adj.) 's(j)u:tab(a)l 1O IX O ISIIITHIA

suitably (adv.) 's(j)u:tablr JOJDKHBIM 00pa30M, JOCTATOYHO

supersede (v.) S(J)u:pa'si:d 3aMEHSTb, BHITECHSTD

supervise (v.) ‘su:pavaiz KOHTPOJINPOBATD, BHIMOIHSITh
JMCTIETYePCKUe DYyHKITUM

support vector MAIlIMHA OIIOPHBIX BEKTOPOB;

machines METO]T OTIOPHBIX BEKTOPOB

suppose (Vv.) S5’ pauvz TIpeIIoJIaraTh

surface (n.) 's3:11s MTOBEPXHOCTH

surpass (v.) So'pa:s IPEBOCXOIUTh

surplus (n.) 's3:plas M30BITOK
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surround (v.) so'raond OKpY’KaTh

survey (n.) 'S3:vel OIpocC

switch (v.) swit HIEPEKITI0YaTh;

(n.) HEPEKIII0YaTEIb
T

tailor (v.) ‘teilo aJanTUPOBATh,
IPUCIIOCA0IMBATh, CIICIIHATBHO
paspabaThIBaTh

tanh (hyperbolic TUIEepOOJTUYECKHII TAHTCHC

tangent)

taper off (v.) ‘terpa(r)'of YMEHBIIATH(Cs1), COKpAIaTh(Cst)

target (n.) "ta:grt 11EJIb;

(V) UMETh IIEITBIO

technician (n.) tek nifn TEXHUYCCKUHU CIICITUAIHCT;

service technician CTICUAHACT 110 0OCITYKUBAHHIO
000pyI0BaHUS

technique (n.) tek ‘ni:k TEXHHMKA, METOJIbI, MPUEM

tedious (adj.) 'ti:dios YTOMUTEIIbHBIH, TPYA0CMKHIA

tend (v.) tend UMETH TEHIEHIIHIO, ObITH
CKJIOHHBIM

term (v.) t3:m Ha3bIBaTh, IMCHOBATh

themselves (pron.) dom 'selvz camu

thereby (adv.) dea'bar TaKUM 00pa3oM, TEM CaMbIM

therefore (adv.) 'Oeofo: MO09TOMY, CJICOBATEIbLHO

thereof (adv.) Oear'pv COOTBETCTBEHHO, B JJAHHOM
OTHOIICHUH

though (conj.) LY XOTs

threshold (n.) ‘Oref(h)ould MOPOTOBAasT/TIpeIeIbHAs
BEJIMYMHA

through (prep.) Oru: qyepes

throughout (prep., adv.) | Oru: aot B TCUCHHUE; Ha BCEM MPOTHKEHUU

throughput (n.) ‘Oru:pot POU3BOAUTEILHOCTD,
HPOMYCKHAs CIIOCOOHOCTb

thus (adv.) OAS TaKKM 00pa3om

tie (v.) tar MIPUBSI3HIBATH

time-consuming (adj.)

‘tarm Konsju:mir

TPYAOEMKHU, OTHUMAKOLINN
MHOT'O BPEMEHHU

tool (n.) tu:l HHCTPYMEHT

toolbox (n.) "tu:1boks HHCTPYMEHTapHii, Habop
HHCTPYMEHTOB

totally (adv.) "toutali MOJIHOCTBIO

toward (prep.) to'wo:d K, B HAIIPaBJICHUHU

TPU (tensor processing
unit)

TEH30PHBINA MPOLIECCOP
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tracking (n.) ‘treekim OTCJIC)KUBAHKE, COIPOBOXKICHHE
train (v.) trein 00y4aTh
training set HA0Op JaHHBIX JJIs1 (MALTKHHHOTO)

00yueHusI

transfer (n.)

(v.)

'treensfs:(r)
treens 13:(1)

nepcaayda, mepCHoOC,
ICPCHOCUTD, IICPCAABATH

transform (v.) treens fom peoOpa3oBHIBAThH

transparency (n.) treens pacransi IPO3PavYHOCTh

treat (v.) trit TPaKTOBaTh, paCCMAaTPUBATh,
00pabaThIBaTh

tree (n.) tri: JIepeBO, IPCBOBHUIHAS CXEMa,

classification tree AepeBo Kiaccupukanuu;

decision tree nepeBo (IIOMCKa) pEeIIeHUI;

regression tree JEPEBO PETPECCUH

tremendous (adj.) tro'mendas OTPOMHBIH

trial and error ‘trarol ond ‘ero METOJ P00 U OMMOOK

tune (v.) tjun pPEryJINpOBaTh

tuning (n.) "tjuinin peryJIMpoBaHKe

tuple (n.) ‘tjurp(d)I KOPTEXK

turn into (v.) t3:n '1nto peBpaIaTh

tweaking (n.) “twikin ONTUMU3AINS, TOHKAS
HACTpPOMKa, OJICTPONKA

U

ultrasonic (adj.) Altra’sonik yJIbTPa3ByKOBOM

unartificial (adj.) An a:tr fifl €CTECTBEHHBIN, HATypaJIbHbBIN

uncertain (adj.) AN's3:tn HEOIpeAeIICHHBIN

uncertainty (n.) An's3:tnti HEONPEICTICHHOCTh

underflow (n.) ‘Andaflov WCYEC3HOBCHHE 3HAYAIIINX PSJIOB,
oTePs 3HAYMMOCTH

underlie (v.) .Anda’lar JIC)KATh B OCHOBE

undistinguishable (adj.) | andi'stipgwifob(o)l | HepaznuuuMbIiA

unfair (adj.) An'fea HECIpaBe IMBBIN

unfortunately (adv.) An'fo:tfonatli K COXAJICHHUIO

unintended (adj.) Ahn'tendrd HeTpeTHaMEPECHHBIH,
HENPETyCMOTPEHHBIN

unique (adj.) ju'nik YHUKATbHBIN

unit (n.) ‘junit ¢IMHHIIA

unlabeled (adj.) an'lerbld HETIOMEUYCHHBIN

unlike (prep.) .An'lark B OTJIMYHE OT

unlikely (adj.) An'laikli MaJIOBEPOSTHBIN

unmanned (adj.) An'mand OECIMIOTHBIN, ABTOMATHYCCKHIA

unnecessary (adj.) AN 'nesasari HEHYI)KHBIN

unparalleled (adj.) An'paeraleld UCKITIOYMTEIbHBIMH,
HENPEB30W ICHHBIN
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unpredictable (adj.) .Anpri'diktabl HEMPEICKA3yeMbIi
unravel (v.) An'raevl OOBSICHSATh, pa3rajiblBaTh
unreadable (adj.) An'ri:dab(d)l HECUNTHIBACMbIH
unremarkable (adj.) .Anrt ma:kobl HE3aMETHBIN
unseen (adj.) AN'sin HEBHMIMMBIN; HCAKTHBHBIH
unsupervised (adj.) .An'su:pavaizd 0e3 yuurerns,
HEKOHTPOJIUPYEMBIN
unsure (adj.) AN’ [0 HCYBEPEHHBIN, HeHAIEKHBIH
update (v.) Ap dert OOHOBJIATH
update rule IPaBHJIO OOHOBJICHUS
upfront (adj.) Ap frant MIPEANICCTBYIONUN
uphold (v.) Ap 'havld COOJIFOIaTh, TIOJIJICPIKUBATH
upswing (n.) 'APSWIT) MOTbEM, TTOBHITIICHHE
usefulness (n.) ‘ju:sflnos OJIC3HOCTh
usefulness (n.) ‘ju:sflnos OJIC3HOCTh
uselessness (n.) 'ju:slosnas HEI[eJIECO00Pa3HOCTh
user-friendly (adj.) Ju:zo'frendli YAOOHBIN JIJIs1 TTOJIB30BATEIS
usher in (v.) PN BO3BCIIATH, OOBSIBIIATH
utilitarian (adj.) ju:'til'te(a)rion MIPAKTUIHBIN
utilize (v.) ju:tolarz HCIIOJIb30BATh
\Y
vague (adj.) Veig HESICHBIN, HEOIPeIeACHHBIN
vagueness (n.) 'VeIgnos HEOIPEACICHHOCTh, HEYETKOCTh
valid (adj.) 'veelid JEHCTBUTEIBHBIN, TOCTOBEPHBII
validation (n.) velr'derfn MIPOBEPKA, MOTBEPIKICHHE
JIOCTOBEPHOCTH;
cross validation HepeKpecTHas MpoBepKa
pe3yJbTara Ha JJOCTOBEPHOCTH;
leave-one-out cross- METO/I UCKJTFOUCHUS OJTHOTO
validation 00BEKTA
valuation (n.) wveelju'erfn OIICHKA, OMpe/eIICHNEe IICHHOCTH
value (n.) veelju: 3HAaYEHUE, ITapaMeTp, BEIIMYNHA
vanishing ‘veenif ucye3aTh
variable (n.) ‘veariabl
dependent variable 3aBHCHMas IIEPEMEHHAs
variable (n.) HIepeMeHHas BEJIMYNHa,;
process variable peryiupyemMas mepeMeHHas,
napameTp mnpoiiecca
variance (n.) 'veorions OTKJIOHCHHE
variety (n.) Vo 'raroti pa3zHooOpasue
various (adj.) 'Vearios pa3NMYHbIN, pa3HOOOpa3HBIN
vary (v.) 'veori BapbUPOBATHLCS, U3MEHSITHCS
vehicle (n.) ‘vizokl / "vithikl TPaAHCIIOPTHOE CPECTBO,

aBTOMOOWJIb
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velocity (n.)

va'lpsati

CKOpPOCTH

verification (n.)

verifr'kerfn

ITPOBCPKA, UCIIBITAHUC,
IMOATBECPKACHNC KOPPEKTHOCTH

versatility (n.) v3:so tilati YHHUBEPCAJIbHOCTh

versus (prep.) 'V3:895 B COIIOCTABJICHHUH C, IIPOTHB

via (prep.) 'varo / 'viio gepe3

vicinity (n.) Vo 'sinati OKPYKaIoIIee MPOCTPAHCTBO

violation (n.) vaia'lerfn HapyIeHue (mpaBui),
OTKJIOHCHUE

virtue (n.) 'v3itfu: MOpaJib, HPABCTBEHHOCTh

visibility (n.) Vizo'bilati BHUJIUMOCTh

vision (n.) 'VI3n 3peHue;

computer vision MaIIMHHOE 3PCHUE

voltage (n.) 'Voultids HapPsDKCHUE

W
warn (v.) wWon IpeIyNPEKIaTh
waste (n.) weist OTXO/IbI POU3BOJICTBA, IIOTEPH;
(v.) TEPSITh, TPATUTD

weakness (n.) ‘'wi:knos ySI3BUMOCTbH, HEJIOCTATOK

wealth (n.) wel0 MaTepuaibHbIe O1ara, COCTOSIHUAE

weight (n.) wert BEC;

(v.) IIPHCBAaNBaTh BEC

weighted sum (n.) ‘wertid ‘'sam B3BCIIICHHAs CyMMa

wheel (n.) wi:l KOJIECO;

steering wheel pYJib YIIpaBICHHS

whereas (conj.) weor' &z B TO BpeMsi, KaK

whether (conj.) 'wedd M

while (conj.) wail MOKa; B TO BPEMSI KaK

white-box (n.) Oenblii MUK (00BEKT
MCCIICIOBAHMSI C TIOJTHOCTBIO
M3BECTHBIMH HUJIH MTOJIHOCTHIO
MPUHUMACMBIMH BO BHUMaHHUE
CBOWCTBaMU)

widespread (adj.) ‘wardspred pacipoCTpaHEeHHBIN

with respect to B OTHOIIICHUU;, MPUMEHUTEIHHO K

without (prep.) wi daot oe3

workshop (n.) 'W3:k[op CEeMHUHAp, COBELaHUE paboUeii
TPYIIIBI

worthwhile (adj.) ‘w3:0'wall 11eJ1eCO00Pa3HbI, ONpaBIaHHbBIN

Y
yield (n.) ji:ld BBIXO/I, 00EM BBHITTYCKa;
(v.) naBath (Ha BBIXOJIEC)
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