В. Е. Головко, П. В. Кауров, И. В. Клюшкин, А. П. Батенев

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Часть 1. СТАТИКА И КИНЕМАТИКА

Учебно-методическое пособие

Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Санкт-Петербургский государственный университет промышленных технологий и дизайна» Высшая школа технологии и энергетики

В. Е. Головко, П. В. Кауров, И. В. Клюшкин, А. П. Батенев

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Часть 1. СТАТИКА И КИНЕМАТИКА

Учебно-методическое пособие

Утверждено Редакционно-издательским советом ВШТЭ СПбГУПТД

УДК 539.4(075) ББК 30.121 я 7 Т 337

Рецензенты:

доктор технических наук, заслуженный работник высшей школы РФ, профессор кафедры системного анализа Санкт-Петербургского государственного технологического института (технического университета)

В. А. Холоднов;

кандидат технических наук, заведующий кафедрой информационно-измерительных технологий и систем управления Высшей школы технологии и энергетики СПбГУПТД В. И. Сидельников.

Головко, В. Е. Кауров, П. В., Клюшкин, И. В., Батенев, А. П.

Т 337 Теоретическая механика. Часть 1. Статика и кинематика: учебнометодическое пособие / В. Е. Головко, П. В. Кауров, И. В. Клюшкин, А. П. Батенев. – СПб.: ВШТЭ СПбГУПТД, 2022. – 53 с.

Учебно-методическое пособие соответствует программам и учебным планам дисциплины «Теоретическая механика» для студентов, обучающихся по направлениям подготовки: 15.03.02 «Технологические машины и оборудование»; 13.03.01 «Теплоэнергетика и теплотехника», 13.03.02 «Электроэнергетика и электротехника», 15.03.04 «Автоматизация технологических процессов и производств».

В учебно-методическом пособии изложен курс теоретической механики, даны основные понятия и определения. Рассмотрены разделы «Статика» и «Кинематика» и их основные задачи.

УДК 539.4(075) ББК 30.121 я 7

> © ВШТЭ СПбГУПТД, 2022 © Головко В. Е., Кауров П. В., Клюшкин И. В., Батенев А. П., 2022

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
1. СТАТИКА	4
1.1. Плоская система сходящихся сил	6
1.2. Равновесие твердого тела под действием плоской системы сил	13
1.3. Равновесие твёрдого тела под действием пространственной системы	
сил	22
2. КИНЕМАТИКА	33
2.1. Определение скорости и ускорения точки по заданным уравнениям	
её движения	33
2.2. Определение скоростей и ускорений точек твердого тела при	
поступательном и вращательном движении	38
2.3. Кинематический анализ плоского стержневого механизма	44
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	53

ВВЕДЕНИЕ

Механика играет весьма существенную роль в подготовке студентов любого профиля.

Изучая эту дисциплину, студенты знакомятся с основными законами и принципами равновесия, движения и прочности твердых тел, деталей машин и элементов конструкций. Хорошее усвоение курса механики требует не только глубокого изучения теории, но и приобретения твердых навыков решения задач. Для этого необходимо самостоятельно решить большое количество задач по всем разделам курса.

Настоящее учебное пособие содержит примеры решения задач по двум темам курса механики: статике и кинематике. Количество задач в каждом разделе позволяет выдавать индивидуальные наборы задач в зависимости от профиля подготовки бакалавра, т. е. от объема и содержания изучаемого курса механики.

1. СТАТИКА

Статикой называется раздел механики, в котором изучаются способы преобразования систем сил в эквивалентные и рассматриваются задачи на равновесие твердых тел.

Системой сходящихся сил называется такая система сил, линии действия которой пересекаются в одной точке.

Сходящиеся силы находятся в равновесии, если их равнодействующая равна нулю:

$$\vec{R} = \sum_{i=1}^{n} \vec{P}_i = 0, \tag{1}$$

Если все силы лежат в одной плоскости, то проецируя уравнение (1) на оси координат, расположенные в этой плоскости, получаем условия равновесия для плоской системы сходящихся сил:

$$\sum_{i=1}^{n} P_{ix} = 0; \sum_{i=1}^{n} P_{iv} = 0.$$
 (2)

Если же имеет место *пространственная система сил*, то все силы проецируются на три взаимно перпендикулярные оси, и условия равновесия пространственной системы сходящихся сил имеют вид:

$$\sum P_{ix}=0;$$
 $\sum P_{iy}=0;$ $\sum P_{iz}=0.$ (3)

При приведении произвольной системы сил к центру получаем главный вектор, равный геометрической сумме сил, входящих в систему:

$$\vec{R}^* = \sum_{i=1}^n \vec{P}_i , \qquad (4)$$

и главный момент для плоской системы, равный алгебраической сумме моментов всех сил относительно произвольного центра:

$$M_0 = \sum_{i=1}^{n} M_{i0}$$
 (5)

а для пространственной системы сил – геометрической сумме моментов:

$$M_0 = \sum_{i=1}^{n} \vec{M}_{i0} \tag{6}$$

Условия равновесия произвольной плоской системы сил:

$$\vec{R}^* = 0; M_0 = 0. (7)$$

При проецировании уравнений (7) на две взаимно перпендикулярные оси получаем три уравнения равновесия:

$$\sum_{i=1}^{n} P_{ix} = 0; \sum_{i=1}^{n} P_{iy} = 0; \sum_{i=1}^{n} M_{i0} = 0.$$
(8)

Условия равновесия произвольной пространственной системы сил: $\vec{R}^* = 0$; $\vec{M}_0 = 0$

$$\vec{R}^* = 0; \vec{M}_0 = 0 \tag{9}$$

При проектировании уравнения (9) на три взаимно перпендикулярные оси получаем шесть уравнений равновесия:

$$\sum_{i=1}^{n} P_{ix} = 0; \sum_{i=1}^{n} P_{iy} = 0; \sum_{i=1}^{n} P_{iz} = 0;$$

$$\sum_{i=1}^{n} M_{ix} = 0; \sum_{i=1}^{n} M_{iy} = 0; \sum_{i=1}^{n} M_{iz} = 0.$$
(10)

1.1. Плоская система сходящихся сил

Задача 1.1.1

Груз P=20 кH поднимается краном BAC посредством цепи, перекинутой через блок A и через блок D, который укреплён на стенке так, чтобы угол $CAD=30^{\circ}$ (рис. 1). Углы между стержнями крана: $CBA=60^{\circ}$, $ACB=30^{\circ}$. Определить усилия Q_1 и Q_2 в стержнях AB и AC.

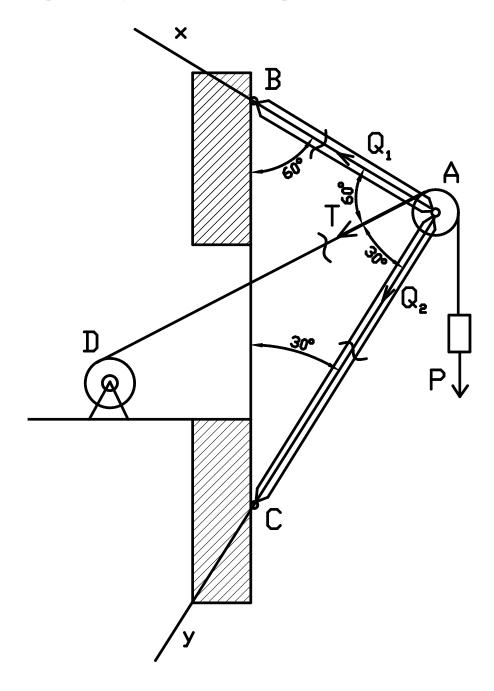


Рисунок 1

1. Составляем расчётную схему. Блок A принимаем за материальную точку, которая находится в равновесии под действием активной силы P и реакций связей Q_1 , Q_2 , T. Направления усилий Q_1 и Q_2 задаются в предположении, что стержни AB и AC растянуты.

Так как BAC=90°, то выбираем систему координат XAУ. Стержень AB совпадает с осью X, а стержень AC-c осью Y.

Все силы: P, Q_1 , Q_2 , T лежат в одной плоскости, и линии их действия пересекаются в точке A.

2. Составляем уравнение равновесия для плоской системы сходящихся сил:

$$\sum_{i=1}^{n} P_{ix} = 0; \ Q_1 + T \cdot \cos 60^{\circ} - P \cdot \cos 60^{\circ} = 0$$
(11)

$$\sum_{i=1}^{n} P_{iy} = 0; T \cdot \cos 30^{\circ} + Q_{2} + P \cdot \cos 30^{\circ} = 0$$
(12)

3. Определяем искомые величины. Так как цепь в блоке А не закреплена, то усилия по всей длине цепи одинаковы, то есть

$$T=P$$

Из (11):
$$Q_1 = P \cdot \cos 60^{\circ} - T \cdot \cos 60^{\circ} = 0$$
, $T = P = 20$ кH.

Из (12):
$$Q_2 = -P \cdot \cos 30^{\circ} - T \cdot \cos 30^{\circ} = -2 \cdot 20 \cdot \frac{\sqrt{3}}{2} = -34,6 \text{ кH}.$$

Усилия: Q_1 =0 – стержень AB не нагружен, Q_2 = – 34,6 кH – стержень AC сжат.

*Ответ:*_Q₁=0; Q₂= − 34,6 кН.

Задача 1.1.2

К шарниру А стержневого шарнирного четырёхугольника САВД, сторона СД которого закреплена, приложена сила Q=100~H под углом 45° к AB (рис. 2). Определить величину силы R, приложенной в шарнире B под углом 30° к AB таким образом, чтобы четырёхугольник САВД был в равновесии, если углы CAB= 135° ; ДВА= 90° .

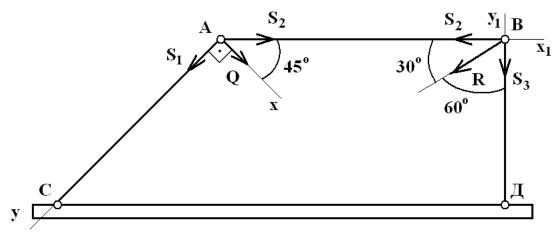


Рисунок 2

Задача решается методом «вырезания» узлов А и В. Усилия в разрезанных стержнях направляются от узлов А и В внутрь стержней, предполагая стержни работающими на растяжение.

В начале вырезается узел A. В этом узле надо определить силу S_2 , чтобы перейти к рассмотрению узла B, где приложена неизвестная сила R.

Составляем уравнения проекций сил на ось X, перпендикулярную усилию S_1 , чтобы это усилие не проецировалось на данную ось X:

$$\sum_{i=1}^{n} P_{ix} = 0; Q + S_2 \cos 45^{\circ} = 0;$$

$$S_2 = -\frac{Q}{\cos 45^\circ} = -\frac{100}{0,707} = -141 \text{ H}.$$

Рассматриваем равновесие сил, приложенных в узле В. Составляем уравнения проекций на ось x_1 , перпендикулярную усилию S_3 . (В данной задаче усилие S_3 определять не требуется).

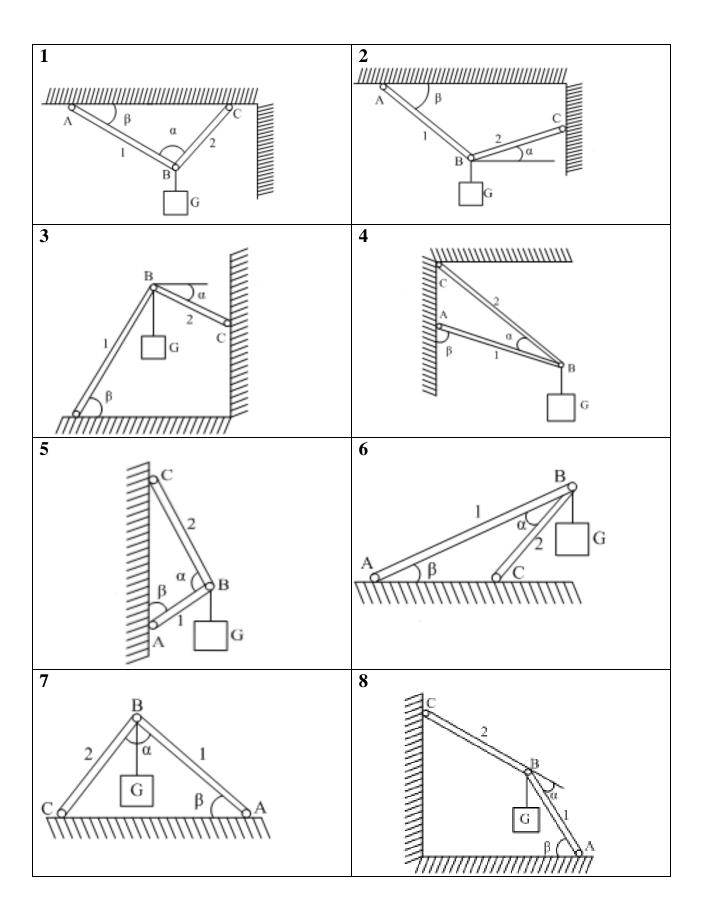
$$\sum_{i=1}^{n} P_{ix_1} = 0; \quad -S_2 - R \cos 30^{\circ} = 0;$$

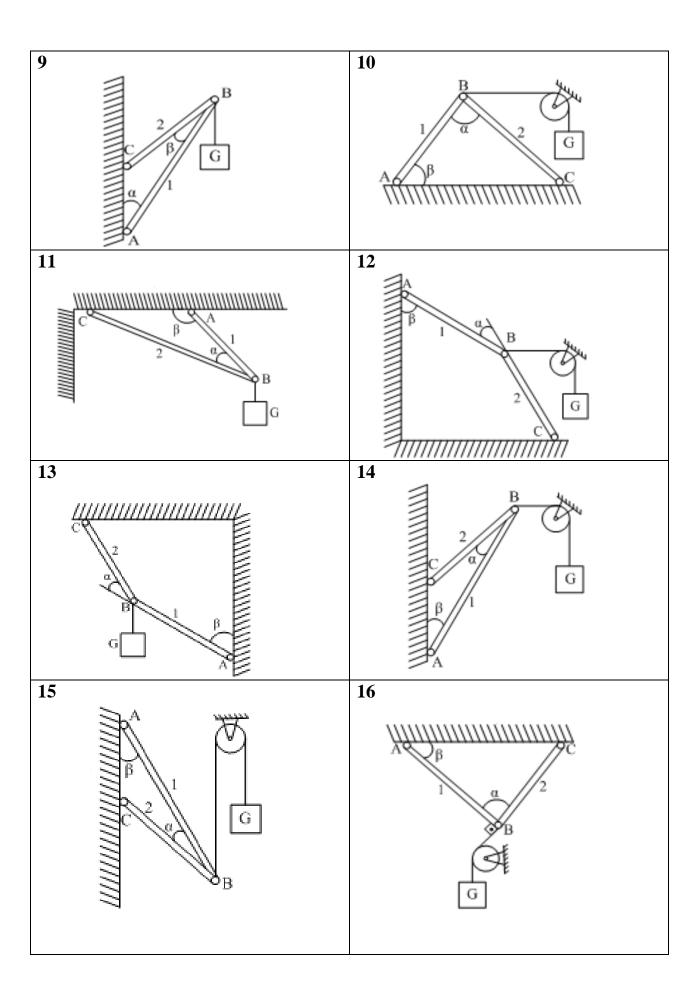
$$R = -\frac{S_2}{\cos 30^{\circ}} = -\frac{-141}{0,866} = 163 \text{ H}.$$

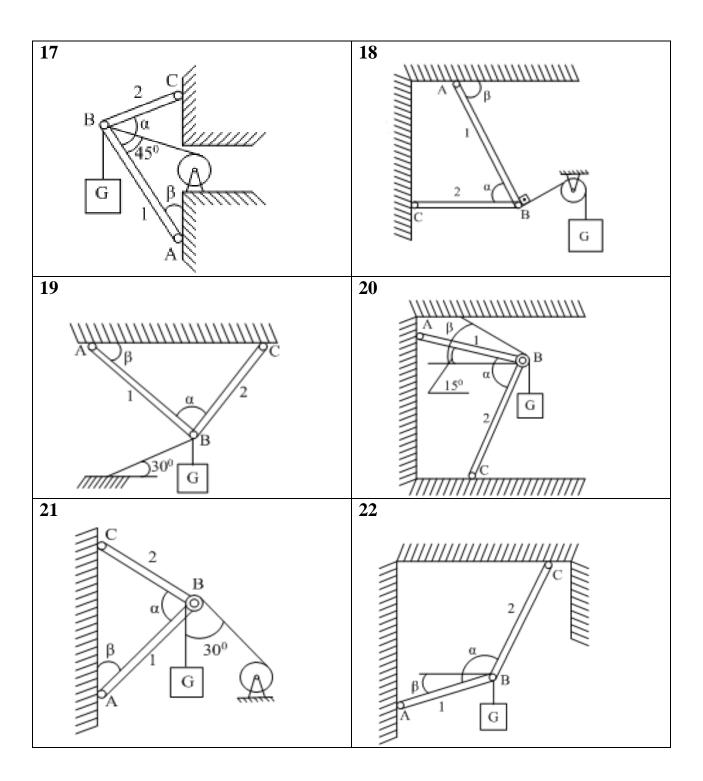
Ответ: R= 163 H.

Задача 1.1.3

Для механических систем определить усилия в стержнях AB и BC при заданных значениях веса груза G и углов α и β. Весом стержней и нитей пренебречь. Нити считать гибкими и нерастяжимыми, соединения стержней – шарнирными, блок – идеальным. Данные, необходимые для вычисления, приведены в таблице 1.







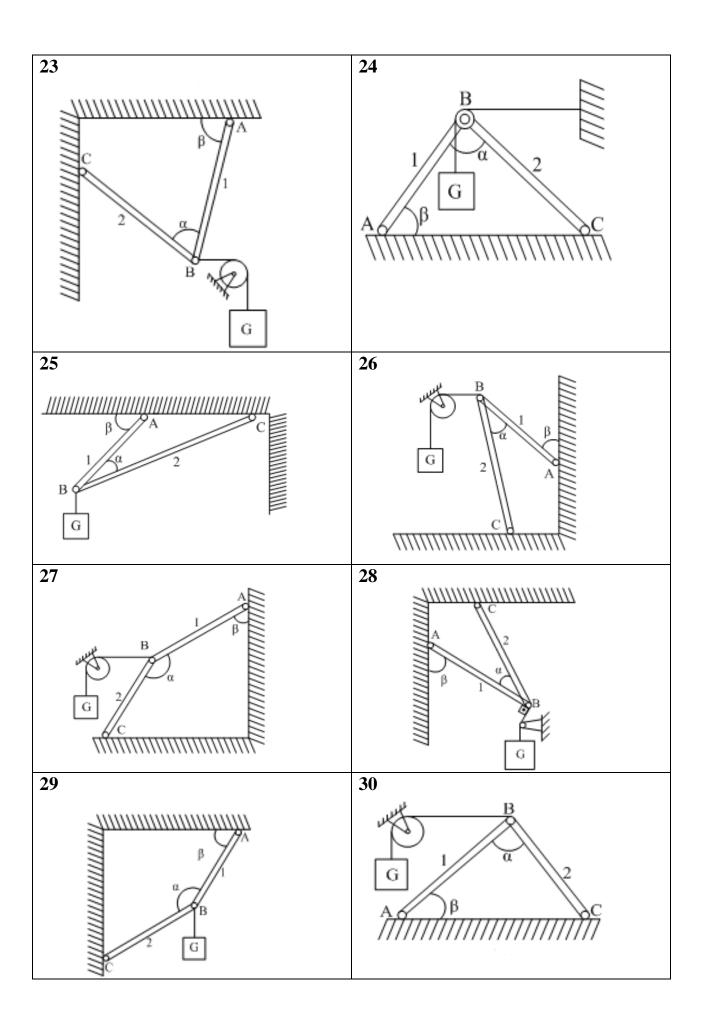


Таблица 1 – Исходные данные

№	α	β	G	
2.12	град	град	кН	
0	30	70	10	
1	75	25	15	
2	40	60	30	
3	70	25	25	
4	60	50	20	
5	35	60	25	
6	80	30	15	
7	45	55	30	
8	30	75	10	
9	25	80	20	

1.2. Равновесие твердого тела под действием плоской системы сил

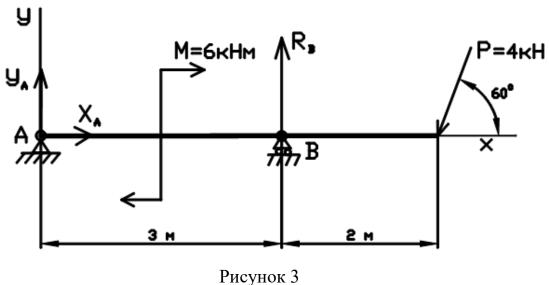
Задача 1.2.1

Определить реакции опор А и В балки, находящейся под действием одной сосредоточенной силы, и пары сил с моментом М (рис. 3).

Направления нагрузок и геометрические размеры указаны на схеме.

Решение

Балка находится в равновесии под действием задаваемых нагрузок: силы Р, момента М и реакций связей в шарнирах А и В. В шарнирнонеподвижной опоре А модуль и направление реакции определяются через её проекции на оси координат X_A и Y_A , так как её направление заранее неизвестно. В шарнирно-подвижной опоре В реакция R_B направлена перпендикулярно плоскости качения катков.



Составляем расчётную схему. Проводим оси координат X, Y. Опорные реакции X_A , Y_A , R_B направляем по положительному направлению осей. Отбрасываем связи, наложенные на балку, и заменяем их действие реакциями связей. Рассматриваем равновесие балки под действием задаваемых сил P и M и реакции связей X_A , Y_A , R_B .

Составляем три уравнения равновесия для рассматриваемой плоской системы сил. При составлении уравнения моментов за центр приведения выбираем точку, где пересекаются линии действия большего количества неизвестных.

$$\sum_{i=1}^{n} P_{ix} = 0; X_{A} - P \cdot \cos 60^{\circ} = 0;$$
(13)

$$\sum_{i=1}^{n} P_{iy} = 0; Y_A + R_B - P \cdot \sin 60^{\circ} = 0;$$
(14)

$$\sum_{i=1}^{n} M_{iA} = 0; -M + R_{B} \cdot 3 - P \cdot \sin 60^{\circ} \cdot 5 = 0.$$
(15)

Из уравнения (15):

$$R_B = \frac{M + P \cdot \sin 60^0 \cdot 5}{3} = \frac{6 + 4 \cdot 0,866 \cdot 5}{3} = 7,77 \text{ kH}.$$

Из уравнения (14): $Y_A = -R_B + P \cdot \sin 60^\circ = -7,77 + 4 \cdot 0,866 = -4,31 кH$.

Из уравнения (13): $X_A = P \cdot \cos 60^\circ = 4.0,5 = 2 \kappa H$.

Omsem: $X_A = 2 \text{ kH}$; $Y_A = -4.31 \text{ kH}$; $R_B = 7.77 \text{ kH}$.

Задача 1.2.2

Определить реакции заделки консольной балки (рис. 4), находящейся под действием равномерно распределённой нагрузки, одной сосредоточенной силы и двух пар сил.

 \mathcal{A} ано: q=3 кH/м, M_1 =2 кHм, M_2 =3 кHм, P=4 кH, α =45°, размеры показаны на чертеже.

Oпределить: реакции жёсткой заделки X_A , Y_A , M_A .

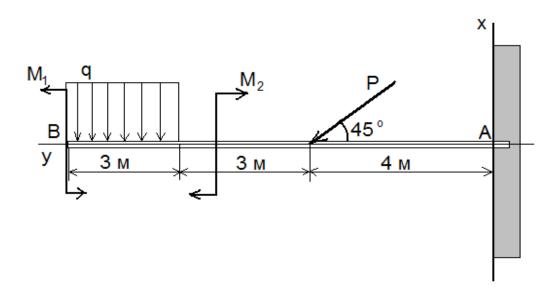


Рисунок 4

- 1. Рассмотрим равновесие балки AB, на которую действуют: активная сила P, пары сил с моментами M_1 и M_2 , равномерно распределённая нагрузка интенсивностью q и реакции связей X_A , Y_A , M_A .
- 2. Заменяем распределённую нагрузку эквивалентной сосредоточенной силой, приложенной в середине загруженного участка (рис. 5).

3. Составляем уравнения равновесия балки для плоской системы сил:

$$\sum_{i=1}^{n} P_{ix} = 0; X_{A} - P \cdot \cos 45^{\circ} - Q = 0;$$
(16)

$$\sum_{i=1}^{n} P_{iy} = 0; Y_{A} - P \cdot \cos 45^{\circ} = 0;$$

(17)

$$\sum_{i=1}^{n} M_{iA} = 0; M_A + P \cdot 4 - P \cdot \sin 45^{\circ} - M_2 + Q \cdot 8, 5 + M_1 = 0.$$
(18)

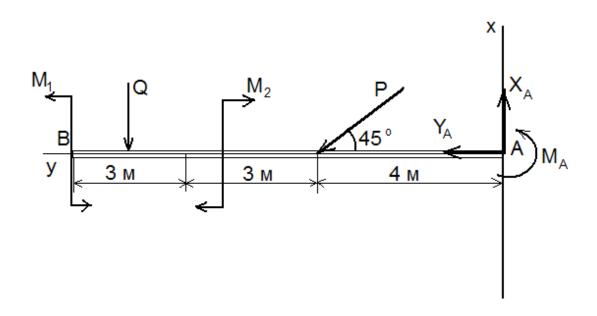


Рисунок 5

4. Определяем искомые величины

$$X_A = P \cdot \cos 45^{\circ} + Q = 4 \cdot \frac{\sqrt{2}}{2} + 9 = 11,8 \text{ кH}$$

$$Y_A = -P \cdot \sin 45^\circ = -4 \cdot \frac{\sqrt{2}}{2} = -2.8 \text{ kH}$$

из (18):
$$\mathbf{M_A} = -\mathbf{P} \cdot 4\sin 45^{\circ} + \mathbf{M_2} - \mathbf{Q} \cdot 8,5 - \mathbf{M_1} = -4 \cdot 4 \cdot \frac{\sqrt{2}}{2} + 3 - 9 \cdot 8,5 - 2 = -86,8 \text{кH}$$

Omsem: $X_A = 11.8 \text{ kH}$; $Y_A = -2.8 \text{ kH}$; $M_A = -86.8 \text{ kH}$.

Задача 1.2.3

Рама находится в равновесии под действием равномерно распределённой нагрузки q, сосредоточенной силы P и момента M (рис. 6). Опорные закрепления: в точке A — шарнирно неподвижная опора, в точке B — стержень BC. Требуется определить реакции опор.

Исходные данные: q=20 кH/m; $P=10\sqrt{3} \text{ H}$; M=4 кHm; a=0,3 m; b=0,2 m.

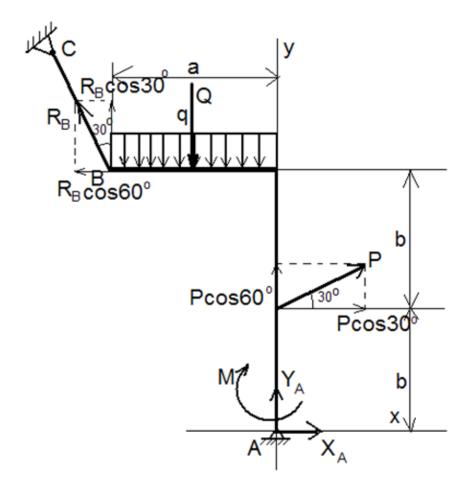


Рисунок 6

Составляем расчётную схему. Проводим оси координат XAY с началом координат в точке A. Определяем направление опорных реакций. Опорную реакцию шарнирно неподвижной опоры A будем определять через проекции на оси координат X_A и Y_A . Реакция стержня BC направлена вдоль стержня и приложена в точке B.

Заменим равномерно распределённую нагрузку q эквивалентной сосредоточенной силой Q, приложенной в середине загруженного участка:

$$Q = q \cdot a = 20 \cdot 0,3 = 6 \kappa H$$
.

Составляем уравнения равновесия для заданной плоской системы сил.

При составлении уравнения моментов за центр приведения принимаем точку A, где находятся неизвестные X_A и $Y_{A.}$

$$\sum_{i=1}^{n} M_{iA} = 0;$$

$$-M - P \cdot \cos 30^{\circ} \cdot b + Q \cdot \frac{a}{2} - R_{B} \cos 30^{\circ} \cdot a + R_{B} \cos 60^{\circ} \cdot 2b = 0$$

$$R_{B} = \frac{-M - P \cdot \cos 30^{0} \cdot b + Q \cdot \frac{a}{2}}{a \cdot \cos 30^{0} - 2 \cdot b \cdot \cos 60^{0}} = \frac{-4 - 10\sqrt{3} \cdot \frac{\sqrt{3}}{2} \cdot 0.2 + 6 \cdot 0.15}{0.3 \cdot \frac{\sqrt{3}}{2} - 2 \cdot 0.2 \cdot 0.5} = -92 \text{ kH}.$$

2.
$$\sum_{i=1}^{n} P_{ix} = 0;$$
 $-R_{B} \cdot \cos 60^{\circ} + P \cdot \cos 30^{\circ} + X_{A} = 0;$
$$X_{A} = R_{B} \cdot \cos 60^{\circ} - P \cdot \cos 30^{\circ} = (-92) \cdot \frac{1}{2} - 10\sqrt{3} \cdot \frac{\sqrt{3}}{2} = -61 \text{ kH}.$$

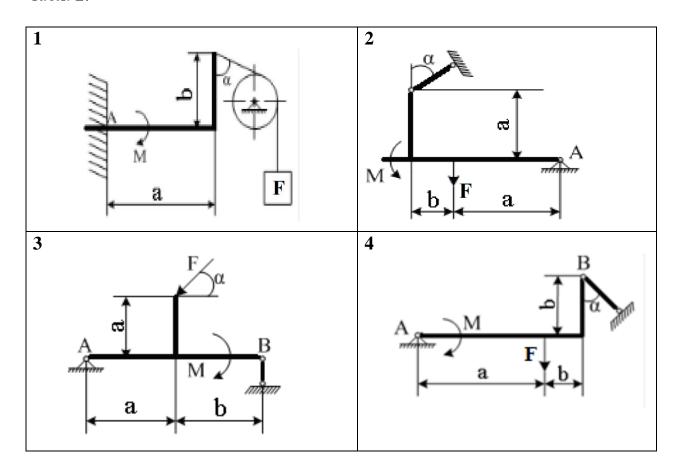
3.
$$\sum_{i=1}^{n} P_{iy} = 0;$$
 $R_{B} \cdot \cos 30^{\circ} - Q + P \cdot \cos 60^{\circ} + Y_{A} = 0;$

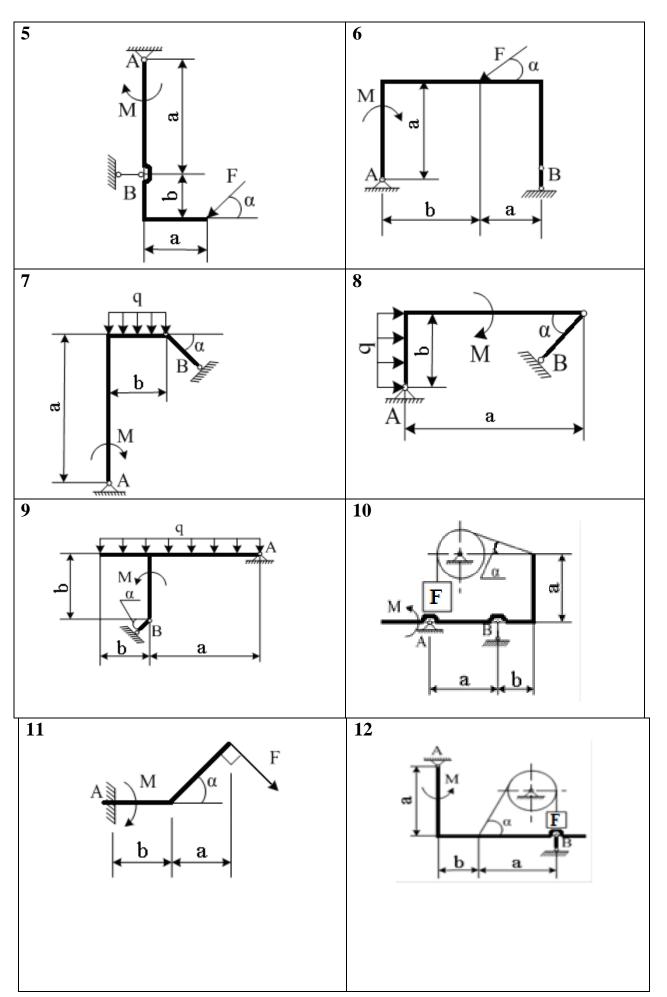
$$Y_A = Q - R_B \cdot \cos 30^0 - P \cdot \cos 60^0 = 6 - (-92) \cdot 0,866 - 10\sqrt{3} \cdot \frac{1}{2} = 76 \text{ kH}.$$

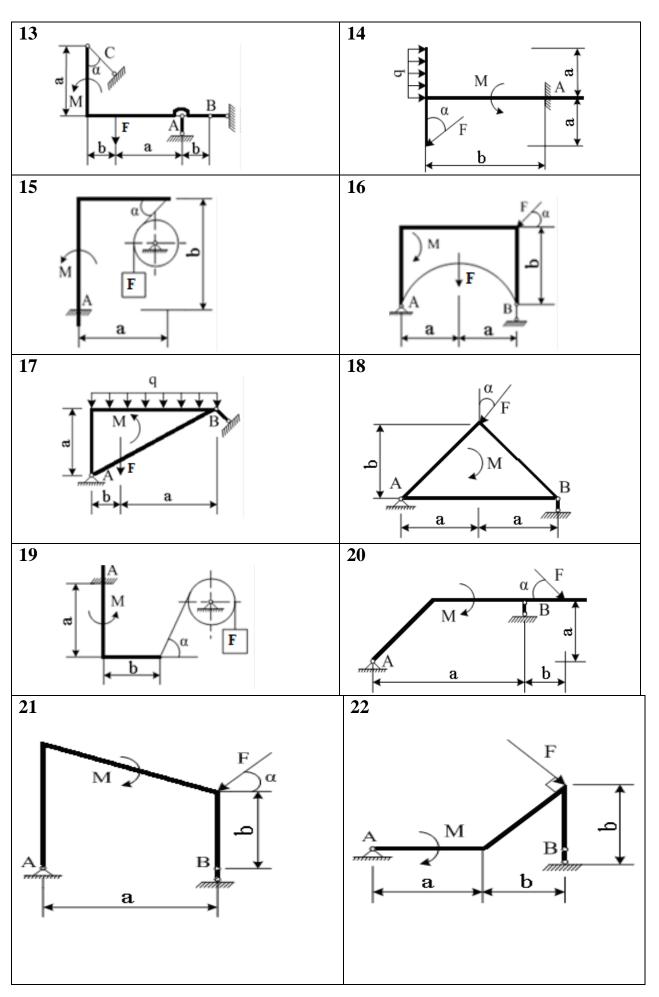
Ответ: $X_A = -61 \text{ кH}$; $Y_A = 76 \text{ кH}$; $R_B = -92 \text{ кH}$.

Задача 1.2.4

Определить опорные реакции рамы при действии заданной нагрузки. Весом рамы пренебречь. Данные, необходимые для вычисления, приведены в табл. 2.







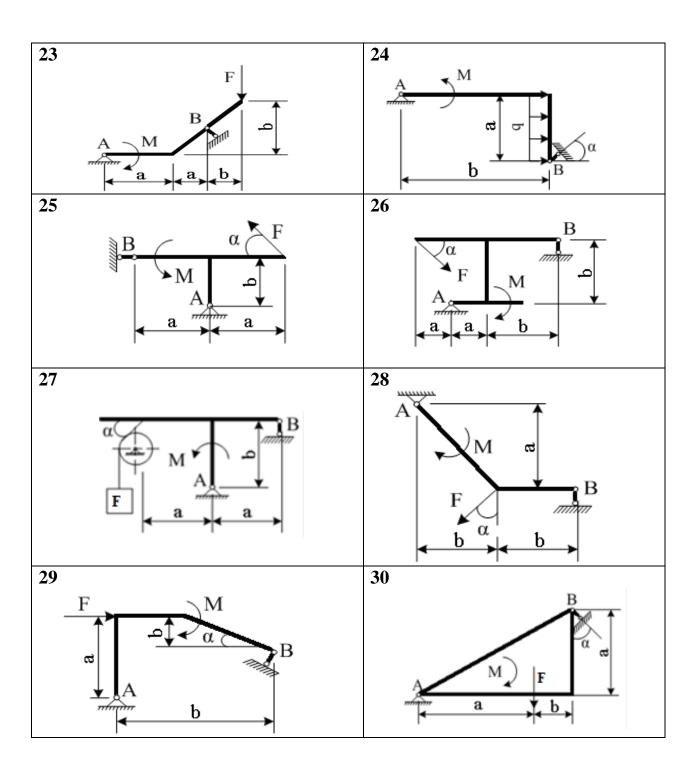


Таблица 2 – Исходные данные

NC.	F	q	M	α	a	b
$\mathcal{N}_{\underline{\circ}}$	кН	кН/м	кНм	град.	M	M
0	10	40	40	10	1	3
1	50	20	60	30	2	4
2	20	45	50	20	4	2
3	40	25	10	50	2	4
4	30	10	70	10	3	2
5	50	30	20	40	3	1
6	20	50	70	50	2	3
7	40	15	90	20	4	3
8	10	35	30	40	1	4
9	30	5	80	30	4	1

1.3. Равновесие твёрдого тела под действием пространственной системы сил

Задача 1.3.1

На вал AB ворота намотана верёвка, поддерживающая груз Q. Радиус R колеса C, насаженного на вал, в шесть раз больше радиуса барабана r вала; другие размеры указаны на рис. 7. Верёвка, намотанная на окружность колеса и натягиваемая грузом P весом 60 H, сходит с колеса по касательной, наклоненной к горизонту под углом $\alpha = 30^{\circ}$. Определить вес груза Q, при котором ворот остаётся в равновесии, а также реакции подшипников A и B, пренебрегая весом вала и трением на блоке D.

Дано: Вал АВ с барабаном. Вес груза Р=60 Н. Радиус барабана r, радиус колеса R.

R/r=6, $\alpha=30^{\circ}$.

Определить: X_{A} , Z_{A} , X_{B} , Z_{B} , вес груза Q.

Решение

1. Составляем расчётную схему. Рассматриваемая конструкция находится в равновесии под действием двух активных сил P, Q и реакций подшипников A и B.

Реакции подшипников лежат в плоскостях, перпендикулярных оси вращения Y, и определяются через проекции на оси X и Z.

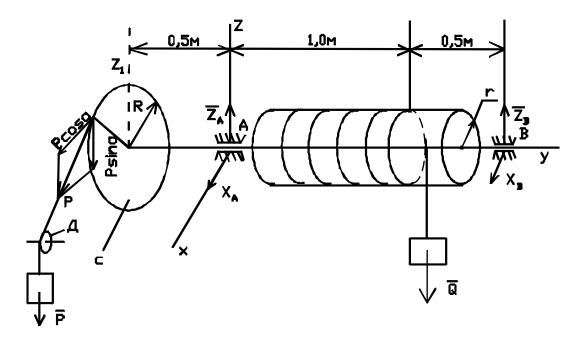


Рисунок 7

2. Составляем уравнения равновесия для рассматриваемой произвольной пространственной системы сил, составляем уравнение моментов сил относительно координатных осей.

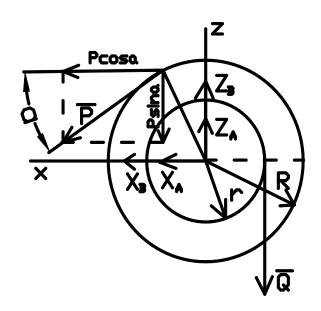


Рисунок 8

$$\sum_{i=1}^n M_{iy} = 0$$

Проецируем конструкцию на плоскость XAZ, перпендикулярную оси Y. Составляющие реакции подшипников X_A , Z_A , X_B , Z_B пересекают ось У и поэтому моментов относительно этой оси не создают (рис. 8).

$$P \cdot R - Q \cdot r = 0$$
.

Откуда:

$$Q = P \frac{R}{r} = 60 \cdot 6 = 360 \text{ H};$$

 $\sum M_{iz}=0$;

$$-X_{B}\cdot 1.5 + P\cdot \cos \alpha \cdot 0.5 = 0;$$

$$X_{B} = \frac{P \cdot \cos \alpha \cdot 0.5}{1.5} = \frac{60 \cdot 0.866 \cdot 0.5}{1.5} = 17.3 \text{ H}.$$

 $\sum M_{ix}=0$;

$$Z_{B} \cdot 1,5 - Q \cdot 1 + P \cdot \sin \alpha \cdot 0,5 = 0;$$

$$Z_{B} = \frac{Q \cdot 1 - P \cdot \sin \alpha \cdot 0.5}{1.5} = \frac{360 \cdot 1 - 60 \cdot 0.5 \cdot 0.5}{1.5} = 230 \text{ H}.$$

Составляем уравнение проекций сил на координатные оси: $\Sigma P_{ix} = 0$

$$X_A + X_B + P \cdot \cos \alpha = 0;$$

 $X_A = -X_B - P \cdot \cos \alpha = -17.3 - 60 \cdot 0.866 = -69.3 \text{ H}.$

 $\sum P_{iz}=0;$

$$Z_A + Z_B - Q - P \cdot \sin \alpha = 0;$$

$$Z_A = -Z_B + Q + P \cdot \sin \alpha = -230 + 360 + 60 \cdot 0,5 = 160 \text{ H}.$$

<u>Ответ:</u> Q=360 H, X_A =-69,3 H, Z_A =160 H, X_B =17,3 H, Z_B =230 H.

Задача 1.3.2

Однородная прямоугольная рама весом G=20 Н прикреплена к стене при помощи шарового шарнира A и петли B и удерживается в горизонтальном положении верёвкой CE, привязанной в точке C рамы и к гвоздю E, вбитому в стену на одной вертикали C A, причём $\angle ECA = 2BAC=30°$ (рис. 9). Определить натяжение верёвки C и опорные реакции.

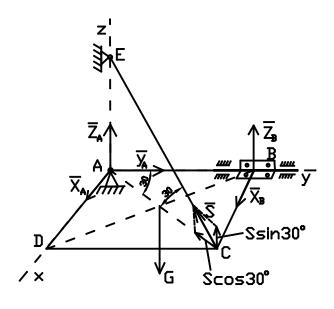


Рисунок 9

- 1. Составляем расчётную схему. На схему действует активная сила сила тяжести G и реакции связей. Шаровой шарнир A не даёт возможности перемещаться точке A в любом направлении. Реакция шарнира A определяется по трём составляющим проекциям на оси координат X_A , Y_A , Z_A . Петля B допускает возможность перемещения точки B вдоль оси вращения Y, но препятствует её перемещению в плоскости, перпендикулярной этой оси. Реакция петли B определяется по двум составляющим X_B и Z_B . Реакция верёвки CE направлена вдоль верёвки и приложена в точке прикрепления верёвки к раме, в точке C. Рассматриваемая конструкция находится в равновесии.
 - 2. Составляем уравнения равновесия для всех сил, приложенных к раме:

$$\sum_{i=1}^{n} P_{iX} = 0; \quad X_A + X_B - S \cdot \cos 30^{\circ} \cdot \sin 30^{\circ} = 0;$$
 (19)

$$\sum_{i=1}^{n} P_{iy}$$
; $Y_A - S \cdot \cos 30^{\circ} \cdot \cos 30^{\circ} = 0$; (20)

$$\sum_{i=1}^{n} P_{iz}$$
; $Z_A - G + Z_B + S \cdot \sin 30^{\circ} = 0$. (21)

Для составления уравнений моментов изобразим на вспомогательном чертеже проекции рассматриваемой конструкции вместе с силами на плоскостях, перпендикулярных к осям.

Плоскость, перпендикулярная оси Х (рис. 10).

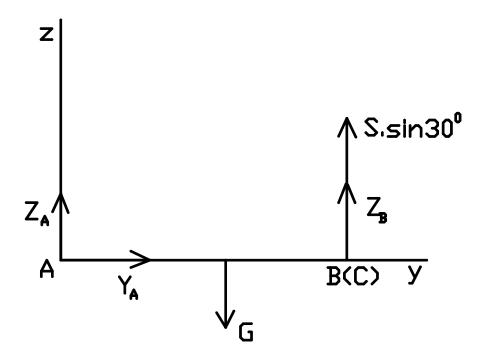


Рисунок 10

$$\sum_{i=1}^{n} M_{iX} = 0; -G \frac{AB}{2} + Z_B \cdot AB + S \cdot \sin 30^{\circ} \cdot AB = 0.$$
 (22)

Плоскость, перпендикулярная оси У (рис. 11).

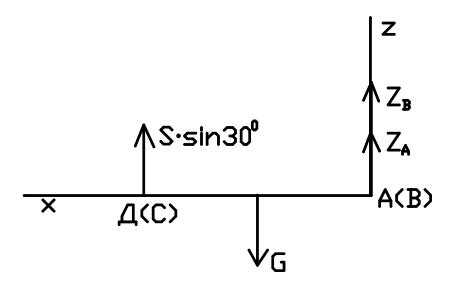


Рисунок 11

$$\sum_{i=1}^{n} M_{iy} = 0 ; G\frac{AD}{2} - S \cdot \sin 30^{\circ} \cdot AD = 0.$$
(23)

Плоскость, перпендикулярная оси Z (рис. 12).

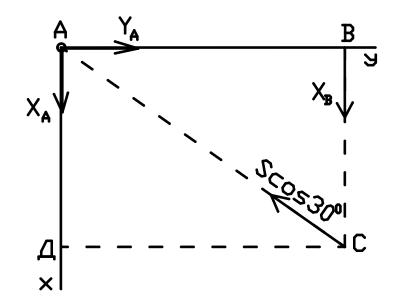


Рисунок 12

$$\sum_{i=1}^{n} M_{iZ} = 0; X_{B} \cdot AB = 0$$
 (24)

3. Определяем искомые величины, решая уравнения (19) – (24): из (24): X_B =0;

$$_{\text{из (23):}}$$
 $S = \frac{G}{2\sin 30^{\circ}} = \frac{20}{2 \cdot 0.5} = 20 \text{H};$

из (22):
$$Z_B = \frac{G}{2} - S \cdot \sin 30^0 = \frac{20}{2} - 20 \cdot 0.5 = 0$$
H;

из (19):
$$X_A = S \cdot \cos 30^{\circ} \sin 30^{\circ} = 20 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = 8,66 \text{ H};$$

из (20):
$$Y_A = S \cdot \cos 30^{\circ} \cos 30^{\circ} = 20 \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = 15 \text{ H};$$

из (21):
$$Z_A=G-Z_B-S\cdot sin30^\circ=20-0-20\cdot 0,5=10~H.$$

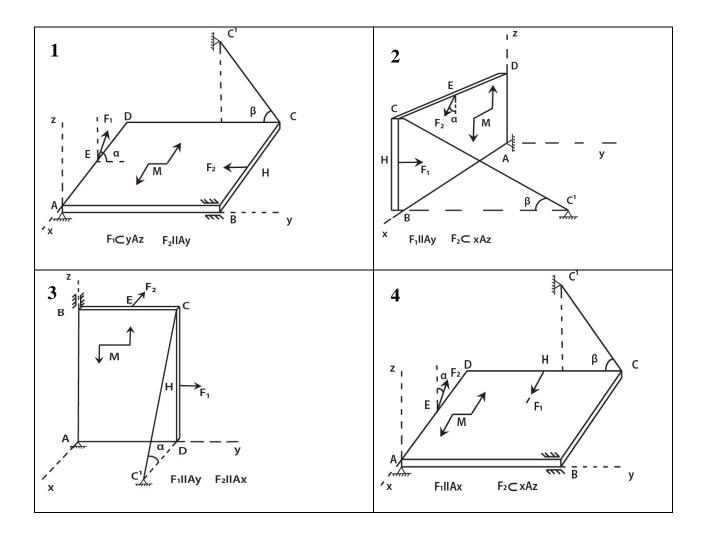
Omsem: S=20 H; X_A =8,66 H; Y_A =15 H; Z_A =10 H; X_B = Z_B =0.

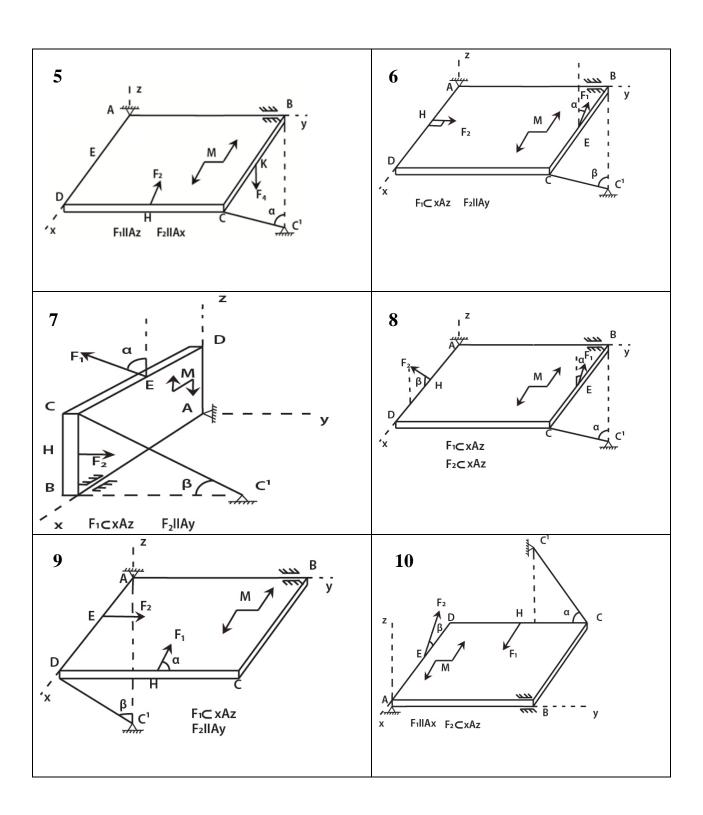
Задача 1.3.3

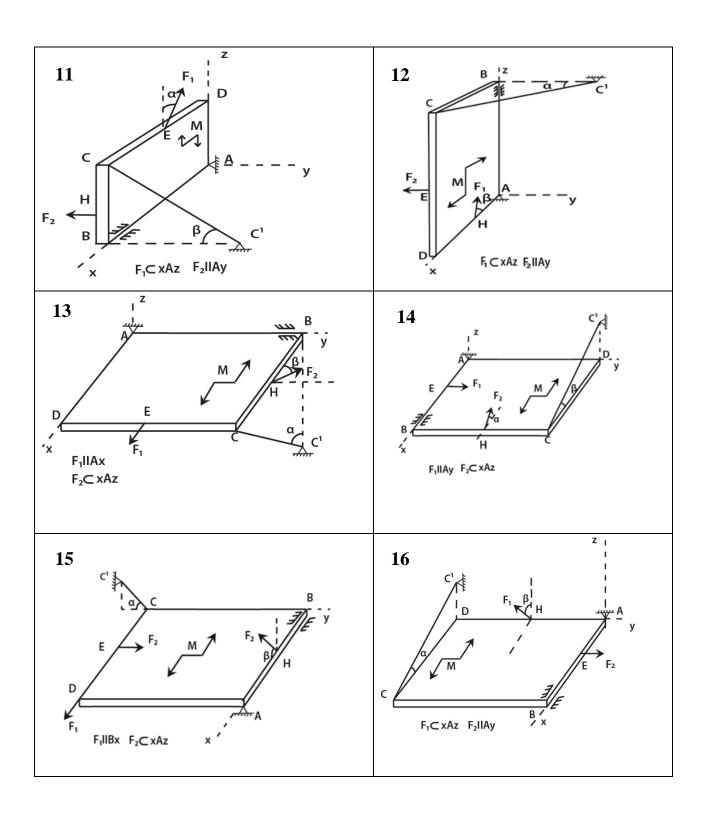
Прямоугольная однородная плита ABCD весом P со сторонами AB и BC закреплена в точке A при помощи шарового шарнира, в точке B — при помощи цилиндрического шарнира, а в точке C удерживается стержнем CC^1 . К плоскости плиты приложена пара сил M, а к серединам граней плиты H и E приложены соответствующие две силы F_1 и F_2 . Остальные величины показаны на рисунках.

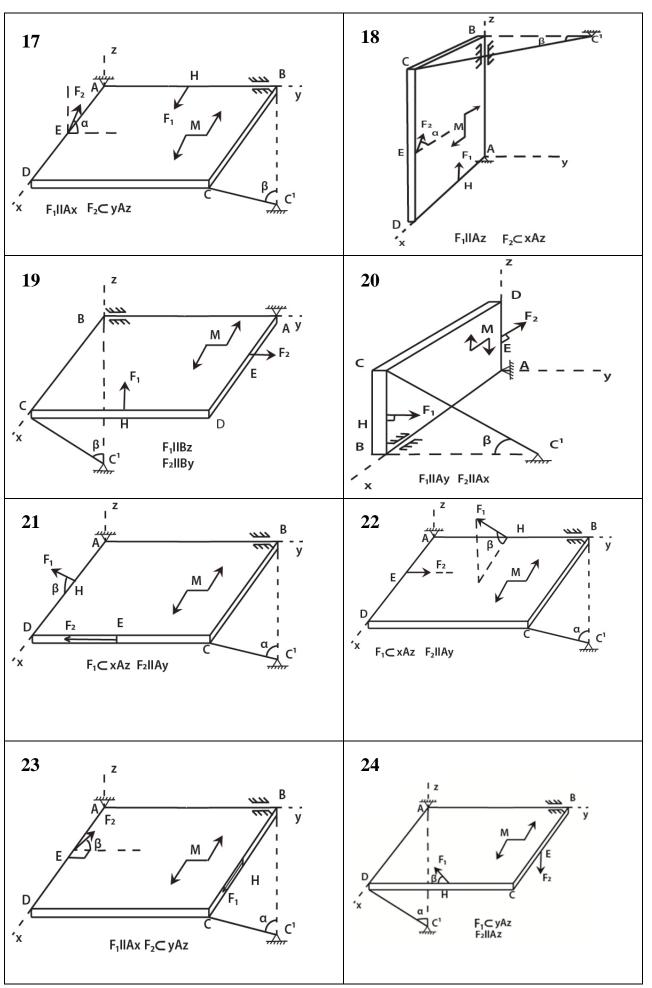
Определить реакции шарниров A и B и стержня CC^1 , крепления C и C^1 шарнирные.

Данные, необходимые для вычисления, приведены в табл. 3.









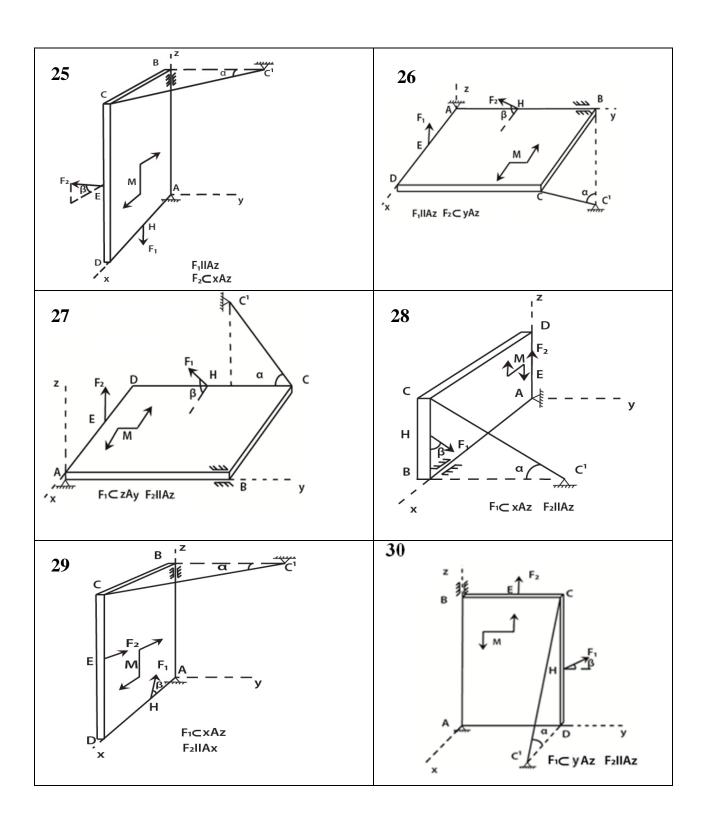


Таблица 3 – Исходные данные

No	P	F_1	F_2	M	AB	BC	α	β
710	кН	кН	кН	кНм	M	M	град	град
0	10	4	3	20	10	8	20	70
1	11	6	7	36	6	5	35	65
2	12	10	11	28	8	3	50	60
3	13	4	5	22	9	7	30	45
4	14	8	9	40	6	4	40	50
5	17	2	11	32	8	4	50	40
6	19	10	9	24	12	5	45	30
7	16	8	3	35	10	7	60	50
8	18	6	7	30	12	8	65	35
9	15	2	5	34	11	9	70	20

2. КИНЕМАТИКА

Кинематикой называется раздел механики, в котором изучаются геометрические свойства движения тел без учета их массы и действующих на них сил.

2.1. Определение скорости и ускорения точки по заданным уравнениям её движения

Задача 2.1.1

Движение точки задано уравнениями: x = 3t, $y = \frac{3}{t}$ (см).

Определить в моменты времени $t_1 = 1c$ и $t_2 = 2c$ скорость точки, ускорение точки, касательное и нормальное ускорение и радиус кривизны траектории. Определить и построить траекторию точки.

Решение

Для определения уравнения точки исключаем параметр t из уравнений движения: $t = \frac{x}{3}$. Подставляем это значение в уравнение координаты у: $y = \frac{9}{x}$ — уравнение гиперболы.

Точка движется по ветви гиперболы, расположенной в верхнем правом квадранте, так как при подстановке времени t > 0 в уравнения движения обе координаты принимают положительное значение. Движение точки происходит сверху вниз.

Траекторию строим по координатам:

Время t, c	0	$\frac{1}{3}$	$\frac{1}{2}$	1	2	3	∞
Х, см	0	1	1,5	3	6	9	8
Ү, см	8	9	6	3	1,5	1	0

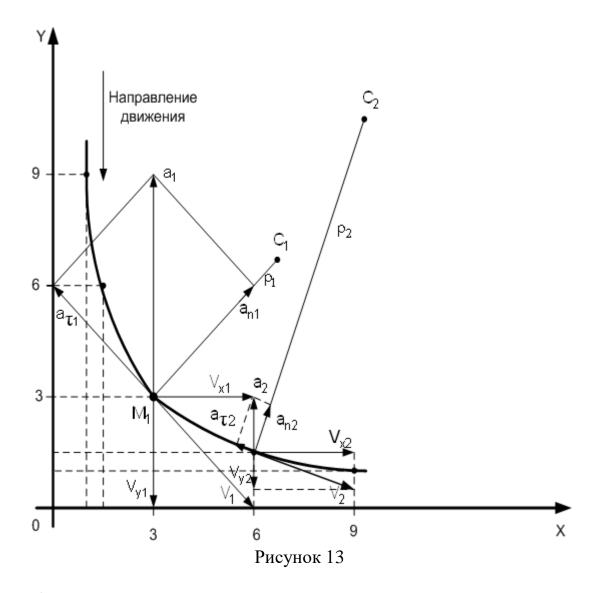
Определяем скорость точки по её проекциям на координатные оси:

$$V_{x} = \frac{dx}{dt} = 3\left(\frac{c_{M}}{c}\right);$$

$$V_{y} = \frac{dy}{dt} = -\frac{3}{t^{2}}\left(\frac{c_{M}}{c}\right).$$

Проекции скорости и их значения для точек в заданный момент времени:

при
$$t_1 = 1$$
 с: $V_{x1} = 3\left(\frac{c_M}{c}\right)$; $V_{y1} = -\frac{3}{1^2} = -3\left(\frac{c_M}{c}\right)$; $V_1 = \sqrt{V_{x1}^2 + V_{y1}^2} = \sqrt{3^2 + (-3)^2} = 4, 2\left(\frac{c_M}{c}\right)$; при $t_2 = 2$ с: $V_{x2} = 3\left(\frac{c_M}{c}\right)$; $V_{y2} = -\frac{3}{2^2} = -\frac{3}{4}\left(\frac{c_M}{c}\right)$; $V_2 = \sqrt{V_{x2}^2 + V_{y2}^2} = \sqrt{3^2 + \left(-\frac{3}{4}\right)^2} = 3, 1\left(\frac{c_M}{c}\right)$.



Определяем проекции ускорения точки на координатные оси:

$$a_{x} = \frac{dV_{x}}{dt} = \frac{d^{2}x}{dt^{2}} = 0\left(\frac{cM}{c^{2}}\right);$$

$$a_{y} = \dot{V}_{y} = \ddot{y} = \frac{d}{dt}\left(-\frac{3}{t^{2}}\right) = \frac{6}{t^{3}}\left(\frac{cM}{c^{2}}\right).$$

Проекции ускорения и их значения для точек в заданный момент времени:

при
$$t_1 = 1$$
 с: $a_{x1} = 0$; $a_{y1} = \frac{6}{1^3} = 6\left(\frac{cM}{c^2}\right)$; $a_1 = \left|a_{y1}\right| = 6\left(\frac{cM}{c^2}\right)$; при $t_2 = 2$ с: $a_{x2} = 0$; $a_{y2} = \frac{6}{2^3} = \frac{3}{4}\left(\frac{cM}{c^2}\right)$; $a_2 = \left|a_{y2}\right| = \frac{3}{4}\left(\frac{cM}{c^2}\right)$.

Для определения касательного и нормального ускорений переходим к естественному способу задания движения точки.

Касательные ускорения:

$$a_{\tau} = \frac{dv}{dt} = \frac{d}{dt} \sqrt{V_{x}^{2} + V_{y}^{2}} = \frac{d}{dt} \sqrt{\dot{x}^{2} + \dot{y}^{2}} = \frac{2 \ddot{x} \ddot{x} + 2 \dot{y} \ddot{y}}{2 \sqrt{\dot{x}^{2} + \dot{y}^{2}}} = \frac{V_{x} a_{x} + V_{y} a_{y}}{V}.$$
При $t_{1} = 1$ c: $a_{\tau 1} = \frac{3 \cdot 0 + (-3) \cdot 6}{4, 2} = -\frac{18}{4, 2} = -4, 2 \left(\frac{cM}{c^{2}}\right);$
при $t_{2} = 2$ c: $a_{\tau 2} = \frac{3 \cdot 0 - 0, 75 \cdot 0, 75}{3, 1} = -0, 18 \left(\frac{cM}{c^{2}}\right).$

Нормальные ускорения: $a_n = \sqrt{a^2 + a_\tau^2}$.

При
$$t_1 = 1$$
 с: $a_{n1} = \sqrt{a_1^2 - a_{\tau 1}^2} = \sqrt{6^2 - \left(-4, 2\right)^2} = 4, 2\left(\frac{cM}{c^2}\right);$
при $t_2 = 2$ с: $a_{n2} = \sqrt{a_2^2 - a_{\tau 2}^2} = \sqrt{0,75^2 - \left(-0,18\right)^2} = 0,71\left(\frac{cM}{c^2}\right).$

Определяем радиус кривизны траектории в заданные моменты времени:

$$a_n = \frac{a^2}{\rho}; \ \rho = \frac{V^2}{a_n}.$$
 При $t_1 = 1$ с: $\rho_1 = \frac{V_1^2}{a_{n1}} = \frac{4,2^2}{4,2} = 4,2$ (см). При $t_2 = 2$ с: $\rho_2 = \frac{V_2^2}{a_{n2}} = \frac{3,1^2}{0,71} = 13,5$ (см).

Все результаты решения показаны на чертеже (рис. 13).

Ответ: при
$$t_1 = 1$$
 c: $V_1 = 4, 2\left(\frac{cM}{c}\right)$, $a_1 = 6\left(\frac{cM}{c^2}\right)$, $a_{\tau 1} = -4, 2\left(\frac{cM}{c^2}\right)$, $a_{n1} = 4, 2\left(\frac{cM}{c^2}\right)$, $\rho_1 = 4, 2\left(cM\right)$; при $t_2 = 2$ c: $V_2 = 3, 1\left(\frac{cM}{c}\right)$, $a_2 = \frac{3}{4}\left(\frac{cM}{c^2}\right)$, $a_{\tau 2} = -0, 18\left(\frac{cM}{c^2}\right)$, $a_{n2} = 0, 71\left(\frac{cM}{c^2}\right)$, $\rho_2 = 13, 5\left(cM\right)$.

Задача 2.1.2

В соответствии с заданными уравнениями движения определить траекторию движения точки, а для момента времени t_1 – положение точки на траектории. Найти ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Данные, необходимые для вычисления, приведены в табл. 4. Координаты даны в метрах, время - в секундах.

No॒	x = x(t)	y = y(t);
1	$x = at^2 + bt + c$	y = e t + f
2	x = b t	$y = d t^2 + f t + e$
3	$x = c \cos(\pi t)$	$y = e \sin(\pi t)$
4	x = a t + b	$y = -\frac{e}{t + f}$
5	$x = a \cos\left(\frac{\pi t}{b}\right)$	$y = d \sin \left(\frac{\pi t}{b} \right)$
6	$x = a t^2 + b$	y = e t + d
7	$x = t^2 - b t + c$	y = t + e
8	$x = a \cos\left(\frac{\pi t}{c}\right)$	$y = f \sin\left(\frac{\pi t}{c}\right)$
9	x = -c t - b	$y = -\frac{f}{t + e}$
10	$x = a \cos\left(\frac{\pi t}{c}\right) + b$	$y = e \sin\left(\frac{\pi t}{c}\right)$
11	$x = a t^3 + b t + c$	y = f t + e
12	x = a t + b	$y = d t^2 + e$
13	$x = a \cos\left(\frac{\pi t^2}{c}\right)$	$y = \sin\left(\frac{\pi t^2}{c}\right)$
14	x = b t + c	$y = -\frac{e}{f + d}$
15	$x = b \cos \left(\frac{\pi t}{c} \right)$	$y = d \sin \left(\frac{\pi t}{c} \right)$
16	x = a t + c	$y = f t^3 + e$
17	x = a t + b	$y = d t^2 + f$
18	$x = b \cos (\pi t)$	$y = e \sin(\pi t)$
19	x = -t - c	$y = -\frac{d}{t + f}$
20	$x = a \cos\left(\frac{\pi t}{c}\right) + a$	$y = e \sin\left(\frac{\pi t}{c}\right)$
21	x = a t + b	$y = dt^4 + et + f$
22	$x = t^2$	$y = \frac{f}{e} t - d$

23	$x = b \cos\left(\frac{\pi t}{c}\right)$	$y = e \sin\left(\frac{\pi t}{c}\right)$
24	x = -c t + b	$y = -\frac{f}{t + d}$
25	$x = b \cos\left(\frac{\pi t}{a}\right) - c$	$y = d \sin \left(\frac{\pi t}{a}\right)$
26	$x = t^3 + b$	y = t - e
27	$x = t^2 + a$	y = t - e $y = t + d;$
28	$x = a\cos(b\pi t)$	$y = d \sin(b \pi t)$
29	x = b t	$y = -\frac{d}{f t + e}$
30	$x = -\cos\left(\frac{\pi t^2}{c}\right) - b$	$y = d \sin\left(\frac{\pi t^2}{c}\right) + f$

Таблица 4 – Исходные данные

No	a	b	c	d	e	f	t 1
0	4	1	5	9	6	2	0,3
1	9	5	7	1	3	4	0,6
2	8	9	4	3	5	1	0,8
3	5	7	1	6	9	8	0,1
4	7	4	8	2	1	3	0,7
5	9	6	3	5	4	7	0,9
6	3	8	2	4	6	5	0,2
7	1	2	6	7	8	9	0,4
8	2	3	9	8	7	4	0,5
9	6	9	4	3	2	8	0,8

2.2. Определение скоростей и ускорений точек твердого тела при поступательном и вращательном движении

Задача 2.2.1

Зубчатая передача приводится в движение грузом 1, подвешенным к колесу 2. На одной оси с колесом 2 укреплено колесо 3, которое сцепляется с колесом 4 (рис. 14).

Определить скорость и ускорение точки M на ободе колеса 4 в момент времени t=1 с. Груз движется по закону: $x=5t^2+10t(c_M)$. Радиусы колёс соответственно: $r_2=10$ см, $r_3=6$ см, $r_4=8$ см.

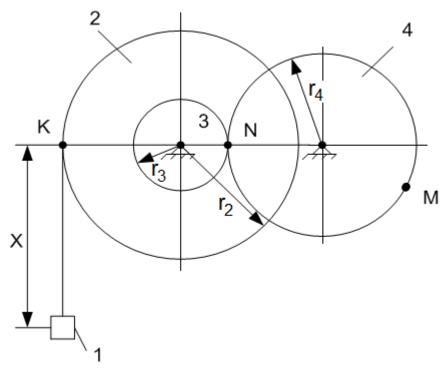


Рисунок 14

Решение

Скорость и ускорение груза 1 будут совпадать со скоростью и вращательным ускорением точки К на ободе колеса 2, с которого сходит нить, к которой подвешен груз:

$$V_{K} = \frac{dx}{dt} = 10t + 10\left(\frac{cM}{c}\right); \quad a_{K}^{BP} = a_{1} = \frac{dV_{K}}{dt} = \frac{d^{2}x}{dt^{2}} = 10\left(\frac{cM}{c^{2}}\right).$$

Так как колёса 2 и 3 имеют одну ось вращения, то угловая скорость и угловое ускорение у них одинаковые:

$$\omega_{2-3} = \frac{V_k}{r_2} = \frac{10t + 10}{10} = t + 1(c^{-1});$$

$$\varepsilon_{2-3} = \frac{a_k^{ep}}{r_2} = \frac{10}{10} = 1(c^{-2}).$$

Точка N – точка соприкосновения колёс 3 и 4. Скорость этой точки и вращательное ускорение для колес 3 и 4 будут одинаковые:

$$V_N = \omega_{2-3} \cdot r_3 = \omega_4 \cdot r_4;$$
 отсюда $\omega_4 = \frac{\omega_{2-3} \cdot r_3}{r_4} = \frac{(t+1) \cdot 6}{8} = \frac{(t+1) \cdot 3}{4} (c^{-1});$ $a_N^{ep} = \varepsilon_{2-3} \cdot r_3 = \varepsilon_4 \cdot r_4;$

$$\varepsilon_4 = \frac{\varepsilon_{2-3} \cdot r_3}{r_4} = \frac{1 \cdot 6}{8} = \frac{3}{4} (c^{-2}).$$

Скорость точки М:

$$V_{M} = \omega_{4} \cdot r_{4} = \frac{\left(t+1\right) \cdot 3}{4} \cdot 8 = 6t + 6\left(\frac{cM}{c}\right);$$

в момент t=1c:

$$V_{M1} = 6 + 6 = 12\left(\frac{cM}{c}\right).$$

Ускорение точки М:

$$a_M^{ep} = \varepsilon_4 \cdot r_4 = \frac{3}{4} \cdot 8 = 6 \left(\frac{cM}{c^2}\right);$$

$$a_M^u = \omega_4^2 \cdot r_4 = \left(\frac{(t+1)\cdot 3}{4}\right)^2 \cdot 8 = \frac{9(t+1)^2}{2} \left(\frac{cM}{c^2}\right);$$

в момент t=1c:

$$a_{M1}^{u} = \frac{9 \cdot 2^{2}}{2} = 18 \left(\frac{cM}{c^{2}}\right);$$

$$a_{M} = \sqrt{\left(a_{M}^{Bp}\right)^{2} + \left(a_{M}^{II}\right)^{2}} = \sqrt{6^{2} + 18^{2}} = 18,97 \left(\frac{cM}{c^{2}}\right).$$

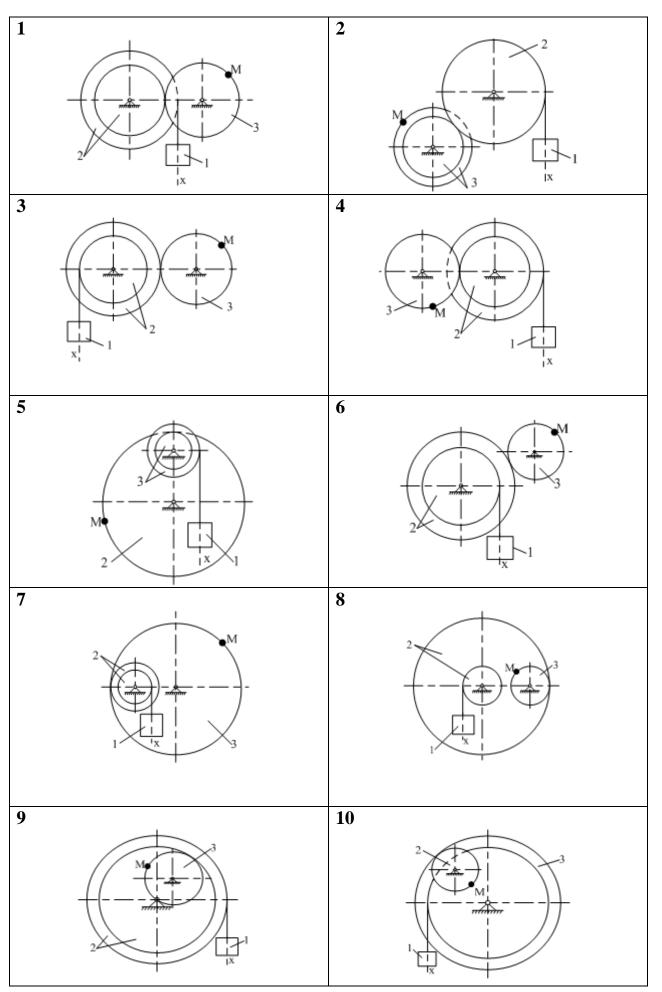
Ответ:

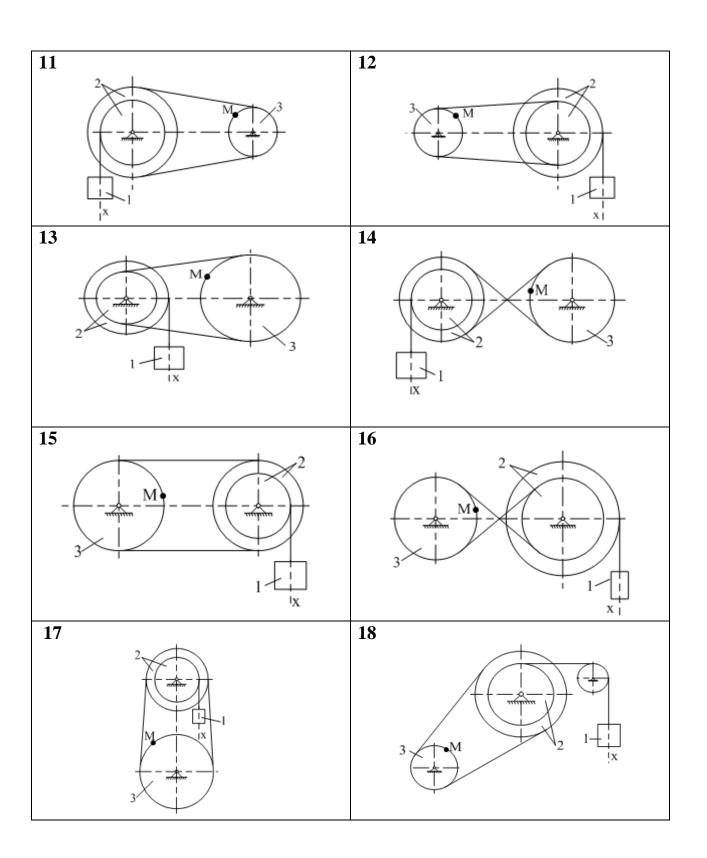
$$V_M = 12 \left(\frac{cM}{c}\right)$$
, $a_M = 18,97 \left(\frac{cM}{c^2}\right)$.

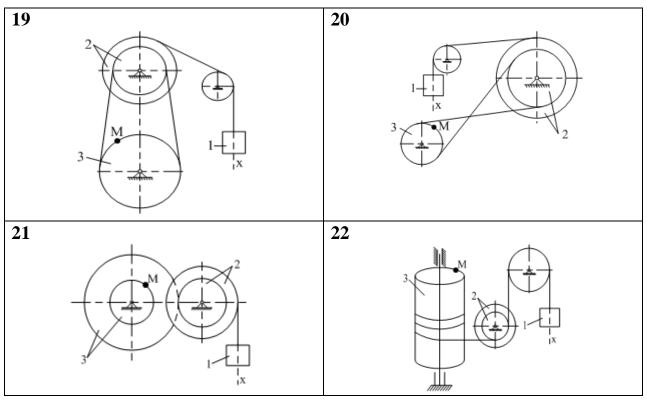
Задача 2.2.2

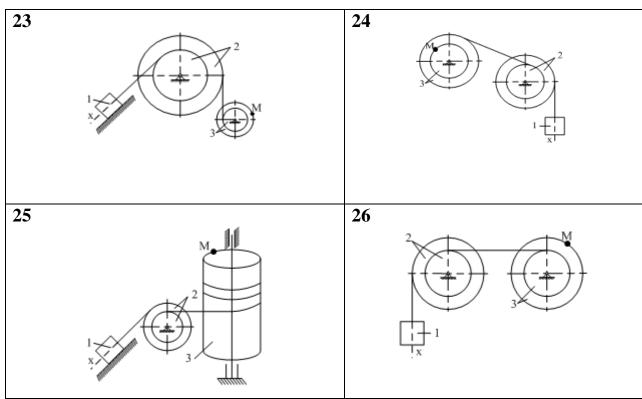
Для представленных на схемах грузоподъемных механизмов определить угловую скорость и угловое ускорение тела 3, необходимые для того, чтобы перемещать груз со скоростью V и ускорением а. Определить и показать на рисунке скорость и ускорение точки М барабана.

Данные, необходимые для вычисления, приведены в табл. 5.









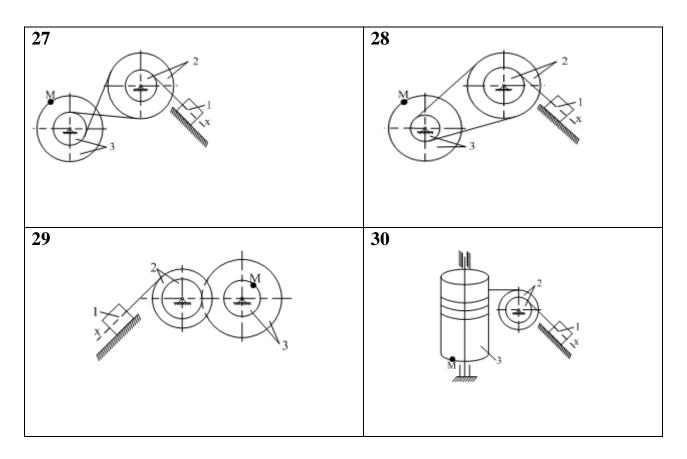


Таблица 5 – Исходные данные

No	V_1	a_1	R_2	\mathbf{r}_2	R_3	\mathbf{r}_3
	м/с	$\mathrm{M/c^2}$	M	M	M	M
0	0,10	0,75	0,40	0,15	0,60	0,35
1	0,25	0,70	0,80	0,20	0,70	0,25
2	0,35	0,90	0,60	0,50	0,50	0,30
3	0,50	0,55	0,55	0,35	0,45	0,20
4	0,40	0,75	0,75	0,20	0,75	0,55
5	0,15	0,80	0,65	0,50	0,80	0,45
6	0,30	0,45	0,45	0,35	0,65	0,30
7	0,55	0,60	0,55	0,40	0,40	0,15
8	0,45	0,75	0,70	0,20	0,50	0,20
9	0,20	0,50	0,50	0,25	0,75	0,60

2.3. Кинематический анализ плоского стержневого механизма

Задача 2.3.1

Кривошип ОА длиной 20 см вращается равномерно со скоростью $\omega_0 = 10 \frac{pa\partial}{c}$ и приводит во вращение шатун АВ длиной 100 см; ползун В движется по вертикали (рис. 15).

Найти: угловую скорость и угловое ускорение шатуна, а также ускорение ползуна B в момент, когда кривошип и шатун взаимно перпендикулярны и образуют с горизонтальной осью углы $\alpha = 45^0$ и $\beta = 45^0$.

Решение

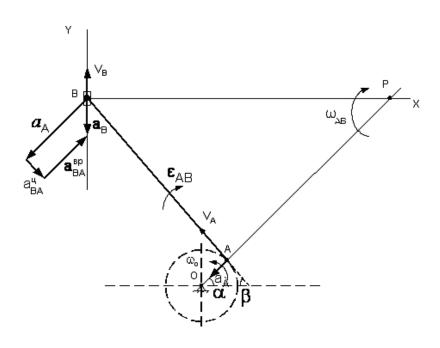


Рисунок 15

1. Определяем скорость точки А:

$$V_A = \omega_0 \cdot OA = 10 \cdot 20 = 200 \left(\frac{cM}{c}\right).$$

 V_A направлена по перпендикуляру к ОА и согласована с направлением ω_0 .

2. Определяем скорость точки В.

Шатун АВ совершает плоское движение. МЦС находится на пересечении перпендикуляров к скоростям точек А и В.

Угловая скорость звена АВ:

$$\omega_{AB} = \frac{V_A}{AP} = \frac{V_A}{AB} = \frac{200}{100} = 2\left(\frac{pa\partial}{c}\right);$$

 ω_{AB} направлена по часовой стрелке;

$$V_B = \omega_{AB} \cdot BP = 2 \cdot 100\sqrt{2} = 282, 8\left(\frac{cM}{c}\right);$$

 $V_{\scriptscriptstyle B}$ направлена по направляющей вверх.

3. Определяем ускорение точки А:

$$\overline{a}_A = \overline{a}_A^u + \overline{a}_A^{ep};$$

$$a_A^u = \omega_0^2 \cdot AO = 10^2 \cdot 20 = 2000 \left(\frac{cM}{c^2}\right).$$

 a_A^{sp} направлено к оси вращения звена АО:

$$a_A^{ep} = \varepsilon_0 \cdot AO = 0$$
,

так как $\omega_0 = const$, $\varepsilon_0 = \frac{d\omega_0}{dt} = 0$, $a_A = \sqrt{\left(a_A^u\right)^2 + \left(a_A^{sp}\right)^2} = 2000 \left(\frac{cM}{c^2}\right).$

4. Определяем ускорения точки В.

Принимаем за полюс точку А и пользуясь теоремой об ускорениях плоской фигуры, запишем:

$$\overline{a}_{B} = \overline{a}_{A} + \overline{a}_{BA}^{u} + \overline{a}_{BA}^{sp}. \tag{25}$$

Центростремительное ускорение во вращательном движении точки вокруг полюса A:

$$a_{BA}^{u} = \omega_{AB}^{2} \cdot AB = 2^{2} \cdot 100 = 400 \left(\frac{cM}{c^{2}}\right).$$

Вращательное ускорение:

$$a_{BA}^{ep} = \varepsilon_{AB} \cdot AB$$
.

Чтобы найти \mathcal{E}_{AB} , воспользуемся графическим построением (рис. 16):

- отложим из точки В ускорение полюса А: \overline{a}_{A} ;
- из конца вектора \overline{a}_A отложим \overline{a}_{AB}^u в направлении оси от точки В к полюсу А;
- из конца \overline{a}^{u}_{AB} проведём направление \overline{a}^{sp}_{AB} до пересечения с направлением \overline{a}_{B} ;
 - \overline{a}_B направлено по вертикали;
 - $\overline{a}^{\it sp}_{\it AB}$ перпендикулярно $\overline{a}^{\it u}_{\it AB}$.

Расставим стрелки согласно векторному равенству (25).

Векторное равенство (25) содержит 2 неизвестных алгебраических значения a_{B} и $a_{BA}^{\text{вр}}$.

Спроецируем векторное равенство (25) на две взаимно перпендикулярные оси X и Y.

На ось Х:

$$0 = -a_A \cdot \cos 45^o + a_{BA}^u \cdot \cos 45^o + a_{BA}^{ep} \cdot \cos 45^o.$$

Отсюда

$$a_{BA}^{ep} = a_A - a_{BA}^{u} = 2000 - 400 = 1600 \, c_M / c^2$$
.

Угловое ускорение:

$$\varepsilon_{AB} = \frac{a_{BA}^{ep}}{AB} = \frac{1600}{100} = 16 \ pad/c^2.$$

Угловое ускорение направлено в такую сторону, в которую вектор \overline{a}_{BA}^{sp} , помещённый в точку B, стремится повернуть плоскость относительно полюса A, то есть по часовой стрелке.

На ось Ү:

$$-a_{R} = -a_{A}\cos 45^{\circ} - a_{RA}^{u}\cos 45^{\circ} + a_{RA}^{ep}\cos 45^{\circ}.$$

Отсюда

$$a_B = (a_A + a_{BA}^{iq} - a_{BA}^{sp})\cos 45^{\circ} = (2000 + 400 - 1600) \cdot 0,707 = 565,6 \, c_{M}/c^2.$$

5. Определяем скорость точки В, пользуясь теоремой о скоростях точек плоской фигуры:

$$\vec{V}_B = \vec{V}_A + \vec{V}_{BA} \tag{26}$$

где \vec{V}_{BA} – вращательная скорость точки В при вращении вокруг полюса А:

$$V_{BA} = \omega_{AB}AB$$

 $ec{V}_{\!\scriptscriptstyle BA}$ направлена перпендикулярно радиусу вращения АВ.

Построим графически равенство (26):

- отложим из точки В скорость полюса $\overline{V}_{\!\scriptscriptstyle A}$;
- из конца вектора $\overline{V}_{\!\scriptscriptstyle A}$ проведём направление $\overline{V}_{\!\scriptscriptstyle AB}$ до пересечения с направлением $\overline{V}_{\!\scriptscriptstyle B}$.

Расставим стрелки согласно равенству (26).

Спроецируем векторное равенство (26) на две взаимно перпендикулярные оси X и Y.

На ось Х:

$$0 = -V_A \cos 45^o + V_{BA} \cos 45^o.$$

 $O_{TCЮДа} V_A = V_{BA}.$

Угловая скорость ω_{AB} :

$$\omega_{AB} = \frac{V_{BA}}{AB} = \frac{V_A}{AB} = \frac{200}{100} = 2\left(\frac{pao}{c}\right).$$

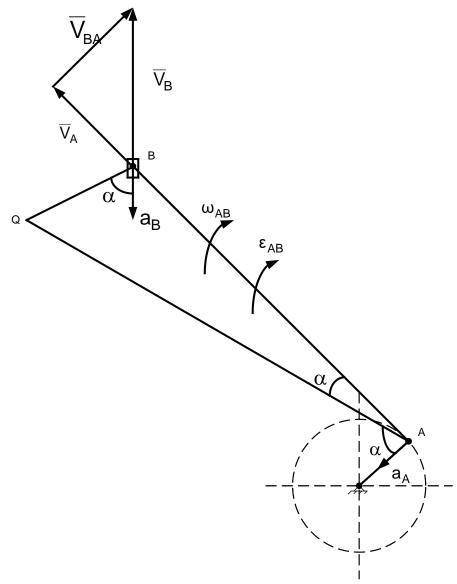


Рисунок 16

На ось Ү:

$$V_{By} = V_A \cos 45^\circ + V_{BA} \cos 45^\circ = 2V_A \cos 45^\circ = 2 \cdot 200 \cdot 0,707 = 282,8 \, cm/c.$$

6. Определяем ускорение точки В, пользуясь мгновенным центром ускорений:

$$a_B = QB\sqrt{\omega^2 + \varepsilon^2}$$

Тангенс угла между отрезком AQ, соединяющим точку A с мгновенным центром ускорений:

$$tg\alpha = \frac{\varepsilon_{AB}}{\omega_{AB}^2} = \frac{16}{2^2} = 4;$$

$$\alpha = 75,96^{\circ}$$
.

Угол α откладывается от оси ускорения точки A по часовой стрелке, то есть также, как угловое ускорение \mathcal{E}_{AB} .

Расстояние от точки A до мгновенного центра ускорений AQ:

$$AQ = \frac{a_A}{\sqrt{\varepsilon_{AB}^2 + \omega_{AB}^4}} = \frac{2000}{\sqrt{16^2 + 2^4}} = 121,27 \text{ cm}.$$

Для определения расстояния от точки B до мгновенного центра ускорений рассмотрим треугольник ABQ:

$$\angle QAB = 90^{\circ} - \alpha = 90^{\circ} - 75,96^{\circ} = 14,04^{\circ}.$$

По теореме косинусов:

$$QB = \sqrt{AB^2 + AQ^2 - 2 \cdot AB \cdot AQ \cdot \cos(90^o - \alpha)} =$$

$$= \sqrt{100^2 + 121,27^2 - 2 \cdot 100 \cdot 121,27 \cdot 0,97} = 34,35 \text{ cm}.$$

Ускорение точки В определяется из соотношения:

$$\frac{a_A}{AQ} = \frac{a_B}{BQ} ,$$

откуда
$$a_B = \frac{a_A}{AQ} \cdot BQ = \frac{2000}{121,27} \cdot 34,35 = 566,5 \text{ см} / \text{ c}^2.$$

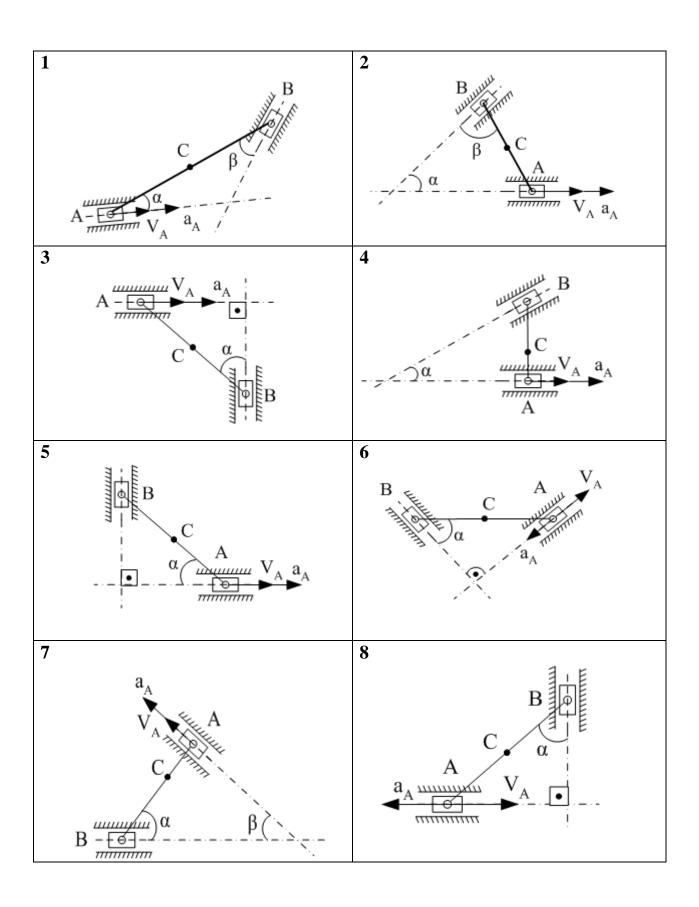
Для определения направления \overline{a}_B откладываем угол α оси отрезка QB в направлении, противоположном направлению \mathcal{E}_{AB} , т. е. против хода часовой стрелки.

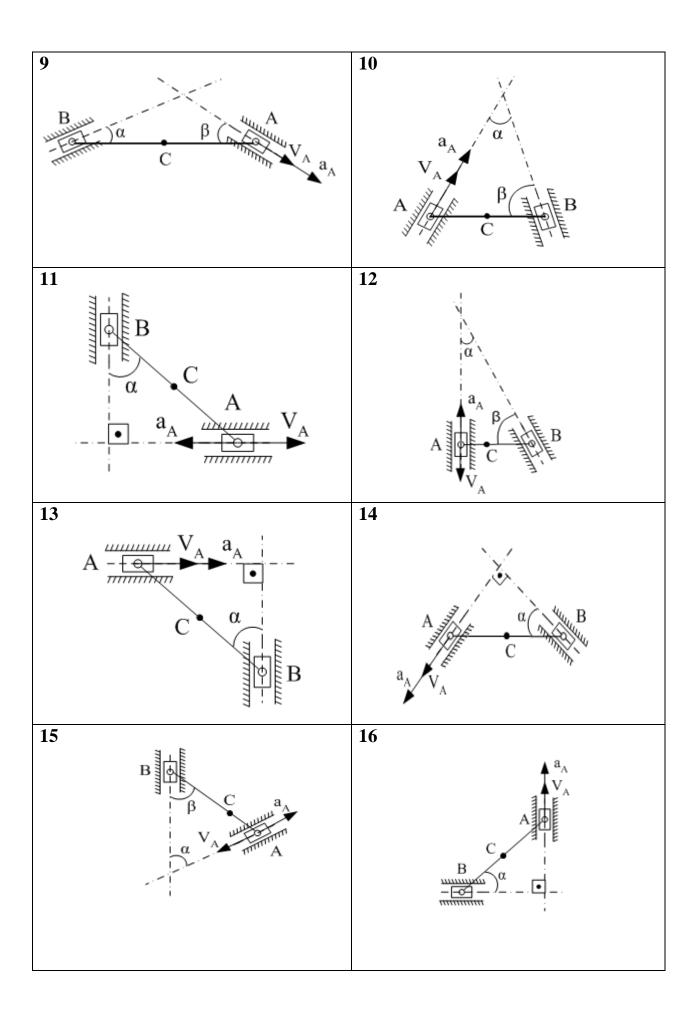
Ответ:

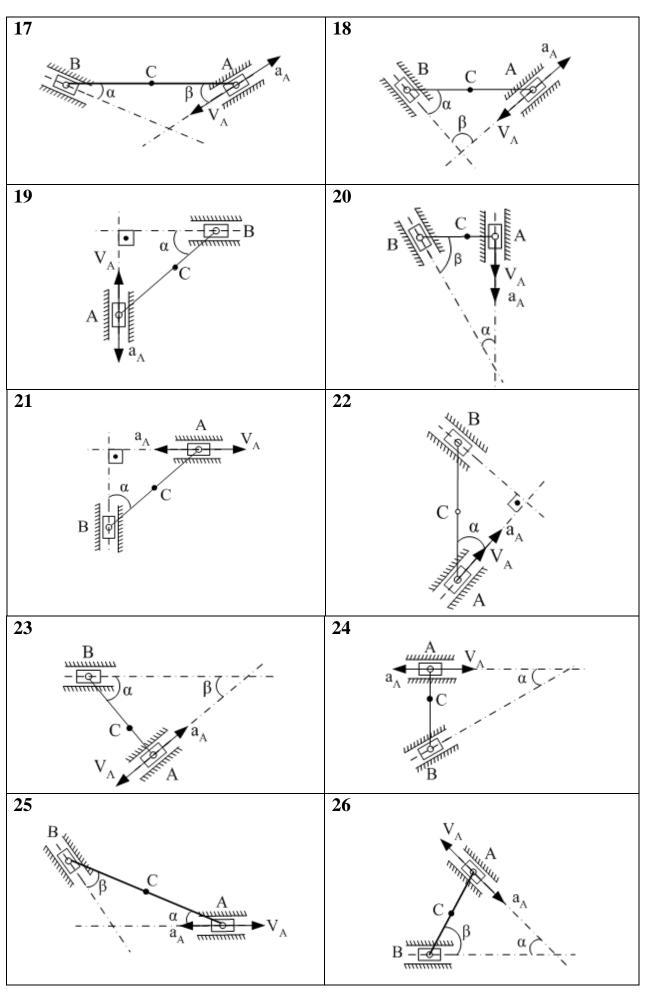
$$\varepsilon_{AB} = 16 \ pao/c^2$$
, $\omega_{AB} = 2\left(\frac{pao}{c}\right)$, $a_B = 566.5 \text{ cm}/c^2$.

Задача 2.3.2

Для представленных на схемах механизмов определить скорость и ускорение точек В и С шатуна АВ. Данные, необходимые для вычисления, приведены в табл. 6.







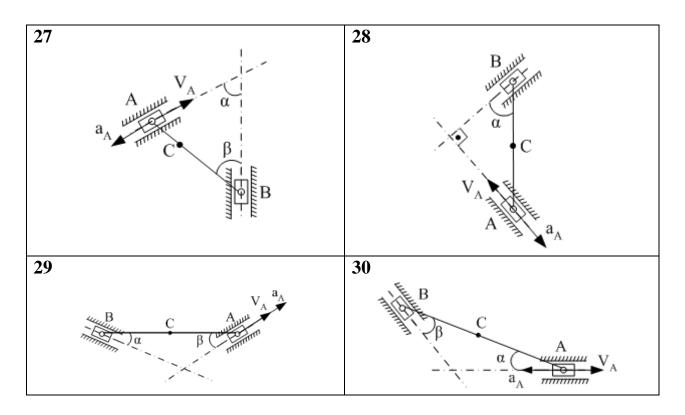


Таблица 6 – Исходные данные

No	$V_{\rm A}$	a_{A}	AB	$AC = \frac{BC}{AB}$	α	β
	м/с	M/c^2	M	-	град	град
0 1 2 3 4 5	1,0 3,0 2,0 2,5 1,5 3,5	3,0 3,5 2,5 4,0 3,5	2,0 3,0 2,5 2,5 2,0	0,3 0,7 0,4 0,6 0,7 0,4	20 30 40 50 70	40 40 20 20 10 60
6 7 8 9	3,5 3,0 4,0 2,5 3,5	2,0 2,0 2,5 4,0 3,0	4,0 3,0 3,5 2,0 2,5	0,4 0,5 0,6 0,5 0,3	20 60 30 50 40	10 20 20 30

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Александров, А. В. Сопротивление материалов [Текст] : учебник для вузов / А. В. Александров, В. Д. Потапов, Б. П. Державин. 4-е изд., испр. М.: Высшая школа, 2004. 560 с.
- 2. Мещерский, И. В. Сборник задач по теоретической механике [Текст]: учебное пособие / И. В. Мещерский. 51-е изд. СПб.: Лань, 2012. 448 с.
- 3. Сборник заданий для курсовых работ по теоретической механике [Текст]: учебное пособие / Под ред. А. А. Яблонского. 18-е изд. М.: КноРус, 2011. 386 с.
- 4. Тарг, С. М. Краткий курс теоретической механики: [Текст]: учебник для вузов / С. М. Тарг. 18-е изд. М.: Высшая школа, 2010. 416 с.
- 5. Яблонский, А. А. Курс теоретической механики [Текст] : учебник для студентов высших учебных заведений, обучающихся по техническим специальностям / А. А. Яблонский, В. М. Никифорова. 16-е изд., стер. Москва : КноРус, 2011. 603 с.

Учебное издание

Головко Виктор Евгеньевич Кауров Павел Викторович Клюшкин Иван Владимирович Батенев Александр Павлович

Теоретическая механика Часть 1. Статика и кинематика

Редактор и корректор Е. О. Тарновская Техн. редактор Д. А. Романова

Учебное электронное издание сетевого распространения

Системные требования: электронное устройство с программным обеспечением для воспроизведения файлов формата PDF

Режим доступа: http://publish.sutd.ru/tp_get_file.php?id=202016, по паролю. - Загл. с экрана.

Дата подписания к использованию 07.06.2022 г. Изд. № 6/21

Высшая школа технологии и энергетики СПбГУПТД 198095, СПб., ул. Ивана Черных, 4.