
прикладная механика

Методические указания для курсовой работы

Санкт-Петербург 2020

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ ТЕХНОЛОГИЙ И ДИЗАЙНА»

ВЫСШАЯ ШКОЛА ТЕХНОЛОГИИ И ЭНЕРГЕТИКИ

Кафедра основ конструирования машин

ПРИКЛАДНАЯ МЕХАНИКА

Методические указания для курсовой работы

Направления подготовки:

- 18.03.01 «Химическая технология»,
- 13.03.02 «Электроэнергетика и электротехника»,
- 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии»,
- 15.03.04 «Автоматизация технологических процессов и производств»

Санкт-Петербург 2020 УДК 621.8 (07)

ПРИКЛАДНАЯ МЕХАНИКА: методические указания для курсовой работы / сост. М.В. Аввакумов, В.М. Гребенникова, И.С. Артамонов; ВШТЭ СПбГУПТД. – СПб., 2020. – 62 с.

В методических указаниях показана последовательность выполнения курсовой работы; даны рекомендации по выбору типовых редукторов общего назначения, компенсирующих муфт и по конструированию деталей открытых передач; приведены примеры кинематического расчета приводов и необходимые справочные материалы.

Методические указания предназначены студентам направлений подготовки 18.03.01 «Химическая технология», 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии», 15.03.04 «Автоматизация технологических процессов и производств», 13.03.02 «Электроэнергетика и электротехника» для выполнения курсовой работы.

Рецензент: зав. кафедрой машин автоматизированных систем ВШТЭ СПбГУПТД, д-р техн. наук А.В. Александров.

Подготовлены и рекомендованы к печати кафедрой основ конструирования машин ВШТЭ СПбГУПТД (протокол № 10 от $12.05.2020 \, \Gamma$.).

Утверждены к изданию методической комиссией института технологии ВШТЭ СПбГУПТД (протокол № 5 от 15.05.2020 г.)

- © Аввакумов М.В., Гребенникова В.М., Артамонов И.С., 2020
- © Высшая школа технологии и энергетики СПбГУПТД, 2020

Редактор и корректор Т.А. Смирнова Техн. редактор Л.Я. Титова

Темплан 2020 г., поз. 58

Подп. к печати 18.05.20 . Формат 60х84/16. Бумага тип. № 1. Печать офсетная. Объем 4,0 печ. л; 4,0 уч.-изд. л. Тираж 30 экз. Изд. № 58. Цена "С" . Заказ № 58

Ризограф Высшей школы технологии и энергетики СПбГУПТД, 198095, Санкт-Петербург, ул. Ивана Черных, 4

ПРЕДИСЛОВИЕ

В соответствии с учебным планом изучение дисциплины «Прикладная механика» заканчивается выполнением курсовой работы, которая является первой самостоятельной расчетно – конструкторской работой студентов.

Курсовая работа представляет собой совокупность конструкторских документов: текстовых (пояснительная записка, спецификации) и графических (монтажный чертеж привода). При выполнении работы студенты приобретают навыки оформления рабочей конструкторской документации, знакомятся с действующими стандартами и нормативными материалами, с принципом узловой компоновки современных механизмов с использованием интернет – ресурсов.

Объектом курсовой работы является приводная станция технологической машины, в состав которой входят цилиндрические и червячные редукторы, открытые передачи и компенсирующие муфты.

В настоящих методических указаниях показана последовательность выполнения курсовой работы; приведены примеры кинематического расчета приводов; даны технические характеристики, основные размеры редукторов общего назначения, распространенных компенсирующих муфт и рекомендации по конструированию деталей открытых передач; приведены необходимые справочные материалы.

При подготовке методических указаний использованы учебные пособия по деталям машин [5,6].

1. КИНЕМАТИЧЕСКИЙ РАСЧЕТ ПРИВОДНОЙ СТАНЦИИ

1.1. Кинематическая схема привода

Расчет приводной станции начинается с составления кинематической схемы, представляющей условные изображения основных элементов привода. Масштаб как при изображении отдельных передач, так и всего привода можно не выдерживать. Механизмы изображаются в упрощенном виде согласно ГОСТ 2.770-68.

Ременные передачи относятся к быстроходным передачам и в проектируемых приводах располагаются между электродвигателем и редуктором, а открытые зубчатые и цепные передачи устанавливаются, как правило, в тихоходной части привода, т.е. между редуктором и рабочей машиной.

Валы передач соединяются друг с другом с помощью муфт. Их конструкция может быть указана в техническом задании. Если в задании нет никаких указаний, то выбор муфт предоставляется исполнителю проекта. Часто для соединения вала электродвигателя и входного вала редуктора, установленных на общей раме, применяются упругие втулочно-пальцевые муфты, обладающие малым моментом инерции для уменьшения пусковых нагрузок. Для соединения выходного вала редуктора и приводного вала рабочей машины используются зубчатые муфты и муфты с торообразной оболочкой, позволяющие компенсировать значительную несоосность валов.

Примеры кинематических схем приводных станций показаны на рис 1.

1.2. Определение расчетной мощности электродвигателя и выбор его по каталогу

Расчетная мощность электродвигателя

$$P_{\partial p} = P_{pM}/\eta_0, \kappa Bm,$$

где $P_{\rm pm}$ — требуемая мощность, кВт; η_0 — общий коэффициент полезного действия (КПД) привода, $\eta_0=\eta_p\cdot\eta_{on}$;

 η_p – КПД редуктора; $\eta_{\text{оп}}$ – КПД открытой (зубчатой , цепной или ременной) передачи.

Значения КПД передач приведены в табл. 1.

По табл. 2, учитывая синхронную частоту вращения вала двигателя $n_{\rm c}$ (см. техническое задание на курсовую работу), необходимо выбрать электродвигатель ближайшей большей мощности $P_{\rm hom}$.

Электродвигатель АИР...... ГОСТ 31606 – 2012 :

$$P_{\text{ном}} = \dots$$
 кВт; $n_{\partial} = \dots$ мин⁻¹< $n_{\text{c}} = \dots$ мин⁻¹.

Из табл. 3 выписываем размеры выбранного электродвигателя.

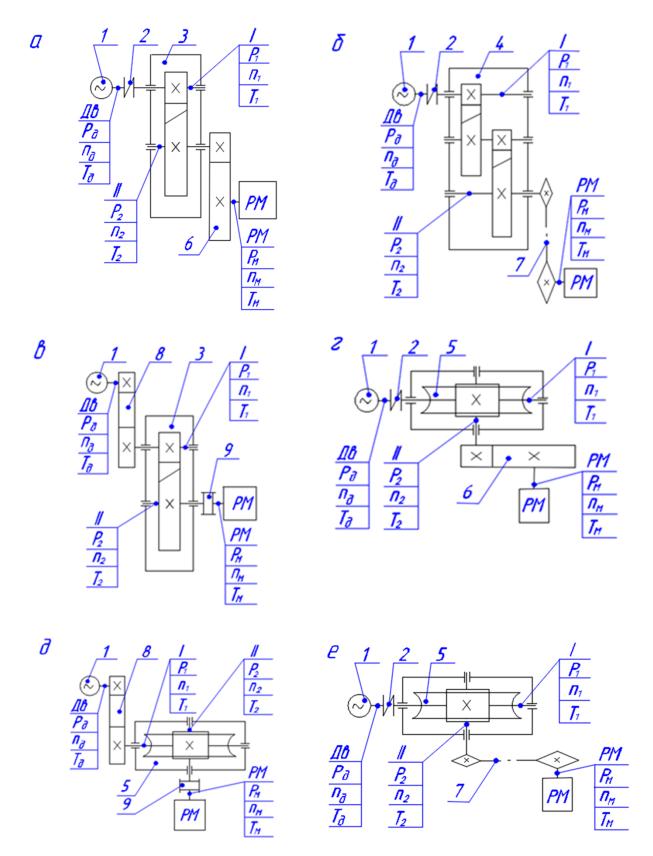


Рис. 1. Кинематические схемы приводов:

1 — электродвигатель; 2 — муфта упругая втулочно-пальцевая; 3 — редуктор цилиндрический одноступенчатый; 4 — редуктор цилиндрический двухступенчатый; 5 — редуктор червячный; 6 — открытая зубчатая цилиндрическая передача; 7— цепная передача; 8 — ременная передача; 9 — муфта зубчатая

Таблица 1. Рекомендуемые значения коэффициентов полезного действия и передаточных чисел механических передач

Тип передачи (редуктора)	КПД, η	Передаточное число , $oldsymbol{U}$
Цилиндрический горизонталь-	0.05	2. 2 5. 2 15. 4. 5. 6 2
ный одноступенчатый редуктор типа 1ЦУ – 100 ÷ 1ЦУ – 250	0,95	2; 2,5; 3,15; 4; 5; 6,3
Цилиндрический горизонталь-		8; 10; 12,5; 16; 20; 25;
ный двухступенчатый редуктор типа 1Ц2У и 1Ц2У – М	0,91	31,5; 40
Червячный редуктор типа	5. O 90	8; 10; 12,5; 16; 20; 25;
$24 - 80M \div 4 - 500M$	≈ 0,80	31,5; 40; 50; 63; 80
Откры	тые передачи	
Зубчатая цилиндрическая	$0.93 \div 0.95$	$3 \div 5$
прямозубая	0,75 . 0,75	3 . 3
Цепная	$0,92 \div 0,94$	1,5 ÷ 3
Ременная:		
- плоским и клиновым ремнем	$0,94 \div 0,96$	1,5 ÷ 3
- поликлиновым ремнем	$0,94 \div 0,96$	2 ÷ 4
- зубчатым ремнем	$0,96 \div 0,98$	3 ÷ 5

Примечание. После выбора типоразмера червячного размера следует уточнить значение КПД

1.3. Определение общего передаточного числа привода и предварительный выбор типоразмера редуктора

$$U_0 = n_{\partial}/n_{\rm pm}$$
,

где n_{∂} — частота вращения вала выбранного электродвигателя, мин $^{\text{-}1}$; $n_{\text{рм}}$ — частота вращения вала рабочей машины, мин $^{\text{-}1}$.

$$U_0 = U_{\text{on}} \cdot U_{\text{p}}$$
,

где $U_{\rm on}$ — передаточное число открытой (ременной, цепной, зубчатой) передачи. Принимаем $U_{on}=\dots$ (см. табл.1).

Расчетное передаточное число редуктора $\,U_{\mathrm{pp}} = U_{\mathrm{o}}/U_{\mathrm{on}}\,$.

Выбираем ближайшее значение передаточного числа редуктора $U_{\rm p}$ по табл.1.

Уточнение передаточного числа открытой передачи

$$U_{\text{on}\phi} = U_{\text{o}}/U_{\text{p}}$$

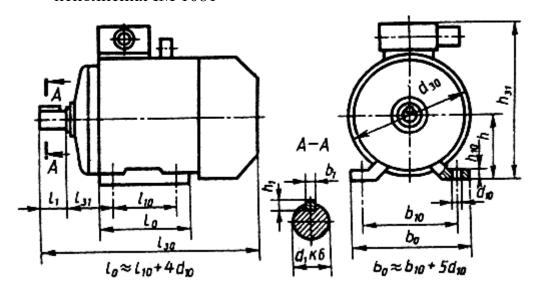

Полученное значение $U_{\text{опф}}$ должно попасть в область рекомендуемых величин (см. табл.1).

Таблица 2. Технические данные асинхронных трехфазных двигателей серии AИР ГОСТ 31606-2012

	Си	нхронная часто	та вращения, ми	н ⁻¹			
Номинальная	30		15				
мощность, \boldsymbol{P}_{HOM} , к BT	тип двигателя	асинхронная частота вра- щения, n_{∂} , мин $^{-1}$	тип двигателя	асинхронная частота вра- щения, n_{∂} , мин $^{-1}$			
1,5	АИР80А2	2850	АИР80В4	1395			
2,2	АИР80В2	2850	АИР90L4	1395			
3	АИР90L2	2850	АИР100S4	1410			
4	АИР100S2	2850	АИР100L4	1410			
5,5	АИР100L2	2850	АИР112М4	1432			
7,5	АИР112М2	2895	АИР132S4	1440			
11	АИР132М2	2910	АИР132М4	1447			
15	АИР160S2	2910	АИР160S4	1455			
18,5	АИР160М2	2910	АИР160М4	1455			
22	АИР180S2	2919	АИР180S4	1462			
30	АИР180М2	2925	АИР180М4	1470			
	Си	нхронная часто	та вращения, ми	н ⁻¹			
	10			750			
1,5	АИР90L6	925	АИР100L8	702			
2,2	АИР100L6	945	АИР112МА8	709			
3	АИР112МА6	950	АИР112МВ8	709			
4	АИР112МВ6	950	АИР132S8	716			
5,5	АИР132S6	960	АИР132М8	712			
7,5	АИР132М6	960	АИР160S8	727			
11	АИР160S6	970	АИР160М8	727			
15	АИР160М6	970	АИР180М8	731			
18,5	АИР180М6	980	-	-			

Примечание. Пример обозначения: **двигатель АИР100L2У3 ГОСТ 31606 – 2012**

Таблица 3. Основные размеры электродвигателей серии АИР исполнения IM 1081

Тип	Число						Pa	змері	ы, мм					
двига- теля	полю-	d_1	l_1	l ₃₀	b_1	h_1	d ₃₀	l ₁₀	l ₃₁	d_{10}	b ₁₀	h	h ₁₀	h ₃₁
80A 80B		22	50	297 321	6	6	190	100	50	10	125	80	10	205
90L	2,4,6	24		337			210	125	56		140	90	11	225
100S 100L	2,4,6,	28	60	360 391		240	112	63		160	100	12	247	
112M	8	32		435			246	140	70	12	190	112	12	285
132S	4,6,8		80	460	10 8	0				12				
132M	2,4,6,	38		498		8	288	178	89		216	132	13	325
160S	2	42		630	12			1/0					18	
	4,6,8	48		030	14	9	334		108		254	160		385
160M	2	42		660	12	8	334	210	100		254	100	10	303
	4,6,8	48			14	9								
1000	2	48	110	620	14	9		202		15				
180S	4	55		630	16	10	27.5	203	101		270	100	20	4.40
180M	2	48		680	14	9	375	241	121		279	180	20	448
180M —	4,6,8	55		000	16	10		<i>∆</i> † 1						

Примечание. Концы валов двигателей могут быть: цилиндрические со шпонкой; конические со шпонкой с резьбовым концом или внутренней резьбой

Необходимый вращающий момент на тихоходном валу редуктора $T_{\rm Tp} = K_{\rm 3} \cdot (9550 \cdot P_{\partial,p}/n_{\partial}) \cdot U_{\rm p} \cdot \eta_p, \, {\rm H} \cdot {\rm M},$

где K_9 — коэффициент эксплуатации, учитывающий фактические условия работы. Для цилиндрических редукторов и червячного редуктора с нижним червяком K_9 = 1,1, для червячного редуктора с верхним червяком K_9 = 1,2.

При включении в состав привода ременной передачи расчетный вращающий момент на тихоходном валу редуктора равен моменту на валу рабочей машины с учетом коэффициента эксплуатации

$$T_{\text{TP}} = K_{\text{3}} \cdot T_{\text{pM}} = K_{\text{3}} \cdot 9550 \cdot P_{\text{pM}} / n_{\text{pM}}, \text{H} \cdot \text{M},$$

а частота вращения входного вала $n_1 = n_\partial/U_{\rm on}$, мин $^{-1}$.

Выбираем предварительно типоразмер редуктора с ближайшим большим вращающим моментом на тихоходном валу: $T_{\rm T} \geq T_{\rm TD}$ (Приложения 1, 2, 3).

Редуктор ... с передаточным числом $U_{\rm p}=$... и $T_{\rm T}=$... ${\rm H\cdot m}.$

Допускаемая радиальная консольная нагрузка на входном валу F_1 , на выходном валу F_2 .

Для червячного редуктора уточняем значение КПД ($\eta_{p\phi}$)(Приложение 3) и определяем фактическую расчетную мощность электродвигателя

$$P_{\partial \Phi} = P_{
m pm}/\eta_{
m o \phi}$$
, $\kappa B m$, $\qquad arrho \partial e \,\, \eta_{
m o \phi} = \eta_{
m p \phi} \cdot \eta_{
m o \pi}$.

1.4. Определение мощностей, частот вращения и вращающих моментов на валах привода

Расчет мощности на валах привода целесообразно производить от рабочей машины (см. табл.4).

Таблица 4. Определение мощности на валах привода, кВт

Вал		Открытая передач	ıa
Daji	зубчатая	цепная	ременная
Вал рабочей машины	$P_{ m pm}$	$P_{ m pm}$	$P_{ m pm}$
Выходной (тихоходный) вал редуктора	$P_2 = P_{\rm pm}/\eta_{ m on}$	$P_2 = P_{\rm pm}/\eta_{\rm цп}$	$P_2 = P_{\rm pm}$
Входной (быстроходный) вал редуктора	$P_1 = P_2/\eta_p$	$P_1 = P_2/\eta_p$	$P_1 = P_2/\eta_p$
Вал электродвигателя	$P_{\partial} = P_1$	$P_{\partial} = P_1$	$P_{\partial} = P_1/\eta_{p\pi}$

Примечание. $\eta_{\rm on}$ – КПД открытой зубчатой передачи; $\eta_{\rm un}$ – КПД цепной передачи; η_{pn} – КПД ременной передачи. Для червячного редуктора $\eta_p = \eta_{p\Phi}$

Ведущим элементом электромеханического привода является электродвигатель. Поэтому определение частоты вращения следует выполнять от вала двигателя к валу рабочей машины (табл.5).

Таблица 5. Определение частоты вращения валов привода, мин⁻¹

Вал		Открытая передача									
Dali	ременная	зубчатая	цепная								
Вал электродвигателя	n_{∂}	n_{∂}	n_{∂}								
Входной (быстроходный)	$n_1 = n_{\partial}/U_{\rm pn\phi}$	$n - n_{\circ}$	n - n								
вал редуктора	$n_1 - n_0 / \sigma_{\text{pn}\phi}$	$n_1 = n_{\partial}$	$n_1 = n_{\partial}$								
Выходной (тихоходный)	$n_2 = n_1/U_{\rm p}$	$n_2 = n_1/U_{\rm p}$	$n_2 = n_1/U_{\rm p}$								
вал редуктора	$n_2 - n_1 / O_p$	$n_2 - n_1 / o_p$	$n_2 = n_1 / \sigma_p$								
Вал рабочей машины	$n_{{\scriptscriptstyle { m M}} \varphi} = n_2$	$n_{\text{м}\phi} = n_2/U_{\text{оп}\phi}$	$n_{\text{M}\Phi} = n_2/U_{\text{ЦП}\Phi}$								

Примечание. $U_{\text{опф}}$ — фактическое передаточное число открытой зубчатой передачи; $U_{\text{цпф}}$ — фактическое передаточное число цепной передачи; $U_{\text{рпф}}$ — фактическое передаточное число ременной передачи

Отклонение от заданной частоты вращения вала рабочей машины

$$\Delta n_{\rm pm} = 100 \cdot |n_{\rm M\phi} - n_{\rm pm}| / n_{\rm pm} \le [\Delta n], \%,$$

где [Δn] – допускаемое отклонение частоты вращения вала машины.

Вращающие моменты на валах можно определить по формуле

$$T_i = 9550 \cdot P_i/n_i$$
, H·M.

Подставив в формулу вместо i индекс соответствующего вала, получим уравнение для расчета вращающего момента T данного вала.

2. РАСЧЕТ ОТКРЫТОЙ ПЕРЕДАЧИ ПРИВОДА. УТОЧНЕНИЕ ТИПОРАЗМЕРА РЕДУКТОРА

Расчеты открытой зубчатой цилиндрической передачи следует выполнять по методическим указаниям [1], цепной - [2], расчет ременной передачи - по учебному пособию [4].

После расчета открытой передачи привода необходимо уточнить типоразмер выбранного редуктора. Должно выполняться условие: допускаемая радиальная консольная нагрузка на входном валу $F_1 > F_p$, а на выходном валу $F_2 > F_p$ или F_n .

 $F_{\rm p}$ — усилие от ременной передачи на входной вал; $F_{\rm B}$ — усилие от цепи на выходной вал; $F_{\rm n}$ — суммарное усилие от открытой зубчатой передачи на выходной вал, значения которых определяются при расчете открытой передачи привода. Если действующее усилие на вал больше допускаемой радиальной консольной нагрузки, то необходимо выбрать последующий больший типоразмер редуктора.

Окончательно принимаем: Редуктор (условное обозначение).

Из таблиц (см. Приложение 1, 2, 3) выписываем габаритные и присоединительные размеры выбранного редуктора, размеры концов валов.

3. ПРИМЕРЫ КИНЕМАТИЧЕСКОГО РАСЧЕТА ПРИВОДНОЙ СТАНЦИИ

Пример 1. Исходные данные для расчета:

- синхронная частота вращения вала электродвигателя $n_c = 750$ мин⁻¹;
- состав привода: типовой цилиндрический одноступенчатый редуктор, открытая зубчатая цилиндрическая передача;
- мощность рабочей машины $P_{\rm pm}=3.9~{\rm kBt};$
- частота вращения вала рабочей машины $n_{\rm pm}=45~{\rm мин}^{-1};$
- допускаемое отклонение частоты вращения вала машины $[\Delta n] = 5 \%$. Кинематическая схема привода показана на рис.1 a .

1.1. Определение расчетной мощности электродвигателя и выбор его по каталогу

$$P_{\partial p} = P_{pM}/\eta_0 = 3.9/0.893 = 4.37 \text{ kBt},$$

где η_0 – общий КПД привода, $\eta_0 = \eta_p \cdot \eta_{on}$;

 η_p — КПД цилиндрического одноступенчатого редуктора, $\eta_p=0.95$ (табл.1); $\eta_{\text{оп}}$ — КПД открытой зубчатой цилиндрической передачи, $\eta_{\text{оп}}=0.94$ (табл.1). $\eta_0=0.95\cdot 0.94=0.893.$

Электродвигатель АИР 132М8 УЗ ГОСТ 31606 – 2012: $P_{\text{ном}}=5$,5 кВт; $n_{\partial}=712$ мин $^{\text{-1}}$; $d_{1}=38$ мм (табл. 2 и 3).

1.2. Определение общего передаточного числа привода и предварительный выбор редуктора

$$U_0 = n_\partial/n_{\rm pm} = 712/45 = 15,82.$$

Расчетное передаточное число редуктора $U_{\rm pp}=U_{\rm o}/U_{\rm on}$,

где $U_{\rm on}$ – передаточное число открытой зубчатой цилиндрической передачи.

Принимаем $U_{\text{оп}} = 4,0$ (табл.1).

Тогда $U_{\rm pp}=U_{\rm o}/U_{\rm on}=15{,}82/4{,}0=3{,}95.$

Принимаем $U_{\rm p} = 4$ (см. табл.1).

Уточнение передаточного числа открытой зубчатой передачи

$$U_{\text{опф}} = U_{\text{o}}/U_{\text{p}} = 15,82/4,0 = 3,95$$
. Принимаем $U_{\text{опф}} = 3,9$.

Передаточное число открытой зубчатой цилиндрической передачи оказалось в пределах рекомендуемых величин (см. табл.1).

Необходимый вращающий момент на тихоходном валу редуктора

$$T_{\mathrm{Tp}} = K_{\mathrm{9}} (9550 \, P_{\partial p} / n_{\partial}) U_{\mathrm{p}} \eta_{p} = 1.1 \cdot (9550 \cdot 4.37 / 712) \cdot 4.0 \cdot 0.95 \approx 245 \, \mathrm{H} \cdot \mathrm{M}.$$

Выбираем предварительно цилиндрический одноступенчатый редуктор 1ЦУ–100 с передаточным числом $U_{\rm p}=4.0$ и $T_{\rm r}=315~{\rm H\cdot m}$.

Допускаемая радиальная консольная нагрузка на входном валу $F_1 = 630$ H, на выходном валу $F_2 = 2240$ H (см. Приложение 1).

1.3. Определение мощностей, частот вращения и вращающих моментов на валах привода

Определение мощности на валах:

- валу рабочей машины $P_{\rm pm}=3.9~{\rm кBr}$;
- выходном валу редуктора $P_2=P_{\rm pm}/\eta_{\rm on}=3,9/0,94=4,15~{\rm кBr}$;
- входном валу редуктора $P_1=P_2/\eta_p=4$,15/0,95 = 4,37 кВт ;
- валу электродвигателя $P_{\partial} = P_1 = 4{,}37$ кВт.

Определение частоты вращения валов:

- вала электродвигателя $n_{\partial} = 712 \text{ мин}^{-1}$;
- входного вала редуктора $n_1 = n_{\partial} = 712 \text{ мин}^{-1};$
- выходного вала редуктора $n_2=n_1/U_{\rm p}=712/4$, $0=178~{\rm muh}^{-1}$;
- вала рабочей машины $n_{{\scriptscriptstyle {\rm M}} \varphi} = n_2/U_{{\scriptscriptstyle {\rm O}} {\scriptscriptstyle {\rm II}} \varphi} = 178/3,9 = 45,64 \,{\rm мин}^{-1}.$

Отклонение от заданной частоты вращения вала рабочей машины

$$\Delta n_{\rm pm} = \frac{n_{\rm m\phi} - n_{\rm pm}}{n_{\rm pm}} 100 \% = \frac{45,64 - 45,0}{45,0} 100 \% = 1,42 \% < [\Delta n] = 5 \%.$$

Определение вращающих моментов на валах:

- валу двигателя $T_{\partial} = 9550 P_{\partial}/n_{\partial} = 9550 \cdot 4,37/712 = 58,61 \ \mathrm{H} \cdot \mathrm{M};$
- входном валу редуктора $T_1 = 9550 P_1/n_1 = 9550 \cdot 4{,}37/712 = 58{,}61 \text{ H} \cdot \text{м};$
- выходном валу редуктора $T_2 = 9550 P_2/n_2 = 9550 \cdot 4,15/178 = 223 \ \mathrm{H} \cdot \mathrm{M};$
- валу машины $T_{\rm pm}=9550\,P_{\rm pm}/n_{\rm m\phi}=9550\cdot3,9/45,64=816,06$ Н · м.

Полученные значения мощностей, частот вращения и вращающих моментов записываем на полках выносок кинематической схемы привода.

Уточнение типоразмера редуктора

В результате расчета открытой зубчатой передачи получена суммарная нагрузка в зацеплении $F_n=3950$ Н. Поскольку допускаемая радиальная консольная нагрузка на выходном валу $F_2=2240$ Н меньше суммарного усилия от открытой зубчатой передачи $F_n=3950$ Н, окончательно принимаем

Редуктор 1ЦУ–160–4–21–К–У3 с параметрами:
$$U_{\rm p}=4,0~{\rm id}~T_{\rm T}=1250~{\rm H}\cdot{\rm m}; F_1=1250~{\rm H}~{\rm id}~F_2=4500~{\rm H}>F_n=3950~{\rm H}~.$$

Из таблицы Приложения 1 выписываем габаритные и присоединительные размеры выбранного редуктора.

Пример 2. Исходные данные для расчета:

- синхронная частота вращения вала электродвигателя $n_c = 1000$ мин⁻¹;
- состав привода: типовой двухступенчатый цилиндрический редуктор, открытая цепная передача;
- мощность рабочей машины $P_{\rm pm}=3$,2 кВт;
- частота вращения вала рабочей машины $n_{\rm pm}=50$ мин $^{-1};$
- допускаемое отклонение частоты вращения вала машины [Δn] = 5% . Кинематическая схема привода показана на рис.1 δ .

2.1. Определение расчетной мощности электродвигателя и выбор его по каталогу

$$P_{\partial p} = P_{pM}/\eta_0 = 3.2/0.846 = 3.78 \text{ kBt},$$

где η_0 – общий КПД привода, $\eta_0 = \eta_p \cdot \eta_{un}$;

 η_p — КПД цилиндрического двухступенчатого редуктора, η_p = 0,91 (табл. 1); $\eta_{\rm цп}$ — КПД открытой цепной передачи, $\eta_{\rm цп}$ = 0,93 (табл. 1).

$$\eta_0 = 0.91 \cdot 0.93 = 0.846.$$

Электродвигатель АИР 112МВ6 УЗ ГОСТ 31606 – 2012: $P_{\text{ном}}=4$,0 кВт; $n_{\partial}=950$ мин $^{-1}$; $d_{1}=32$ мм (табл. 2 и 3).

2.2. Определение общего передаточного числа привода и предварительный выбор редуктора

$$U_0 = n_\partial/n_{\rm pm} = 950/50 = 19.0.$$

Расчетное передаточное число редуктора $U_{\rm pp}=U_{\rm o}/U_{\rm цп}$,

где $U_{\rm цп}$ — передаточное число цепной передачи.

Принимаем $U_{\text{пп}} = 2,0$ (табл. 1).

Тогда $U_{\rm pp}=U_{\rm o}/U_{\rm цп}=19.0/2.0=9.5$. Принимаем $U_{\rm p}=10$ (см. табл.1).

Уточнение передаточного числа открытой цепной передачи

$$U_{\text{und}} = U_{\text{o}}/U_{\text{p}} = 19/10 = 1.9.$$

Передаточное число открытой цепной передачи оказалось в пределах рекомендуемых величин (см. табл. 1).

Необходимый вращающий момент на тихоходном валу редуктора $T_{\rm Tp} = K_{\rm 3}(9550\,P_{\partial p}/n_{\partial})U_{\rm p}\eta_p = 1.1(9550\cdot 3.78/950)\cdot 10\cdot 0.91 = 380.4\,\,{\rm H\cdot m}.$

Выбираем предварительно цилиндрический горизонтальный двухступенчатый редуктор 1Ц2У–125М с $U_{\rm p}=10$ и $T_{\rm r}=630$ Н · м (см. Приложение 2).

Допускаемая радиальная консольная нагрузка на входном валу $F_1 = 750$ H, на выходном валу $F_2 = 6300$ H.

2.3. Определение мощностей, частот вращения и вращающих моментов на валах привода

Определение мощности на валах:

- валу рабочей машины $P_{\rm pm}=3.2~{\rm kBr}$;
- выходном валу редуктора $P_2 = P_{\rm pm}/\eta_{\rm ц} = 3$,2/0,93 = 3,44 кВт ;
- входном валу редуктора $P_1=P_2/\eta_p=3,44/0,91=3,78$ кВт ;
- валу электродвигателя $P_{\partial} = P_1 = 3,78 \text{ кВт.}$

Определение частоты вращения валов:

- вала электродвигателя $n_{\partial} = 950$ мин⁻¹;
- входного вала редуктора $n_1 = n_{\partial} = 950 \text{ мин}^{-1}$;
- выходного вала редуктора $n_2 = n_1/U_{\rm p} = 950/10 = 95$ мин⁻¹;
- вала рабочей машины $n_{{ t M} {f \varphi}} = n_2/U_{{ t U} {f \Pi} {f \varphi}} = 95/1,9 = 50$ мин $^{-1}$.

Отклонение от заданной частоты вращения вала рабочей машины $\Delta n_{\rm pm} = 0.$

Определение вращающих моментов на валах:

- валу двигателя $T_{\partial} = 9550 P_{\partial}/n_{\partial} = 9550 \cdot 3,78/950 = 38,0 \text{ H} \cdot \text{м}$;
- входном валу редуктора $T_1 = T_0 = 38,0 \; \text{H} \cdot \text{м}$;
- выходном валу редуктора $T_2 = 9550\,P_2/n_2 = 9550\cdot3,44/95 = 345,8\,\mathrm{H}\cdot\mathrm{m};$
- валу рабочей машины $T_{\rm pm}=9550\,P_{\rm pm}/n_{\rm m\phi}=9550\cdot3,2/50=611,2~{\rm H\cdot m}.$

Полученные значения мощностей, частот вращения и вращающих моментов записываем на полках выносок кинематической схемы привода.

Уточнение типоразмера редуктора

При расчете цепной передачи привода получено усилие от цепи на выходной вал $F_{\rm B}=3140$ Н. Так как допускаемая радиальная консольная нагрузка на выходном валу $F_{\rm 2}=6300$ Н больше $F_{\rm B}=3140$ Н, принимаем

Из таблицы Приложения 2 выписываем габаритные и присоединительные размеры выбранного редуктора.

Пример 3. Исходные данные для расчета:

- синхронная частота вращения вала электродвигателя $n_c = 750$ мин⁻¹;
- состав привода: клиноременная передача, типовой цилиндрический одноступенчатый редуктор;
- мощность рабочей машины $P_{\rm pm}=4$,7 кВт;
- частота вращения вала рабочей машины $n_{\rm pm}=72~{\rm мин}^{-1};$
- допускаемое отклонение частоты вращения вала машины $[\Delta n] = 5 \%$. Кинематическая схема привода показана на рис.1 θ .

3.1. Определение расчетной мощности электродвигателя и выбор его по каталогу

$$P_{\partial p} = P_{pM}/\eta_0 = 4.7/0.902 = 5.21 \text{ kBt},$$

где η_0 – общий КПД привода, $\eta_0 = \eta_p \cdot \eta_{pn}$;

 η_p — КПД цилиндрического одноступенчатого редуктора, η_p = 0,95 (табл. 1); $\eta_{p\pi}$ — КПД клиноременной передачи, $\eta_{p\pi}$ = 0,95 (табл. 1).

$$\eta_0 = 0.95 \cdot 0.95 = 0.902.$$

Электродвигатель АИР 132М8 УЗ ГОСТ 31606 – 2012: $P_{\text{ном}} = 5.5 \text{ кВт}; n_{\partial} = 712 \text{ мин}^{-1}; d_1 = 38 \text{ мм (табл. 2 и 3)}.$

3.2. Определение общего передаточного числа привода и предварительный выбор редуктора

$$U_0 = n_{\partial}/n_{\rm pm} = 712/72 = 9.9.$$

Расчетное передаточное число редуктора $U_{\rm pp}=U_{\rm o}/U_{\rm pn}$, где $U_{\rm pn}$ – передаточное число клиноременной передачи.

Принимаем $U_{\rm pn}=$ 2,0 (табл. 1).

Тогда $U_{\rm pp}=U_{\rm o}/U_{\rm pn}=9.9/2.0=4.95.$ Принимаем $U_{\rm p}=5.0$ (см. табл.1).

Уточнение передаточного числа клиноременной передачи

$$U_{\text{purp}} = U_{\text{o}}/U_{\text{p}} = 9.9/5.0 = 1.98.$$

Передаточное число клиноременной передачи оказалось в пределах рекомендуемых величин (см. табл.1).

Необходимый вращающий момент на тихоходном валу редуктора

$$T_{\text{TD}} = K_9 \cdot 9550 P_{\text{DM}} / n_{\text{DM}} = 1.1 \cdot 9550 \cdot 4.7 / 72 = 685.7 \text{ H} \cdot \text{M}.$$

Выбираем предварительно цилиндрический горизонтальный одноступенчатый редуктор 1ЦУ-160 с передаточным числом $U_{\rm p}=5.0$ и $T_{\rm T}=1250$ Н · м.

Допускаемая радиальная консольная нагрузка на входном валу $F_1 = 1250$ H, на выходном валу $F_2 = 4500$ H (см. Приложение 1).

3.3. Определение мощностей, частот вращения и вращающих моментов на валах привода

Определение мощности на валах:

- валу рабочей машины $P_{\rm pm}=4$,7 кВт ;
- выходном валу редуктора $P_2 = P_{\rm pm} = 4.7~{\rm kBr}$;
- входном валу редуктора $P_1=P_2/\eta_p=4,7/0,95=4,95$ кВт ;
- валу электродвигателя $P_{\partial} = P_1/\eta_{p\pi} = 4,95/0,95 = 5,21$ кВт.

Определение частоты вращения валов:

- вала электродвигателя $n_{\partial} = 712 \text{ мин}^{-1}$;
- входного вала редуктора $n_1=n_\partial/U_{\rm pn\varphi}=712/1,98=359,6$ мин $^{-1};$
- выходного вала редуктора $n_2 = n_1/U_p = 359,6/5,0 = 71,92$ мин⁻¹;
- вала рабочей машины $n_{\rm M} = n_2 = 71,92$ мин⁻¹.

Отклонение от заданной частоты вращения вала рабочей машины

$$\Delta n_{\rm pm} = \frac{n_{\rm m\varphi} - n_{\rm pm}}{n_{\rm pm}} 100 \% = \frac{|71,92 - 72|}{72} 100 \% = 0.1 \% < [\Delta n] = 5 \%.$$

Определение вращающих моментов на валах:

- валу двигателя $T_{\partial} = 9550 P_{\partial}/n_{\partial} = 9550 \cdot 5,21/712 = 69,88 \ \mathrm{H} \cdot \mathrm{M}$;
- входном валу редуктора $T_1 = 9550\,P_1/n_1 = 9550\cdot4,95/359,6\approx131\,\mathrm{H}\cdot\mathrm{M}$;
- выходном валу редуктора $T_2 = 9550\,P_2/n_2 = 9550\cdot4,7/71,92 = 624\,\mathrm{H}\cdot\mathrm{m};$
- валу рабочей машины $T_{\rm pm}=9550\,P_{\rm pm}/n_{\rm mф}=9550\cdot4,7/71,92=624\,{\rm H\cdot m}.$

Полученные значения мощностей, частот вращения и вращающих моментов записываем на полках выносок кинематической схемы привода.

Уточнение типоразмера редуктора

При расчете клиноременной передачи получено усилие от ремней на входной вал $F_{\rm p}=920$ H. Так как допускаемая радиальная консольная нагрузка на входном валу $F_{\rm 1}=1250$ H > $F_{\rm p}=920$ H, окончательно принимаем

Из таблицы Приложения 1 выписываем габаритные и присоединительные размеры выбранного редуктора.

Пример 4. Исходные данные для расчета:

- синхронная частота вращения вала электродвигателя $n_c = 1000$ мин⁻¹;
- состав привода: типовой одноступенчатый червячный редуктор с нижним червяком, открытая зубчатая цилиндрическая передача;
- мощность рабочей машины $P_{pm} = 5.2 \text{ кВт};$
- частота вращения вала рабочей машины $n_{\rm pm}=10~{
 m MuH}^{-1};$
- допускаемое отклонение частоты вращения вала машины $[\Delta n] = 5 \%$. Кинематическая схема привода с червячным редуктором и открытой зубчатой цилиндрической передачей показана на рис.1 z.

4.1. Определение расчетной мощности электродвигателя и выбор его по каталогу

$$P_{\partial p} = P_{pM}/\eta_0 = 5.2/0.752 = 6.91 \text{ kBt},$$

где η_0 – общий КПД привода $\eta_0 = \eta_p \cdot \eta_{on}$;

 η_p – КПД червячного редуктора, $\eta_p = 0.80$ (табл. 1);

 $\eta_{\text{оп}}$ — КПД открытой зубчатой передачи, $\eta_{\text{оп}} = 0.94$ (табл. 1).

$$\eta_0 = 0.80 \cdot 0.94 = 0.752.$$

Электродвигатель АИР 132М6 УЗ ГОСТ 31606 – 2012:

$$P_{\text{ном}} = 7,5 \text{ кВт; } n_{\partial} = 960 \text{ мин}^{-1}; d_1 = 38 \text{ мм (табл. 2 и 3)}.$$

4.2. Определение общего передаточного числа привода и предварительный выбор редуктора

$$U_0 = n_\partial/n_{\rm pm} = 960/10 = 96.$$

Расчетное передаточное число редуктора $U_{\rm pp}=U_{\rm o}/U_{\rm on}$,

где $U_{\rm on}$ – передаточное число открытой зубчатой цилиндрической передачи.

Принимаем $U_{\text{оп}} = 4,0$ (табл. 1).

Тогда $U_{\rm pp}=U_{\rm o}/U_{\rm on}=96/4,0=24.$

Принимаем $U_{\rm p} = 25$ (см. табл.1).

Уточнение передаточного числа открытой зубчатой передачи

$$U_{\text{опф}} = U_{\text{o}}/U_{\text{p}} = 96/25 = 3,84$$
. Принимаем $U_{\text{опф}} = 3,8$.

Передаточное число открытой зубчатой цилиндрической передачи оказалось в пределах рекомендуемых величин (см. табл.1).

Необходимый вращающий момент на тихоходном валу редуктора $T_{\rm TP} = K_{\rm 9}(9550\,P_{\partial p}/n_{\partial})U_{\rm p}\eta_p = 1.1(9550\cdot6.91/960)\cdot25\cdot0.80 = 1512.3~{\rm H\cdot m}.$

Выбираем предварительно червячный редуктор с нижним червяком Ч–200М с передаточным числом $U_{\rm p}=25,\,T_{\rm T}=2190~{\rm H}\cdot{\rm M}$ при частоте вращения червяка $n_6=1000~{\rm Muh}^{-1}$, $\eta_{p\varphi}=0,\!88$ (см. Приложение 3). Допускаемая радиальная консольная нагрузка на входном валу $F_1=2300~{\rm H}$, на выходном валу $F_2=13500~{\rm H}$.

Фактическая расчетная мощность электродвигателя

$$P_{\partial\phi} = P_{\text{pm}}/(\eta_{p\phi} \cdot \eta_{\text{off}}) = 5.2/(0.88 \cdot 0.94) = 6.28 \text{ kBt.}$$

4.3. Определение мощностей, частот вращения и вращающих моментов на валах привода

Определение мощности на валах:

- валу рабочей машины $P_{\rm DM} = 5.2 \, {\rm kBr}$;
- выходном валу редуктора $P_2 = P_{\rm pm}/\eta_{\rm on} = 5.2/0.94 = 5.53~{\rm кBr}$;
- входном валу редуктора $P_1=P_2/\eta_{p\Phi}=5$,53/0,88 = 6,28 кВт ;
- валу электродвигателя $P_{\partial} = P_1 = 6,28 \text{ кВт.}$

Определение частоты вращения валов:

- вала электродвигателя $n_{\partial} = 960 \text{ мин}^{-1}$;
- входного вала редуктора $n_1 = n_{\partial} = 960 \text{ мин}^{-1}$;
- выходного вала редуктора $n_2 = n_1/U_p = 960/25 = 38,4$ мин⁻¹;
- вала рабочей машины $n_{{ t M}\Phi}=n_2/U_{{ t o}{ t I}\Phi}=38,4/3,8=10,1$ мин $^{-1}$.

Отклонение от заданной частоты вращения вала рабочей машины

$$\Delta n_{\rm pm} = \frac{n_{\rm M\varphi} - n_{\rm pm}}{n_{\rm pm}} 100 \% = \frac{(10.1 - 10)}{10} 100 \% = 1 \% < [\Delta n] = 5 \%.$$

Определение вращающих моментов на валах:

- валу двигателя $T_{\partial} = 9550 \, P_{\partial}/n_{\partial} = 9550 \cdot 6,28/960 = 62,47 \, \mathrm{H} \cdot \mathrm{M}$;
- входном валу редуктора $T_1 = T_0 = 62,47 \text{ H} \cdot \text{м}$;
- выходном валу редуктора

$$T_2 = 9550 P_2/n_2 = 9550 \cdot 5,53/38,4 \approx 1375 \text{ H} \cdot \text{м};$$

– валу машины $T_{\rm pm}=9550\,P_{\rm pm}/n_{\rm mф}=9550\cdot5,2/10,1=4916,83$ Н · м.

Полученные значения мощностей, частот вращения и вращающих моментов записываем на полках выносок кинематической схемы привода.

Уточнение типоразмера редуктора

В результате расчета открытой зубчатой передачи получена суммарная нагрузка в зацеплении $F_n=13000~{\rm H}.$ Так как допускаемая радиальная консольная нагрузка на выходном валу $F_2=13500~{\rm H}>F_n=13000~{\rm H},$ окончательно принимаем

Из таблицы Приложения 3 выписываем габаритные и присоединительные размеры выбранного редуктора.

Пример 5. Исходные данные для расчета:

- синхронная частота вращения вала электродвигателя $n_c = 3000$ мин⁻¹;
- состав привода: клиноременная передача, типовой одноступенчатый червячный редуктор с верхним червяком;
- мощность рабочей машины $P_{pm} = 3.5 \text{ кBт};$
- частота вращения вала рабочей машины $n_{\rm pm}=34$ мин⁻¹;
- допускаемое отклонение частоты вращения вала машины $[\Delta n] = 5\%$. Кинематическая схема привода с червячным редуктором и клиноременной передачей показана на рис. $1\bar{d}$.

5.1. Определение расчетной мощности электродвигателя и выбор его по каталогу

$$P_{\partial p} = P_{pm}/\eta_0 = 3,5/0,76 = 4,6 \text{ кВт,}$$

где η_0 – общий КПД привода $\eta_0 = \eta_p \cdot \eta_{pn}$;

 η_p – КПД червячного редуктора, $\eta_p = 0.80$ (табл. 1);

 $\eta_{\rm p\pi}$ – КПД клиноременной передачи, $\,\eta_{\rm p\pi}=0.95$ (табл. 1).

$$\eta_0 = 0.80 \cdot 0.95 = 0.76.$$

Электродвигатель АИР 100L2УЗ ГОСТ 31606 – 2012:

$$P_{ ext{hom}} = 5$$
,5 кВт; $n_{\partial} = 2850 \text{ мин}^{-1}$; $d_1 = 28 \text{ мм}$ (табл. 2 и 3).

5.2. Определение общего передаточного числа привода и предварительный выбор редуктора

$$U_0 = n_{\partial}/n_{\text{DM}} = 2850/34 = 83.8.$$

Расчетное передаточное число редуктора $U_{\rm pp}=U_{\rm o}/U_{\rm pn}$, где $U_{\rm pn}$ – передаточное число клиноременной передачи.

Принимаем $U_{\text{рп}} = 2,0$ (табл. 1).

Тогда $U_{\rm pp}=U_{\rm o}/U_{\rm pn}=83,8/2,0=41,9.$ Принимаем $U_{\rm p}=40$ (см. табл.1).

Уточнение передаточного числа клиноременной передачи

$$U_{\text{pn}\Phi} = U_{\text{o}}/U_{\text{p}} = 83.8/40 = 2.1.$$

Передаточное число клиноременной передачи оказалось в рекомендуемых пределах (табл. 1).

Необходимый вращающий момент на тихоходном валу редуктора

$$T_{\rm Tp} = K_{\rm 9} \cdot 9550 \, P_{\rm pm} / n_{\rm pm} = 1.2 \cdot 9550 \cdot 3.5 / 34 = 1179.7 \, {\rm H\cdot m}.$$

Частота вращения вала-чевяка $n_1 = n_\partial/U_{\rm pn} = 2850/2$, 1 = 1357 мин $^{-1}$.

Выбираем предварительно червячный редуктор Ч-160М с верхним червяком с передаточным числом $U_{\rm p}=40$, $T_{\rm T}=1250$ Н · м при частоте вращения червяка $n_6=1500$ мин $^{-1}$, $\eta_{p\varphi}=0.79$ (см. Приложение 3).

Допускаемая радиальная консольная нагрузка на входном валу F_1 =1900 H, на выходном валу F_2 =10000 H.

Фактическая расчетная мощность электродвигателя

$$P_{\partial\phi} = P_{\rm pm}/(\eta_{p\phi} \cdot \eta_{\rm p\pi}) = 3.5/(0.79 \cdot 0.95) = 4.66 \text{ kBt}.$$

5.3. Определение мощностей, частот вращения и вращающих моментов на валах привода

Определение мощности на валах:

- валу рабочей машины $P_{\rm DM}=3.5~{\rm kBr}$;
- выходном валу редуктора $P_2 = P_{\rm pm} = 3.5~{\rm kBr}$;
- входном валу редуктора $P_1=P_2/\eta_{p\phi}=3.5/0.79=4.43~\mathrm{кBr}$;
- валу электродвигателя $P_{\partial} = P_1/\eta_{p\pi} = 4,43/0,95 = 4,66$ кВт.

Определение частоты вращения валов:

- вала электродвигателя $n_{\partial} = 2850 \text{ мин}^{-1}$;
- входного вала редуктора $n_1=n_\partial/U_{\mathrm{pn}\varphi}=2850/2$, 1=1357, 1 мин $^{-1}$;
- выходного вала редуктора $n_2 = n_1/U_{\rm p} = 1357,1/40 = 33,9$ мин⁻¹;
- вала рабочей машины $n_{\text{м}\Phi} = n_2 = 33,9 \text{ мин}^{-1}$.

Отклонение от заданной частоты вращения вала рабочей машины

$$\Delta n_{\rm pm} = \frac{n_{\rm m\phi} - n_{\rm pm}}{n_{\rm pm}} 100 \% = \frac{|33.9 - 34|}{34} 100 \% = 0.3 \% < [\Delta n] = 5 \%.$$

Определение вращающих моментов на валах:

- валу двигателя $T_{\partial}=9550\,P_{\partial\phi}/n_{\partial}=9550\cdot4,66/2850=15,61$ Н · м ;
- входном валу редуктора $T_1 = 9550\,P_1/n_1 = 9550\cdot4,43/1357,1 \approx 31~\mathrm{H}\cdot\mathrm{M}$;
- выходном валу редуктора $T_2 = 9550 P_2/n_2 = 9550 \cdot 3,5/33,9 = 986 \text{ H} \cdot \text{м}$;
- валу рабочей машины $T_{\rm pm}=9550\,P_{\rm pm}/n_{\rm mф}=9550\cdot3,5/33,9=986~{\rm H\cdot m}.$

Полученные значения мощностей, частот вращения и вращающих моментов записываем на полках выносок кинематической схемы привода.

Уточнение типоразмера редуктора

При расчете клиноременной передачи получено усилие от ремней на входной вал $F_{\rm p}=1200$ Н. Так как допускаемая радиальная консольная нагрузка на входной вал $F_{\rm 1}=1900$ Н > $F_{\rm p}=1200$ Н, окончательно принимаем Редуктор Ч-160М-40–51–2–3–1—1–1

Из таблицы Приложения 3 выписываем габаритные и присоединительные размеры выбранного редуктора.

Пример 6. Исходные данные для расчета:

- синхронная частота вращения вала электродвигателя $n_c = 1500$ мин⁻¹;
- состав привода: типовой одноступенчатый червячный редуктор с нижним червяком, цепная передача;
- мощность рабочей машины $P_{\rm pm}=5.1~{\rm kBt};$
- частота вращения вала рабочей машины $n_{\rm pm}=22$ мин $^{-1}$;
- допускаемое отклонение частоты вращения вала машины $[\Delta n] = 5 \%$. Кинематическая схема привода показана на рис.1 e.

6.1. Определение расчетной мощности электродвигателя и выбор его по каталогу

$$P_{\partial p} = P_{pM}/\eta_0 = 5.1/0.744 = 6.85 \text{ кВт,}$$

где η_0 – общий КПД привода, $\eta_0=\eta_p\cdot\eta_{un};$ η_p – КПД червячного редуктора, $\eta_p=0.80$ (табл. 1); $\eta_{\rm цп}$ – КПД открытой цепной передачи, $\eta_{\rm цп}=0.93$ (табл. 1). $\eta_0=0.80\cdot0.93=0.744.$

Электродвигатель АИР 132S4 УЗ ГОСТ 31606 – 2012: $P_{\text{ном}} = 7,5 \text{ кВт}; n_{\partial} = 1440 \text{ мин}^{-1}; d_1 = 38 \text{ мм (табл. 2 и 3)}.$

6.2. Определение общего передаточного числа привода и предварительный выбор редуктора

$$U_0 = n_{\partial}/n_{\rm pm} = 1440/22 = 65,45.$$

Расчетное передаточное число редуктора $U_{\mathrm{pp}} = U_{\mathrm{o}}/U_{\mathrm{цп}}$,

где $U_{\rm цп}$ – передаточное число цепной передачи.

Принимаем $U_{\text{пп}} = 2,0$ (табл. 1).

Тогда $U_{\rm pp}=U_{\rm o}/U_{\rm цп}=65,45/2=32,7.$

Принимаем $U_p = 31,5$ (см. табл.1).

Уточнение передаточного числа цепной передачи

$$U_{\text{цпф}} = U_{\text{o}}/U_{\text{p}} = 65,45/31,5 = 2,08.$$

Передаточное число цепной передачи оказалось в пределах рекомендуемых величин (см. табл.1).

Необходимый вращающий момент на тихоходном валу редуктора $T_{\rm Tp} = K_{\rm 9} \cdot (9550 \, P_{\partial p}/n_{\partial}) U_{\rm p} \eta_p = 1.1 \cdot (9550 \cdot 6.85/1440) \cdot 31.5 \cdot 0.80 = 1259.3 \, {\rm H} \cdot {\rm M}.$

Выбираем предварительно червячный редуктор с нижним червяком Ч–160М с передаточным числом $U_{\rm p}=31,\!5,\,T_{\rm T}=1600~{\rm H}\cdot{\rm M}$ при частоте вращения червяка $n_6=1500~{\rm Muh}^{-1},\,\eta_{p\varphi}=0,\!83$ (см. Приложение 3). Допускаемая радиальная консольная нагрузка на входном валу $F_1=1900~{\rm H},$ на выходном валу $F_2=10000~{\rm H}$.

Фактическая расчетная мощность электродвигателя

$$P_{\partial \phi} = P_{\text{pM}}/(\eta_{\text{pd}} \cdot \eta_{\text{HH}}) = 5.1/(0.83 \cdot 0.93) = 6.60 \text{ kBt.}$$

6.3. Определение мощностей, частот вращения и вращающих моментов на валах привода

Определение мощности на валах:

- валу рабочей машины $P_{\rm DM} = 5.1~{\rm кВт}$;
- выходном валу редуктора $P_2 = P_{\rm pm}/\eta_{\rm цп} = 5$,1/0,93 = 5,48 кВт ;
- входном валу редуктора $P_1=P_2/\eta_{p\Phi}=5,48/0,83=6,60~\mathrm{кBr}$;
- валу электродвигателя $P_{\partial} = P_1 = 6,60$ кВт.

Определение частоты вращения валов:

- вала электродвигателя $n_{\partial} = 1440 \text{ мин}^{-1}$;
- входного вала редуктора $n_1 = n_{\partial} = 1440 \; \text{мин}^{\text{-1}};$
- выходного вала редуктора $n_2 = n_1/U_{\rm p} = 1440/31,5 = 45,7$ мин⁻¹;
- вала рабочей машины $n_{{\scriptscriptstyle {\rm M}} \varphi} = n_2/U_{{\scriptscriptstyle {\rm Ц}\Pi} \varphi} = 45,7/2,08 = 21,97~{\scriptscriptstyle {\rm M}}{\scriptscriptstyle {\rm H}}{\scriptscriptstyle {\rm H}}^{\scriptscriptstyle -1}.$

Отклонение от заданной частоты вращения вала рабочей машины

$$\Delta n_{\rm pM} = \frac{n_{\rm M} - n_{\rm pM}}{n_{\rm pM}} 100 \% = \frac{|21,97 - 22|}{22} 100 \% = 0,14 \% < [\Delta n] = 5 \%.$$

Определение вращающих моментов на валах:

- валу двигателя $T_{\partial}=9550\,P_{\partial\phi}/n_{\partial}=9550\cdot 6,60/1440=43,77\,$ Н · м ;
- входном валу редуктора

$$T_1 = 9550 P_1/n_1 = 9550 \cdot 6{,}60/1440 = 43{,}77 \text{ H} \cdot \text{M};$$

- выходном валу $T_2 = 9550\,P_2/n_2 = 9550\cdot5,48/45,7 \approx 1145\,\mathrm{H}\cdot\mathrm{M};$
- валу рабочей машины $T_{\rm pm}=9550\,P_{\rm pm}/n_{\rm mp}=9550\cdot5$,1/22 = 2217H · м.

Полученные значения мощностей, частот вращения и вращающих моментов записываем на полках выносок кинематической схемы привода.

При расчете цепной передачи привода получено усилие от цепи на выходной вал $F_{\rm B}=7450~{\rm H}.$ Так как допускаемая радиальная консольная нагрузка на выходном валу $F_{\rm 2}=10000~{\rm H}>F_{\rm B}=7450~{\rm H},$ принимаем

Из таблицы Приложения 3 выписываем габаритные и присоединительные размеры выбранного редуктора.

4. ВЫБОР СТАНДАРТНОЙ МУФТЫ. ПРОВЕРКА ЭЛЕМЕНТОВ МУФТЫ

В электромеханическом приводе муфта предназначена для соединения концов валов и передачи вращающего момента.

Основной характеристикой нагруженности муфты является номинальный вращающий момент $(T_{\rm H})$, установленный стандартом. Муфты выбирают по большему диаметру концов валов и по расчетному вращающему моменту.

Расчетный вращающий момент, действующий на муфту

$$T_{\rm p} = K \cdot T_i \le T_{\rm H}, \, \mathrm{H} \cdot \mathrm{M},$$

где K– коэффициент динамичности нагрузки (табл.6);

 T_i -наибольший вращающий момент на соединяемом валу привода, Н·м;

 $T_{\rm H}$ -номинальный вращающий момент — момент, передаваемый муфтой при длительном режиме работы с постоянной нагрузкой и постоянным направлением вращения, ${
m H\cdot m}$.

Входной и выходной валы редукторов имеют цилиндрические или конические концевые участки для установки полумуфт, шкивов, звездочек или зубчатых колес.

Таблица 6. Рекомендуемые значения коэффициента динамичности нагрузки

Вид рабочей машины	K
Конвейеры ленточные	1,20 ÷ 1,5
Дозаторы, питатели, воздуходувки	$1,25 \div 2,0$
Конвейеры цепные, пластинчатые, скребковые, винтовые	$1,5 \div 2,0$
Насосы центробежные	$2,0 \div 3,0$
Оборудование ЦБП	$2,0 \div 2,5$

Стандартные муфты изготавливаются с цилиндрическим и коническим посадочными отверстиями, а каждый тип — двух исполнений: для длинных и коротких концов валов. Исполнение полумуфты зависит от длины соединяемых концов валов. Допускается сочетание полумуфт разных типов и исполнений с различными диаметрами посадочных отверстий в пределах одного номинального вращающего момента. В отдельных случаях по заказу потребителя допускается посадочное отверстие в одной из полумуфт выполнять меньшего диаметра из установленных стандартом для других номинальных вращающих моментов.

Способы установки и крепления полумуфт на цилиндрических и конических концах валов показаны на рис. 2. При постоянном направлении вращения и умеренно нагруженных валах ($\tau_{\rm kp} \leq 15~{\rm H/mm^2}$) полумуфты на цилиндрические концы валов сажают по переходным посадкам типа H7/k6; H7/m6. При реверсивной работе, а также тяжело нагруженных валах ($\tau_{\rm kp} > 15~{\rm H/mm^2}$) применяют посадку H7/n6. При больших нагрузках, работе с толчками, ударами и реверсивной работе предпочтительно полумуфты устанавливать на конические концы валов.

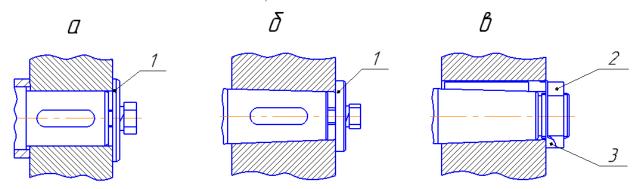


Рис.2. Способы крепления полумуфт на концах валов:

а — на цилиндрический конец концевой шайбой 1; б — на конический конец концевой шайбой 1 (рис. 3 и табл. 6); в — на конический конец гайкой 2 (ГОСТ 15522-70) и стопорной шайбой 3 (ГОСТ 13465-77)

4.1. Муфты упругие втулочно-пальцевые

Муфты получили широкое распространение в приводах машин с малыми и средними вращающими моментами, благодаря относительной простоте конструкции и удобству замены резиновых упругих элементов. Однако они имеют небольшую компенсирующую способность, и их применение целесообразно при установке соединяемых изделий на рамах большой жесткости (сварных рамах). Сборку соединяемых изделий необходимо проводить с высокой точностью. Муфта состоит из двух фланцевых полумуфт, соединенных стальными пальцами с резиновыми втулками.

Полумуфты изготавливают исполнений:

- 1 с цилиндрическими отверстиями для длинных концов валов;
- 2 с цилиндрическими отверстиями для коротких концов валов;
- 3 с коническими отверстиями для длинных концов валов;
- 4 с коническими отверстиями для коротких концов валов.

Основные параметры, габаритные и присоединительные размеры упругих втулочно-пальцевых муфт приведены на рис. 3 и в табл. 7.

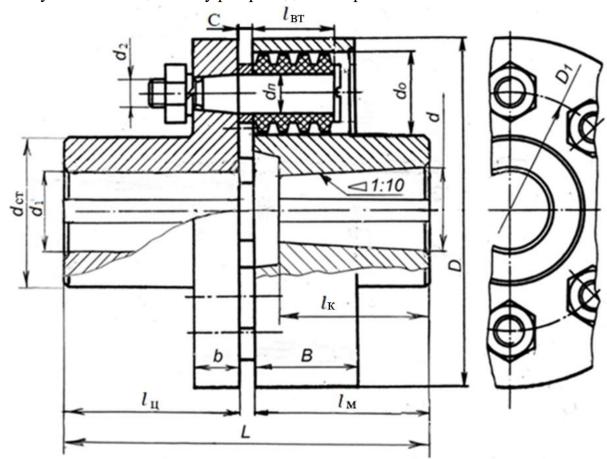


Рис. 3. Муфта упругая втулочно-пальцевая:

 $l_{\rm M}$ — длина полумуфты с коническим отверстием

TT 0	77							Раз	меры,	MM								
Номинальный вращающий	Частота вращения				ілинн			сорот										Кол-во
•	л, мин ⁻¹ ,	4. 4	D	КОНІ	цы вал	IOB	КОН	цы ва	ЛОВ	C	D	В	b	a	7	a	d_2	пальцев,
момент	, ,	d; d ₁	ש	-	l	$l_{\ \scriptscriptstyle \mathrm{KJ}}$		$l_{\scriptscriptstyle m IIK}$	$l_{\scriptscriptstyle m KK}$	C	D_1	Ь	D	d_{π}	$\iota_{_{\mathrm{BT}}}$	d_0	\mathbf{u}_2	Z
$T_{H}, H \cdot M$	не более			L	ι _{цд} h14	h14	L	h14	h14									
31,5	6350	16;18	90	84	40	30	60	28	18	4	62	20	16	10	15	20	M8	4
63,0	5700	20;22;24	100	104	50	38	76	36	24	4	71	20	16	10	15	20	M8	6
125	4620	25;28	120	125	60	44	89	42	26	5	90	32	18	14	28	28	M10	4
123	4020	30	120	165	80	60	125	60	42	3	90	34	10	14	20	20	IVIIO	4
250	3780	32;35;38	140	165	80	60	125	60	42	5	105	32	18	14	28	28	M10	6
	3760	40;42;45	140	225	110	85	169	82	56	3 103	103	32	10	17		20	IVIIO	U
500	3600	40;42;45	170	225	110	85	169	82	56	5	130	32	18	18	36	36	M12	6
710	3000	47;48;50;	190	226	110	85	170	82	56	5	136	36	20	18	36	36	M12	8
710	3000	55;56	170	220					50	<u> </u>	130	50	20	10	30	30	10112	0
1000	2050	50;55;56	220	226	110	85	170	82	56		1.00	40	2.4	1.0	26	26	1412	10
1000	2850	60;65; 70	220	286	140	107	216	105	72	6	160	40	24	18	36	36	M12	10
2000	2300	65;70; 75	250	288	140	107	218	105	72	8	200	48	30	24	44	46	M16	10
2000	2300	80;85;90	230	348	170	135	268	130	95	0	200	40	30		44	40	10110	10
4000	1800	80;90; 95	320	350	170	135	270	130	95	8	240	60	38	30	56	60	M24	10

Примечания: 1. Диаметр ступицы полумуфт d_{cr} =1,6d. 2. Примеры условного обозначения упругой втулочно-пальцевой муфты: — муфта упругая втулочно-пальцевая 250 – 40 – 1 УЗ ГОСТ 21424-93 (муфта упругая втулочно-пальцевая с номинальным вращающим моментом 250 H·м, диаметром посадочных отверстий полумуфт d=40 мм, исполнения 1, климатического исполнения У и категории 3); — муфта упругая втулочно-пальцевая 250 – 40 – 2 УЗ ГОСТ 21424-93 (муфта упругая втулочно-пальцевая с номинальным вращающим моментом 250 H·м, диаметром посадочных отверстий полумуфт d=40 мм, исполнения 2, климатического исполнения У и категории 3); — муфта упругая втулочно-пальцевая 250 – 32 – 2 – 40 – 4УЗ ГОСТ 21424-93 (муфта упругая втулочно-пальцевая с номинальным вращающим моментом 250 H·м, одна из полумуфт с диаметром посадочного отверстия d=32 мм, исполнения 2, другая диаметром посадочного отверстия d=40 мм, исполнения 4, климатического исполнения У и категории 3)

Допускается комбинация полумуфт различных исполнений.

При установке муфты на конические концы валов следует выбирать исполнение полумуфты с длиной $l_{\rm M} \approx l_{\rm OB}$ +2 мм. Здесь $l_{\rm OB}$ длина конического конца входного вала редуктора (см. Приложения 1 и 2).

В обозначении муфты после значения вращающего момента указывают обозначение полумуфты с отверстиями для крепления пальцев.

Резиновые упругие элементы муфты проверяют на смятие. При этом полагают, что все пальцы нагружены одинаково, а напряжения смятия распределены равномерно по длине втулки.

$$\sigma_{\scriptscriptstyle \mathrm{CM}} = 2000 \cdot \mathrm{T_p}/(z \cdot D_1 \cdot d_{\scriptscriptstyle \mathrm{II}} \cdot l_{\scriptscriptstyle \mathrm{BT}}) \leq [\sigma_{\scriptscriptstyle \mathrm{CM}}], \, \mathrm{H/mm^2},$$

где T_p — расчетный вращающий момент, $H\cdot m$; z — число пальцев; D_1 — диаметр окружности расположения пальцев, мм; $d_{\rm п}$ — диаметр пальца, мм; $l_{\rm вт}$ — длина упругого элемента, мм; $[\sigma_{\rm cm}]=2$ H/мм 2 — допускаемое напряжение смятия.

Пальцы муфты проверяют на изгиб

$$\sigma_{\text{\tiny H}} = 2000 \cdot \text{T}_{\text{\tiny p}} \cdot (0.5l_{\text{\tiny BT}} + \text{c})/(z \cdot D_1 \cdot 0.1d_{\text{\tiny H}}^3) \le [\sigma_{\text{\tiny H}}], \text{ H/mm}^2,$$

где с – зазор между полумуфтами, мм;

 $[\sigma_{\rm u}]$ – допускаемые напряжения изгиба, H/мм². $[\sigma_{\rm u}] = (0.4 \div 0.5)\sigma_{\rm T}$.

Материал пальцев – сталь 45 ГОСТ 1050-88, $\sigma_{\rm T}=360\,$ H/мм².

Радиальную силу $F_{\rm M}$, действующую на вал, вследствие несоосности соединяемых валов, определяют по эмпирической формуле $F_{\rm M}=50\sqrt{T_i}$, H, где T_i — вращающий момент на соединяемом валу привода, H·м.

4.2. Муфты зубчатые

Зубчатые муфты обладают высокой несущей способностью и надежностью при малых габаритных размерах, хорошими компенсирующими свойствами; допускают значительную частоту вращения. Их применяют для передачи больших вращающих моментов при затруднении точной установки валов. Для уменьшения износа и увеличения долговечности зубьев зубчатое соединение муфты смазывают жидким маслом большой вязкости.

Втулки муфт с разъемной обоймой (тип 1) изготовляют с цилиндрическими отверстиями для коротких концов валов (исполнение 1) и с коническими отверстиями для коротких концов валов (исполнение 2). В муфтах допускается комбинация втулок различных исполнений.

Основные параметры и размеры зубчатых муфт показаны на рис. 4 и приведены в табл. 8.

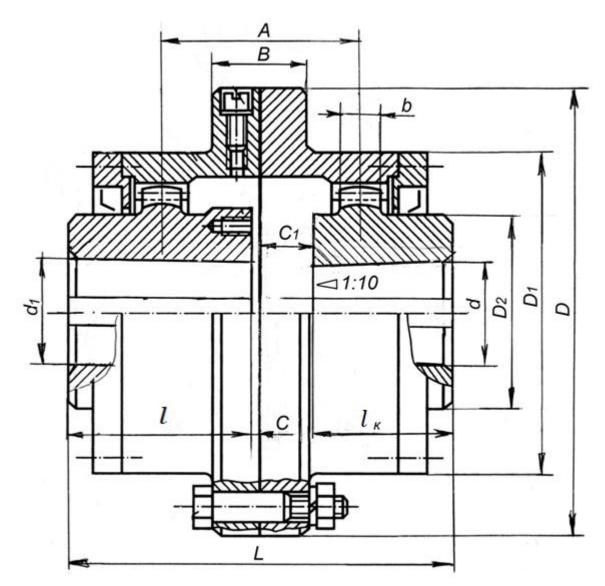


Рис.4. Муфта зубчатая с разъемной обоймой

Основным критерием работоспособности зубчатой муфты является износостойкость зубьев.

Условие ограничения износа зубьев

$$\sigma_{\rm cm} = 1000 \cdot {\rm T_p}/(0.9 \cdot d_0^2 \cdot b) \le [\sigma_{\rm cm}], \ {\rm H/mm^2},$$

где T_p — расчетный вращающий момент, H·м; d_0 — делительный диаметр зубчатого соединения, $d_0 = m \cdot z$, мм; m – модуль зубьев, мм; z – число зубьев полумуфты; b — длина зуба, мм; $[\sigma_{\scriptscriptstyle{\text{CM}}}]$ — допускаемое напряжение смятия, $[\sigma_{\text{см}}] = (12 \div 15) \text{ H/мм}^2$.

Радиальное усилие, действующее от муфты на валы, приближенно принимают

$$F_{\rm M} \approx 0.2 F_t = 0.4 \cdot 10^3 T_i / d_0, \, {\rm H},$$

 $F_{\rm M}\approx 0.2F_t=0.4\cdot 10^3 T_i/d_0,\,{\rm H},$ где F_t — окружная сила на делительном диаметре зубьев, H; T_i – вращающий момент на соединяемом валу привода, Н·м.

Таблица 8. Размеры и параметры зубчатых муфт (из ГОСТ Р 50895-96)

-	Номинальный	Частота					Размер	ы, мм							Зубь	a
	вращающий момент $T_{\rm H}$, H ·м	вращения n, мин ⁻¹ , не более	d; d ₁	D	D_1	D_2	L	A	<i>l</i> h14	l _к h14	В	C_1	C	b	модуль, m, мм	Z
•	1000	5400	40	145	100	60	174	60	82	70	34	17	5	12	2,5	30
-	1600	4800	55	170	125	80	174	75	82	65	34	22	5	15	2,5	38
	2500	4500	60	185	135	85	220	75	105	85	40	25	5		3	36
•	4000	3720	65	200	150	95	220	85	105	85	40	25	5	20	3	40
	6300	3300	80	230	175	115	270	125	130	105		30	5		3	48
	10000	2820	100	270	200	145	340	145	165	135		35	5	25	3	56
	16000	2400	120	300	230	175	345	160	165	_	50	1	7,5	30	4	48
29	25000	2100	140	330	260	200	415	180	200	165		42	7,5	30	4	56
•	40000	1450	160	410	330	230		210	200	_		_	7,5	35	6	46

Примечание. Примеры условного обозначения зубчатой муфты:

[—] муфта 1 - 1600— 50 - 1 У2 ГОСТ Р 50895-96 (муфта типа 1 с номинальным вращающим моментом 1600 Н·м, диаметром посадочных отверстий во втулках d = 50 мм, исполнения 1, климатического исполнения У и категории 2);

[—] муфта 1 - 1600 - 50 - 1 - 55 - 2 У2 ГОСТ Р 50895-96 (муфта типа 1 с номинальным вращающим моментом 1600 Н·м с одной втулкой исполнения 1 диаметром посадочного отверстия d = 50 мм, другая втулка исполнения 2 с диаметром посадочного отверстия $d_1 = 55$ мм, климатического исполнения У, категории 2)

4.3. Муфты упругие с торообразной оболочкой

Муфты упругие с торообразной оболочкой просты по конструкции и обладают высокими компенсационными свойствами, способностью уменьшать динамические нагрузки, что позволяет применять их в конструкциях, где трудно обеспечить соосность соединяемых валов; при переменных нагрузках, а также при значительных кратковременных перегрузках. Муфты допускают соединение валов с угловым перекосом до $2 \div 3^0$, радиальным смещением до $2 \div 4$ мм, осевым смещением до 5 мм и их комбинацию.

Муфты изготавливают трех типов:

- 1 c оболочкой выпуклого профиля (рис. 5);
- 1Π с оболочкой выпуклого профиля перспективного ряда (см. рис. 5);
- 2Π с оболочкой вогнутого профиля перспективного ряда (рис.6).

Недостатками муфт с выпуклой оболочкой (см. рис. 5) являются сравнительно большой наружный диаметр и появление осевых нагрузок на опоры валов, вызываемых центробежными силами, действующими на упругий элемент при вращении.

Муфты с упругой оболочкой вогнутого профиля (см. рис. 6) отличаются простотой конструкции вследствие уменьшения числа деталей. При одинаковом вращающем моменте муфта имеет меньший наружный диаметр, допускает большие частоты вращения, и существенно уменьшается влияние центробежных сил на упругую оболочку. Осевые силы на валы и опоры от муфты с упругой вогнутой оболочкой снижаются в 2-3 раза по сравнению с муфтой с выпуклым элементом.

Полумуфты муфты типа 1 изготовляют следующих исполнений:

- 1 с цилиндрическими отверстиями для длинных концов валов;
- 2 с цилиндрическими отверстиями для коротких концов валов;
- 3 с коническими отверстиями для длинных концов валов;
- 4 с коническими отверстиями для коротких концов валов.

Полумуфты муфт типа 1П и 2П изготовляют исполнений:

- 1 c цилиндрическими отверстиями для коротких концов валов;
- 2 с коническими отверстиями для коротких концов валов.

Допускается комбинация полумуфт различных исполнений.

Основные параметры и размеры упругих компенсирующих муфт с торообразной выпуклой оболочкой приведены в табл. 9 и 10, а с оболочкой вогнутого профиля в табл.11.

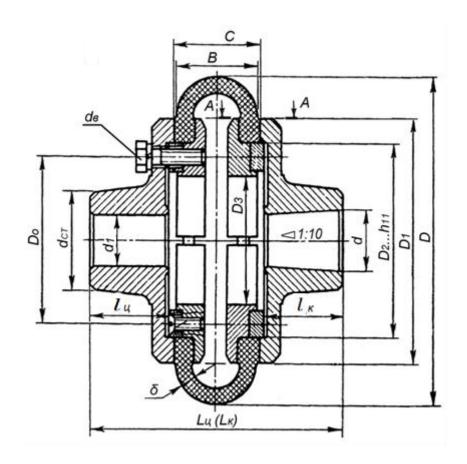


Рис. 5. Муфта с торообразной оболочкой выпуклого типа

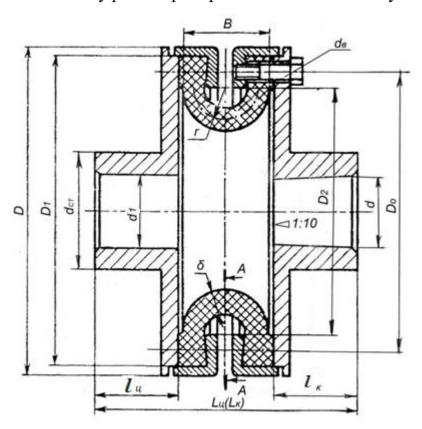


Рис. 6. Муфта с торообразной оболочкой вогнутого профиля

Таблица 9. Размеры и параметры упругих муфт с торообразной выпуклой оболочкой (по ГОСТ Р 50892-96)

Номинальный	и Частота				Разме	еры, мм						
вращающий момент	вращения n, мин ⁻¹ ,	dH9;	D	D_1	D_0	т	Ţ	1	7	Вил	нты	T_{max} , $H \cdot M$
момент Т _н , Н·м	не более	d_1H7	ע	D_1	D_0	L_{II}	L_{K}	lц	$l_{\rm K}$	d_{B}	Z	п.м
		18;19				115	100	30	20			
40		20;22;24	125	100	60	130	120	38	26	M8	6	125
	3000	25				140	130	44	28			
	3000	22;24				140	130	38	26			
80		25;28	160	120	80	150	140	44	28	M10	6	250
		30				185	170	60	40			
125	2460	25;28	180	135	90	155	145	44	28	M10	8	400
123	2400	30;32;35;36	160	133	90	190	175	60	40	IVITO	0	400
200	2460	30;32;35;36;38	200	150	100	200	185	60	40	M12	8	630
	2400	40	200	130	100	250	235	84	60	1V112	0	030
250		32;35;36;38	220	165	115	205	185	60	40	M12	8	800
	1980	40;42;45	220	103	113	255	240	84	60	10112		800
315	1900	35;36;38	250	190	130	215	195	60	40	M12	8	1000
515		40;42;45;48	230	190	130	270	250	84	60	IVIIZ	0	1000
500	1560	40;42;45;48;50;55	280	210	145	270	250	84	60	M12	8	1600
800		48;50;55	320	240	170	280	270	84	60	M12	8	2500
		60;63	320	240	170	330	310	108	75	IVI I Z	O	2300
1250		55;56	360	270	190	280	230	84	60	M16	8	3150
1230	1560	60;65;70;75	300	270	190	330	260	108	75	IVIIO	0	3130
2000	1300	63;65;70;75	400	300	210	350	270	108	75	M16	8	5000
2000		80;85;90	400	300	210	400	320	132	96	IVITO	0	3000
3150		80;85;90;95	450	350	240	405	325	132	96	M20	8	8000
3130		100	450	350	2 4 0	475	385	168	126	10120	8	8000

Примечания: 1. T_{max} — максимальный вращающий момент при кратковременной перегрузке. 2. В таблице приведены муфты исполнения на короткие валы.3. Ориентировочные размеры основных элементов муфты с торообразной выпуклой оболочкой: $D_2 = 0.6D$; $d_{cr} = 1.6d$; $D_3 = d_{cr} + (3 \div 5)$ мм; B = 0.25D; C = 1.06B; $\delta = 0.05D$

Таблица 10. Размеры и параметры упругих муфт с торообразной выпуклой оболочкой перспективного ряда (по ГОСТ Р 50892-96)

1	1 77 (/						
Номинальный вра-	Частота враще-		Разм	еры, мм				T
щающий момент	ния n, мин ⁻¹ ,	d H9;	D	L_{II}	$L_{\scriptscriptstyle K}$	1	$l_{\ \scriptscriptstyle m K}$	<i>Т_{тах},</i> Н∙м
T_{H} , $H \cdot M$	не более	d_1H7	D	LЦ	L _K	lц	ιĸ	П - М
		18;19		115	100	30	20	
40	3000	20;22;24	125	130	110	38	26	125
		25		140	115	44	28	
		20;24		140	115	38	26	
63	2880	25;28	155	150	120	44	28	200
		30		180	145	60	40	
100	2520	22;25;28	175	155	125	44	28	315
100	2320	30;32;35;36	1/3	185	150	60	40	313
160	2460	28;30;32;36;38	195	195	160	60	40	500
250	2040	32;35;36;38	220	205	170	60	40	800
230	2040	40;42;45	220	255	210	84	60	800
400	1980	36;38	265	215	180	60	40	1250
	1960	40;42;45;48;50	203	265	220	84	60	1230
630	1560	45;48;50;55; 56; 60	300	275	230	84	60	2000
1000	1560	53;55;56	340	285	240	84	60	2500
1000	1300	60;65;70;71	340	330	265	108	75	2300
1600	1560	60;63;65;70;75	260	330	265	108	75	4000
1600	1560	80;85	360	380	310	132	96	4000
2500	1290	75	420	350	290	108	75	6000
2500	1380	80;85;90;95	420	405	335	132	96	6000
4000	1280	85;90;95	160	425	355	132	96	10000
4000	1380	100;105;110;120	460	495	410	168	126	10000
	•							

Примечания: 1. T_{max} — максимальный вращающий момент при кратковременной перегрузке. 2. В таблице приведены муфты исполнения на короткие валы. 3. Ориентировочные размеры основных элементов муфты: $D_1 = 0.75D$; $D_2 = 0.6D$; $D_0 = (0.5 \div 0.52)D$; $d_{ct} = 1.6d$; $D_3 = d_{ct} + (3 \div 5)$ мм; $D_3 = 0.25D$; $D_3 = 0.05D$

32

Таблица 11. Размеры и параметры упругих муфт с торообразной оболочкой вогнутого профиля перспективного ряда (из ГОСТ Р 50892-96)

II a same as well	Частота					Разм	иеры, м	IM							
Номинальный вращающий	вращения n, мин ⁻¹ ,	d H9;	D	D_1	D_2	D_0	В	δ	L_{II}	L_{K}	l _{II}	$l_{\ \scriptscriptstyle \mathrm{K}}$	Вин	ТЫ	T_{max} , Н·м
момент Т _н , Н⋅м	не более	d₁H7	<i>D</i>	D ₁	D ₂	D ₀	Б	U	Ц	Lk	1 Ц	l K	d _B	Z	11 - 1/1
40	5160	20;22;24	130	125	100	113	37	8	120	100	38	26	M6	6	125
		25							130	105	44	28			
		20;22;24							130	105	38	26			
63	4800	25;28	150	145	120	133	44	9	140	110	44	28	M6	6	200
		30							170	135	60	40			
100	4200	22;25;28	170	165	140	153	50	11	145	115	44	28	M6	6	315
		30;32;35;36							180	140	60	40			
160	3700	28;30;32;36;38	190	185	160	173	58	12,5	190	150	60	40	M6	6	500
250	3180	32;35;36;38	220	215	186	200	68	14,5	200	160	60	40	M8	6	800
	3100	40;42;45		213	100	200	00	1 1,5	245	200	84	60	1710		000
400	2840	36;38	260	250	218	234	80	17	210	170	60	40	M10	6	1250
		40;42;45;48							260	210	84	60			
630	2520	45;48;50;53;55;60	300	290	255	273	93	20	275	225	84	60	M12	8	2000
1000	2260	55;56	340	335	300	318	110	23	290	245	84	60	M12	8	2500
	2200	60;63;65;70	340	333	300	310	110	23	330	265	108	75	10112	0	2300
1600	2040	60;65;70;75	350	345	305	325	112	23,5	330	265	108	75	M12	8	4000
	2040	80;85	330	3-13	303	323	112	25,5	385	315	132	95	10112	0	7000
2500	1890	75	410	405	360	382	132	28	350	290	108	75	M12	8	6000
2500	1070	80;85;90;95	410	403	300	302	132 28		395	320	132	95	14112	O	6000
4000	1650	85;90;95	460 450	405	428 1	150	150 32	415	340	132	95	M12	10	10000	
	1650	1650 33,90,93 460 450 405 428 150 3	34	485	400	168	125	14117	10	10000					

Примечания: 1. T_{max} — максимальный вращающий момент при кратковременной перегрузке. 2. Диаметр ступицы $d_{cr} = 1,6d(d_1)$

Примеры условного обозначения муфт с торообразной оболочкой Mv ϕ та 1-250-40-2 У2 ГОСТ P 50892-96.

(Муфта типа 1 с номинальным вращающим моментом 250 Н·м, диаметрами посадочных отверстий полумуфт d=40 мм, с полумуфтами исполнения 2, климатического исполнения У и категории 2).

Муфта
$$1\Pi - 250 - 40 - 1 - 36 - 2$$
 У2 ГОСТ Р 50892-96.

(Муфта типа 1П с номинальным вращающим моментом 250 Н·м с диаметром посадочного отверстия одной полумуфты d=40 мм, исполнения 1, другой полумуфты с коническим отверстием (исполнения 2) $d_1=36$ мм, климатического исполнения У, категории 2).

Муфта
$$2\Pi - 250 - 40 - 1 - 36 - 2$$
 У2 ГОСТ Р 50892-96.

(Муфта типа 2П с номинальным вращающим моментом 250 Н·м с диаметром посадочного отверстия одной полумуфты d=40 мм, исполнения 1, другой полумуфты с коническим отверстием (исполнения 2) $d_1=36$, климатического исполнения У, категории 2).

Допускается в рабочих чертежах обозначение климатического исполнения не указывать.

Радиальную силу, действующую на валы от упругой муфты с торообразной оболочкой, определяют по формуле

$$F_{\rm M} \approx 0.45 \cdot 10^3 T_i/D, {\rm H.}$$

После выбора муфты выполняют проверочные расчеты её элементов.

Муфты с торообразной выпуклой оболочкой

При передаче вращающего момента в оболочке действуют касательные напряжения крутильного сдвига τ_{κ} .

Прочность оболочки в кольцевом сечении A-A с диаметром D_1 (рис. 5)

$$\tau_{\scriptscriptstyle \mathrm{K}} = 2 \cdot 10^3 \cdot T_p / (\pi \cdot D_1^2 \cdot \delta) \le [\tau_{\scriptscriptstyle \mathrm{K}}], \, \mathrm{H/mm^2},$$

где T_p —расчетный вращающий момент, Н·м; $D_1=0.75D$, мм; δ —толщина оболочки, мм; $[\tau_{\rm K}]$ —допускаемые касательные напряжения, Н/мм². Оболочки $D \leq 300$ мм выполняются из резины $[\tau_{\rm K}]=(0.45\div 0.50)$ Н/мм². При D>300 мм для повышения нагрузочной способности и срока службы оболочки армируют нитями корда. Для них $[\tau_{\rm K}]=(0.70\div 0.75)$ Н/мм².

Вращающий момент с полумуфт на оболочку передается силами трения, созданными при затяжке винтов.

Требуемая сила затяжки одного винта $F_{\rm 3aT}=2\cdot 10^3\cdot T_p\cdot s/(z\cdot f\cdot D_0)$, H, где s- коэффициент запаса сцепления, $s=1,2\div 1,5; z-$ число винтов; $f\approx 0,3-$ коэффициент трения резины по металлу; $D_0=0,675D$, мм.

Число винтов предварительно принимают:

D, мм	до 160	св. 160 до 300	св. 300
Z	6	8	8;10

Материал винтов: Сталь 35 ГОСТ 1050-88, $\sigma_{\rm T}=300\,{\rm H/mm^2}$. Затяжку винтов контролируют.

Внутренний диаметр резьбы винта

$$d_1 \ge \sqrt{1,3 \cdot 4 \cdot F_{\text{3at}}/(\pi \cdot \left[\sigma_p\right])}, \text{ MM}.$$

где $[\sigma_p]$ —допускаемое напряжение растяжения для материала винта, $[\sigma_p] = \sigma_{\rm T}/[s]; [s]$ — коэффициент запаса прочности.

При контролируемой затяжке[s] = (1,5 \div 2,5).

Напряжение смятия на кольцевой поверхности контакта упругой оболочки с полумуфтой

$$\sigma_{\text{см}} = 4 \cdot F_{\text{зат}}/[\pi \cdot (D_1^2 - D_2^2)] \le [\sigma_{\text{см}}], \text{ H/мм}^2,$$
где $[\sigma_{\text{см}}] = (2 \div 3) \text{ H/мм}^2$; $D_2 = 0.6D$.

От действия центробежных сил и деформирования упругой оболочки при передаче муфтой вращающего момента возникает осевая сила $F_{\rm ц}$, действующая на валы, которая может быть определена по графикам из учебного пособия [5, с. 356, рис. 15.6].

Муфты с торообразной вогнутой оболочкой

Прочность оболочки в экваториальном сечении А-А (рис. 6)

$$\tau_{\rm K} = 2 \cdot 10^3 \cdot T_p / [\pi \cdot \delta \cdot (D_2 - 2r)^2] \le [\tau_{\rm K}], H/{\rm MM}^2,$$

где $r = 0.5(B - \delta)$.

Проверочный расчет винта

$$\sigma_p = 1.3 \cdot 4 \cdot F_{3aT} / (\pi \cdot d_1^2) \le [\sigma_p], H/MM^2,$$

где $F_{\text{зат}}$ — требуемая сила затяжки винта, H; d_1 — внутренний диаметр резьбы винта, мм.

$$F_{\text{3aT}} = 2 \cdot 10^3 \cdot T_p \cdot s / (z \cdot f \cdot D_0), \text{ H.}$$

Напряжение смятия на кольцевой поверхности контакта края упругого элемента с полумуфтой

$$\sigma_{\text{CM}} = 4 \cdot F_{\text{3aT}} \cdot z / [\pi \cdot (D_1^2 - D_2^2)] \le [\sigma_{\text{CM}}], H / MM^2.$$

Размеры упругой втулочно – пальцевой муфты, муфты упругой с торообразной оболочкой и зубчатой муфты приведены также в учебном пособии [6].

5. КОНСТРУИРОВАНИЕ ЗУБЧАТЫХ КОЛЕС, ЗВЕЗДОЧЕК И ШКИВОВ ОТКРЫТЫХ ПЕРЕДАЧ

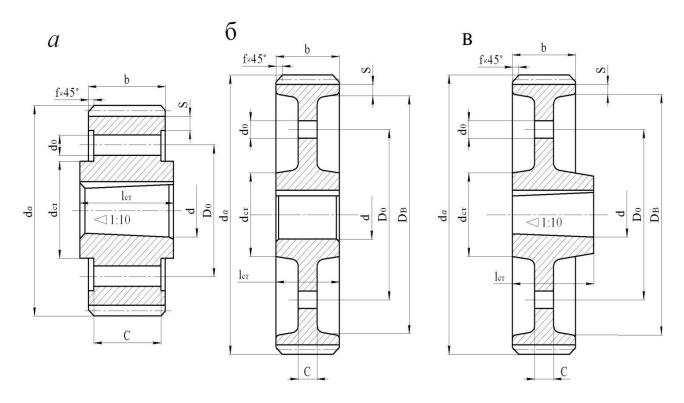


Рис. 7. Конструкция зубчатых цилиндрических колес: $a-d_a < 200$ мм; $6-d_a = 200 \div 500 \text{ мм, симметричная ступица; в } -d_a = 200 \div 500 \text{ мм} -$ несимметричная ступица

Таблица 12. Размеры зубчатых цилиндрических колес

Элемент	Размер	$d_a < 200 \; { m mm}$	$d_a = 200 \div 500$ мм					
колеса								
	Ширина	b						
Обод	Толщина	S = 10 MM	S = 10÷16 мм					
Ооод	Внутренний диаметр	$D_B=$	$d_{\rm f}$ –2S					
	Фаска	утренний диаметр $D_{\rm B} = d_{\rm f} - 2S$ Фаска $f = m$ иаметр отверстия d Диаметр ступицы $d_{\rm cr} = 1,55d$ Длина $d_{\rm cr} = 0$	= m					
	Диаметр отверстия	d						
C	Диаметр ступицы	$d_{ct} = 1,55d$						
Ступица	Лиино	$l_{cT} = b$	$l_{ct} = (0.8 \div 1.5)d$					
	Длина	обычно $l_{cr} = (1,0 \div 1,2)d$						
	Толщина	$c = b - (2 \div 4) \text{ MM}$	$c \approx 0,25b$					
Диск	Отверстия	$d_0 = 12 \div 20$ мм	$d_0 \ge 25 \; \text{mm}$					
Дпек	Отверстия	Количество n = 4÷6						
	D_0	$D_0 = 0.5(D_B + d_{ct})$						

Примечания: 1. m – модуль зацепления; 2. d_f – диаметр окружности впадин колеса

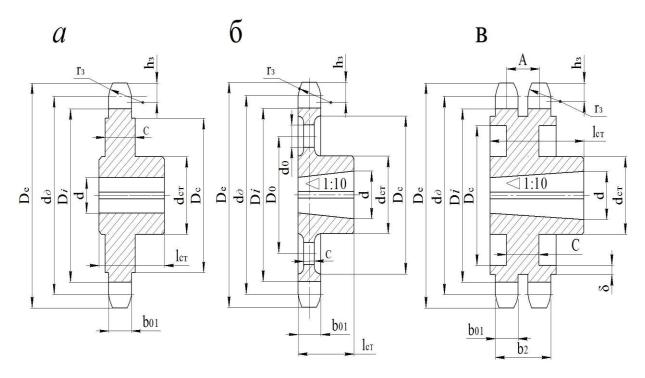


Рис 8. Конструкции звездочек роликовых цепей: a — без проточек на диске; б — с проточками на диске; в — для двухрядной цепи

Таблица 13. Размеры звездочек роликовых цепей

таолица тэт т	аэмеры эвеэдо тек роликовых	цепен
Элемент звездочки	Размер	Значения
	Ширина зуба	$b_{01} = 0.93b_1 - 0.15 \text{ MM}$
	Радиус закругления зуба	$r_3 = 1.7d_1$
Обод	Расстояние от вершины зуба до линии центров дуг закруглений	$h_3 = 0.8d_1$
	Расстояние между осями двухрядной цепи	А – по ГОСТ 13568-97
	Ширина венца двухрядной цепи	$b_2 = A + b_{01}$
	Толщина	$c = b_{01} + (4 \div 5)$ мм – рис. 2 a $c = b_{01} - 4$ мм – рис. 2 б, в
Лухан	Толщина диска двухрядной цепи	$C \approx A$
Диск	Диаметр проточки	$D_c = p \cdot ctg(180^{\circ}/z) - 1.3h$
	Диаметр отверстия	$d_0 \ge 25$ мм. Количество n = 4 ÷ 6.
	D_0	$D_0 = (D_c + d_{cT}) / 2$
	Диаметр отверстия под вал	d
Ступица	Диаметр ступицы	$d_{\rm cr} = 1,55d$
	Длина ступицы	$l_{CT} = (0.8 \div 1.5)d$

Примечания: 1. d_{∂} — диаметр делительной окружности звездочки; D_e — диаметр окружности выступов звездочки; D_i — диаметр окружности впадин звездочки; p — шаг цепи, мм; z — число зубьев звездочки; d_1 — диаметр ролика цепи; b_1 — ширина внутреннего звена цепи; h— высота пластины. 2. Размеры d_1 , b_1 и h — см. ГОСТ 13568-97

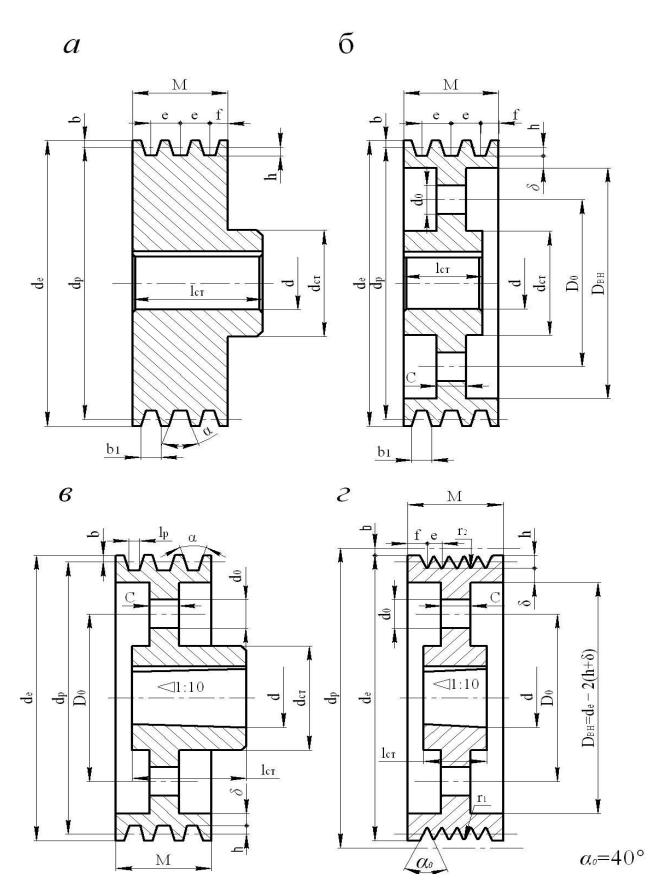
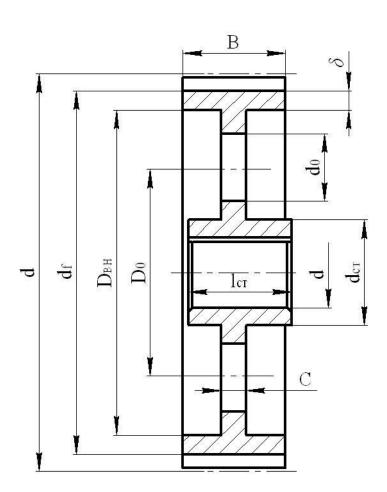



Рис. 9. Конструкции шкивов клиноременной передачи: $a-d_p \le 125$ мм, ступица, выступающая с одного торца; $b-d_p > 125$ мм, ступица, укороченная с одного торца; $b-d_p > 125$ мм, ступица, выступающая с одного и укороченная с другого торца, отверстие под вал коническое; $b-d_p > 125$ мм, ступица, укороченная с обоих торцов

Таблица 14. Размеры канавок шкивов для клиновых и поликлиновых ремней

—————————————————————————————————————	Сечение				Раз	мерь	I, MM		
ремня	ремня	b	h	e	f	l_p	\mathbf{r}_1	\mathbf{r}_2	b ₁ при α =38°
Клиновой	Z	2,5	7,5	12	8	8,5	_	_	10,2
	A	3,3	8,7	15	10	11		1	13,4
	В	4,2	10,8	19	12,5	14		_	17,4
	С	5,7	14,3	25,5	17	19		_	23,1
Узкий	SPZ	2,5	10	12	8	8,5	_	_	10,2
клиновой	SPA	3,3	13	15	10	11			13,1
	SPB	4,2	17	19	12,5	14			16,7
Поликли-	K	0,95	2,15	2,4	3,5	_	0,25	0,25	_
новой	L	2,4	4,68	4,8	5,5		0,45	0,45	_
	M	3,55	9,6	9,5	10,0	_	0,9	0,7	_

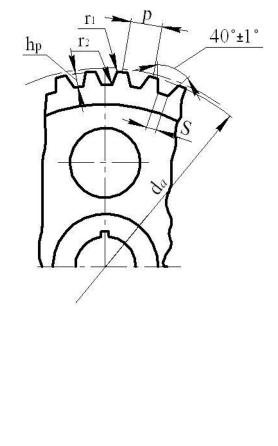


Рис. 10. Конструкция шкива передачи зубчатым ремнем

Таблица 15. Размеры ремня и элементов обода шкива зубчато –ременной передачи, мм

Модуль	m	3	4	5	7	10
Шаг зубьев ремня	p	9,42	12,57	15,71	21,99	31,42
Толщина ремня	Н	4,0	5,0	6,5	11,0	15,0
Высота зуба	h	2,0	2,5	3,5	6,0	9,0
Ширина ремня	b	12,5 – 50	20 – 100	25 – 100	40 – 125	50 – 200
Расстояние впадин ремня до оси троса	δ_{p}	0,6	0,8	0,8	0,8	0,8
Ширина впадины шкива	S	3,2	4,0	4,8	7,5	11,5
Глубина впадины шкива	h_p	3,0	4,0	5,0	8,5	12,5

Примечание: Радиусы закруглений зуба $r_1 = 0.35 \text{ m}; r_2 = 0.4 \text{ m}$

Таблица 16. Размеры шкивов для клиновых и поликлиновых ремней

Элемент шкива	Размер	Значение
	Наружный диаметр шкива: для клиновых ремней для поликлиновых ремней	$d_e = d_p + 2b$ $d_e = d_p - 2b$
	Ширина шкива	M=(z-1) e + 2f
Обод	Толщина обода чугунных шкивов: клиноременных передач поликлиноременных передач Толщина обода для стальных шкивов	$\delta_{\rm q} = (1,1 \div 1,3)h$ $\delta_{\rm q} = 1,6h$ $\delta_{\rm cT} = 0,8\delta_{\rm q}$
	Внутренний диаметр обода шкивов: клиноременных передач поликлиноременных передач	$\begin{aligned} D_{\text{\tiny BH}} &= d_p - 2(h{+}\delta) \\ D_{\text{\tiny BH}} &= d_e - 2(h{+}\delta) \end{aligned}$
	Диаметр внутренний	d
Ступица	Диаметр наружный для шкивов: чугунных стальных	$d_{c_{T}} = 1,6d$ $d_{c_{T}} = 1,55d$
	Длина	$l_{ct} = (1,2 \div 1,5)d$
	Толщина	$C = (1,2 \div 1,3)\delta$
Диск	Диаметр отверстия	$d_0\!\geq\!25$ мм Количество $n=4\div 6$
	Диаметр центров отверстий	$D_0 = (D_{\rm BH} + d_{\rm CT})/2$

Примечания: 1. d_p — расчетный диаметр шкива; 2. z — число ремней (клиньев поликлинового ремня); 3. Полученные значения δ , d_{cr} , l_{cr} , c и D_0 округлить до ближайшего из ряда предпочтительных чисел по ГОСТ 6636-69

Таблица 17. Основные размеры шкивов для зубчатых ремней

Элемент шкива	Размер	Значение
	Диаметр делительной окружности	d = m·z
Обод	Диаметр вершин зубьев	$d_a = d - 2\delta_p + c,$ $c -$ поправка, учитывающая податливость витка тросика. $c = (0.08 \div 0.18)$ мм при $d_a = 50 \div 500$ мм.
	Диаметр впадин шкива	$d_{\mathbf{f}} = d_a - 2h_{p}$
	Ширина обода	B = b + m
	Толщина обода	$\delta = 1.5 \text{m} + 2 \text{ mm } \ge 6 \text{ mm}$
	Внутренний диаметр обода	$D_{\scriptscriptstyle BH}=d_f-2\delta$
	Диаметр внутренний	d
	Диаметр наружных шкивов:	
Ступица	чугунных	$d_{cr} = 1,6d$
	стальных	$d_{cr} = 1,55d$
	Длина	$l_{ct} = (1,2 \div 1,5)d$
	Толщина	$c = (1,2 \div 1,3)\delta$
Диск	Диаметр отверстия	$d_0 \ge 25$ мм Количество $n = 4 \div 6$
	Диаметр центров отвер- стий	$D_0 = (D_{\rm BH} + d_{\rm CT})/2$

Примечания: 1. z – число зубьев шкива; 2. Полученные значения δ , $d_{c\tau}$, $l_{c\tau}$, c, D_0 округлить до ближайшего большего из ряда предпочтительных чисел по ГОСТ 6636-69

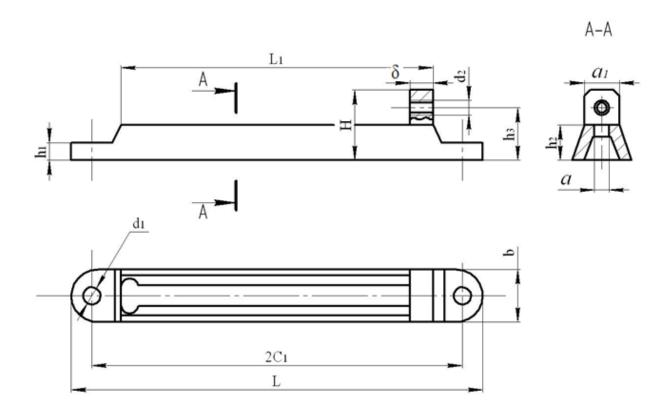


Рис.11. Салазки для электродвигателей

Таблица 18. Основные размеры салазки

Тип	Размеры, мм												
салазок	a_1	L	L_1	2C ₁	d_1	d_2	h ₁	h ₂	h ₃	Н	b		
C2-1	40	360	290	330	10	M10	11	32	40	54	43		
C2-2		385	315	350		M10	13	35	43	56	55		
C2-3	52	425	355	390	12	M12	15	36	46	62			
C2-4		490	410	455		10112	18	46	56	72	57		
C2-5	60	570	480	530	14		22	55	66	76	65		
C2-6	65	650	500	600	14	M16	18	50	62	82	75		
C2-7	75	750	580	690	18		20	55	70	90	90		

Примечания: 1. Ширина паза «а» равна диаметру отверстия d_{10} крепления электродвигателя по ГОСТ 31606-2012; 2. Толщина проушины $\delta \approx 2 d_2$

6. РАСЧЕТ ШПОНОЧНЫХ СОЕДИНЕНИЙ

Для передачи вращающего момента обычно используют соединение призматической шпонкой.

Призматические шпонки имеют прямоугольное сечение, концы скругленные или плоские. Для цилиндрического участка вала применяют шпонки со скругленными концами, а для конического – с плоскими концами. Основные размеры призматических шпонок: b — ширина, h — высота, l — длина шпонки. Ширину (b) и высоту (h) шпонки выбирают по типоразмеру редуктора в зависимости от диаметра выходного вала (см. Приложения 1,2 и 3). Длина шпонки зависит от предаваемого вращающего момента.

Материал шпонок – Сталь 45 ГОСТ 1050-88.

Расчетная длина шпонки

$$l_{\rm p} \ge \frac{4000 \cdot T_{\rm i}}{(\mathrm{d} \cdot \mathrm{h} \cdot [\sigma_{\rm cm}])}$$
 , MM,

где T_i – вращающий момент, $H \cdot M$;

d – диаметр вала (для конического участка $d = d_{cp}$), мм;

h – высота шпонки, мм;

 $[\sigma_{\text{см}}]$ — допускаемое напряжение смятия. При стальной ступице детали $[\sigma_{\text{см}}] = (100 \div 120) \text{ H/мм}^2$, при чугунной $[\sigma_{\text{см}}] = (70 \div 90) \text{ H/мм}^2$.

Средний диаметр конического посадочного участка вала

$$d_{cp} = d - 0.05l_{\pi},$$

где $l_{\scriptscriptstyle \Pi}$ – длина посадочного конца вала, мм.

После вычисления $l_{\rm p}$ определяют стандартную длину шпонки l. Для шпонки с плоскими концами $l_{\rm p}=l$. Для шпонки со скругленными концами $l_{\rm p}=l+b$. Полученную длину шпонки округляют в большую сторону до стандартного значения из ряда: 25,28,32,40,45,50,63,70,80,90,100,125,140.

Выбранную шпонку следует проверить на срез.

Напряжение среза

$$\tau_{\rm cp} = \frac{2000 \cdot T_{\rm i}}{({\rm d} \cdot {\rm b} \cdot l_{\rm p})} \leq [\tau_{\rm cp}], {\rm H/mm}^2,$$

где $\left[\tau_{cp}\right]$ – допускаемое напряжение среза, Н/мм². Для шпонки из стали $\left[\tau_{cp}\right]=(60 \div 90)$ Н/мм².

Для лучшей работы шпоночного соединения полумуфты, шкивы, звездочки и зубчатые колеса необходимо устанавливать на вал с натягом.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Расчет цилиндрических зубчатых передач: методические указания / сост. М.В. Аввакумов, В.М. Гребенникова, А.Б. Коновалов; ВШТЭ СПбГУПТД. СПб., 2017. 45 с.
- 2. Расчет цепных передач: методические указания / сост. М.В. Аввакумов, А.Б. Коновалов; СПб ГТУРП. СПб., 2013. 31 с.
- 3. Прикладная механика: атлас конструкций деталей и примеры монтажных чертежей / сост. М.В.Аввакумов, В.М.Гребенникова, Д.В.Дмитриев; ВШТЭ СПбГУПТД. СПб., 2017. 48 с.
- 4. Коновалов А.Б., Гребенникова В.М. Ременные передачи: учеб. пособие / СПб ГТУРП. СПб., 2011. 106с.
- 5. Дунаев П.Ф., Леликов О.П. Конструирование узлов и деталей машин: учеб. пособие для машиностроит. спец. 13-е издание. М.: Изд-во МГТУ им. Н. Э. Баумана, 2017. 568 с.
- 6. Атлас конструкций узлов и деталей машин: учеб. пособие/ Б.А. Байков и др.; под ред. О.А.Ряховского М.: Изд-во МГТУ им. Н. Э. Баумана, 2009. 400 с.

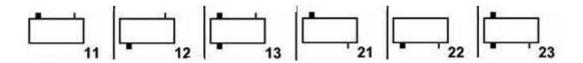
СОДЕРЖАНИЕ

Предисловие	3
1. Кинематический расчет приводной станции	4
1.1. Кинематическая схема привода	
1.2. Определение расчетной мощности электродвигателя и	
выбор его по каталогу	4
1.3. Определение общего передаточного числа привода	
и предварительный выбор типоразмера редуктора	6
1.4. Определение мощностей, частот вращения и вращающих моментов	
на валах привода	9
2. Расчет открытой передачи привода. Уточнение типоразмера	
редуктора	10
3. Примеры кинематического расчета привода	11
4. Выбор стандартной муфты. Проверка элементов муфты	23
4.1. Муфты упругие втулочно-пальцевые	25
4.2. Муфты зубчатые	
4.3. Муфты упругие с торообразной оболочкой	
5. Конструирование зубчатых колес, звездочек и шкивов	
открытых передач	37
 Расчет шпоночных соединений 	
Библиографический список	
Приложения	

ПРИЛОЖЕНИЯ

Приложение 1

РЕДУКТОРЫ ЦИЛИНДРИЧЕСКИЕ ГОРИЗОНТАЛЬНЫЕ ОДНОСТУПЕНЧАТЫЕ ТИПА 1ЦУ-100 – 1ЦУ-250

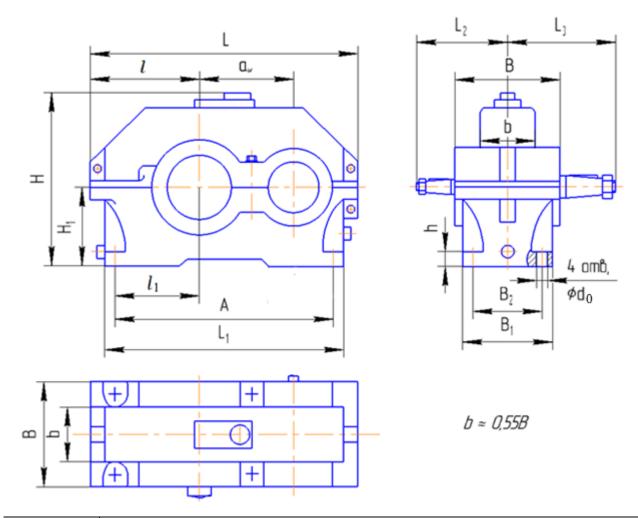


ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ РЕДУКТОРОВ ТИПА 1ЦУ-100 – 1ЦУ-250

Типораз-	Номинальное	Частота враще- ния	Номинальный вращающий мо-	Допус радиальная нагру	Mac-		
мер ре- дуктора	передаточное число, U_p	входно- го вала, мин ⁻¹	мент на выход- ном валу T_T , H ·м	на вход- ном валу, F_1	на выход- ном валу, F_2	са, кг	
1ЦУ -100		< 1800	315	630	2240	27	
1ЦУ -160	2; 2,5; 3,15;	< 1800	1250	1250	4500	77,5	
1ЦУ -200	4; 5; 6,3	< 1800	2500	2800	6300	135	
1ЦУ -250		< 1800	5000 (4500*)	4000	9000	210	

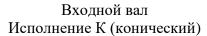
^{*} – Для передаточных чисел 5 и 6,3.

ВАРИАНТЫ СБОРКИ РЕДУКТОРОВ ТИПА 1ЦУ

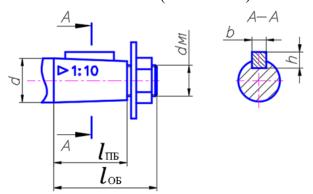


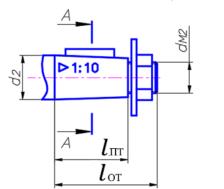
ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ РЕДУКТОРА

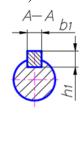
Редуктор 1ЦУ-100-5-12-К-У3


Цилиндрический одноступенчатый редуктор с межосевым расстоянием **100мм**, номинальным передаточным числом **5**, вариантом сборки **12**, коническим концом выходного вала **К**, климатическим исполнением **У** и категорией размещения **3** по ГОСТ 15150–69.

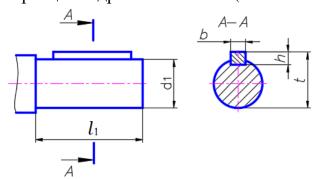
ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ




Типоразмер							Разі	меры	, MM						
редуктора	a_w	A	В	B_1	B_2	H_1	Н	h	L_1	L_2	L_3	L	l	l_1	d_0
1ЦУ-100	100	224	140	132	95	112	224	22	265	136	155	315	132	85	15
1ЦУ-160	160	355	185	175	125	170	335	28	412	218	218	475	195	136	24
1ЦУ-200	200	437	212	200	136	212	425	36	500	230	265	580	236	165	24
1ЦУ-250	250	545	265	250	185	265	530	40	615	280	315	710	290	212	28


РАЗМЕРЫ КОНЦОВ ВХОДНЫХ И ВЫХОДНЫХ ВАЛОВ

Выходной вал Исполнение К (конический)

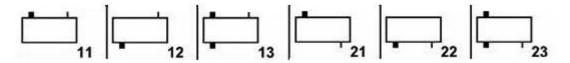


Типоразмер		Размеры в	ходног	о вала	a, MM	Размеры выходного вала, мм						
редуктора	d	dм ₁	lоб	$l_{\Pi ext{B}}$	b	h	d_2	dм ₂	$l_{ m OT}$	$l_{ ext{IIT}}$	b ₁	h ₁
1ЦУ-100	25	M16x1,5	60	42	5	5	35	M20x1,5	80	58	6	6
1ЦУ-160	45	M30x2,0	110	82	12	8	55	M36x3,0	110	82	14	9
1ЦУ-200	55	M36x3,0	110	82	14	9	70	M48x3.0	140	105	18	11
1ЦУ-250	70	M48x3,0	140	105	18	11	90	M64x4,0	170	130	22	14

Размеры цилиндрических валов (Исполнение Ц)

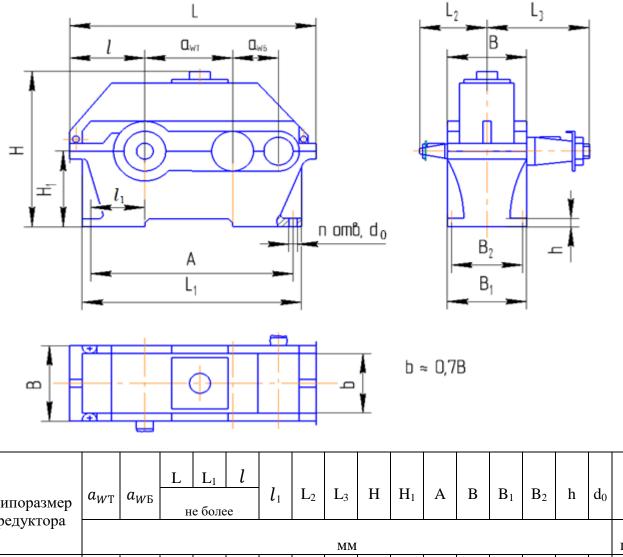
Типоразмер	Размер	оы вход	ного ва	ла, мі	М	Разме	ры вых	одного	вала, м	M
редуктора	d_1	l_1	b	h	t	d_1	l_1	b	h	t
1ЦУ-100	22m6	42	6	6	24,5	32m6	58	10	8	35
1ЦУ-160	45m6	82	14	9	48,5	50m6	82	14	9	53,5
1ЦУ-200	55m6	82	16	10	59	65m6	105	18	11	71
1ЦУ-250	70m6	102	18	12	74	85m6	130	22	14	90

Приложение 2


РЕДУКТОРЫ ЦИЛИНДРИЧЕСКИЕ ГОРИЗОНТАЛЬНЫЕ ДВУХСТУПЕНЧАТЫЕ ТИПА 1Ц2У, 1Ц2У-М

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ РЕДУКТОРОВ ТИПА 1Ц2У, 1Ц2У-М

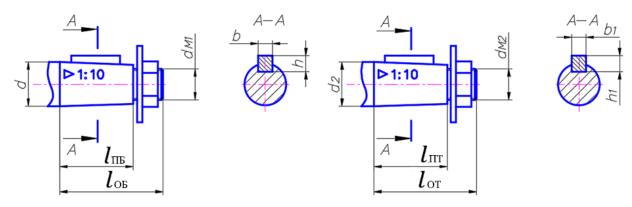
Типоразмер редуктора	Номинальное передаточное число, U_p	Частота вращения входного вала, мин ⁻¹	Номинальный вращающий момент на выходном валу T_T , $H\cdot M$	консольная	каемая радиальная зка, Н на выход- ном валу, F ₂	Масса, не более, кг
1Ц2У-100 1Ц2У-100М			315	500	4500	35
1Ц2У-125 1Ц2У-125М			630	750	6300	55
1Ц2У-160 1Ц2У-160М	8; 10; 12,5; 16; 20; 25; 31,5; 40	<1800	1250	1000	9000	95
1Ц2У-200 1Ц2У-200 М	, ,		2500	2240	12500	170
1Ц2У-250 1Ц2У-250М			5000	3150	18000	310


ВАРИАНТЫ СБОРКИ РЕДУКТОРОВ ТИПА 1Ц2У-М

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ РЕДУКТОРОВ

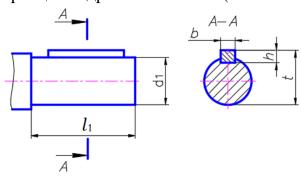
1- тип редуктора; 2- межосевое расстояние выходной ступени, мм; 3- модернизированный; 4- передаточное число; 5- вариант сборки; 6-исполнение конца выходного вала; 7- климатическое исполнение и категория размещения по ГОСТ 15150-69.

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ



Типоразмер	a_{WT}	a_{WB}	L	L ₁ е боле	l ee	l_1	L_2	L_3	Н	H_1	A	В	B_1	B_2	h	d_0	n
редуктора																	1117
		ı	1	1			1	MM		1							ШТ
1Ц2У-100																	
1Ц2У-100М	100	80	390	325	136	85	136	165	230	112	290	155	145	109	20	15	4
1Ц2У-125																	
1Ц2У-125М	125	80	446	375	160	106	145	206	272	132	335	175	165	125	22	19	4
1Ц2У-160																	,
1Ц2У-160М	160	100	557	475	200	135	170	224	345	170	425	206	195	140	24	24	4
1Ц2У-200																	
1Ц2У-200 М	200	125	678	580	243	165	212	280	425	212	515	243	230	165	30	24	4
1Ц2У-250																	
1Ц2У-250М	250	160	829	730	290	212	265	335	530	265	670	290	280	218	32	25	4

РАЗМЕРЫ КОНЦОВ ВХОДНЫХ И ВЫХОДНЫХ ВАЛОВ

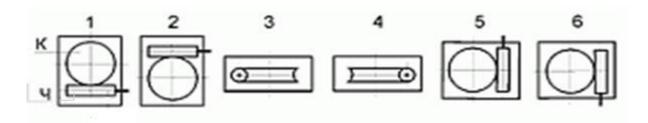

Входной вал Исполнение К (конический)

Выходной вал Исполнение К (конический)

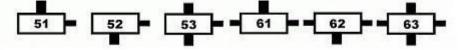
Типоразмер		Размеры ва	ходно	го вал	а, мм			Размеры в	ыходн	юго ва	ала, м	им
редуктора	d	d_{M1}	l_{OB}	$l_{\Pi ext{B}}$	b	h	d_2	d_{M2}	l ot	$l_{\Pi T}$	b_1	h_1
1Ц2У-100М	20	M12x1,25	50	36	4	4	35	M20x1,5	80	58	6	6
1Ц2У-125М	20	M12x1,25	50	36	4	4	45	M30x2,0	110	82	12	8
1Ц2У-160М	25	M16x1,5	60	42	5	5	55	M36x3,0	110	82	14	9
1Ц2У-200 М	30	M20x1,5	80	58	5	5	70	M48x3,0	140	105	18	11
1Ц2У-250М	40	M24x2,0	110	82	10	8	90	M64x4,0	170	130	22	14

Размеры цилиндрических валов (Исполнение Ц)

Типоразмер	Размер	оы вход	цного ва	ала, мі	М	Разме	ры вых	одного	вала, м	ΙM
редуктора	d_1	l_1	Ь	h	t	d_1	l_1	b	h	t
1Ц2У-100	18k6	36	6	6	20,5	32m6	58	10	8	35
1Ц2У-125	18k6	36	6	6	20,5	40m6	82	12	8	43
1Ц2У-160	22k6	42	6	6	24,5	50m6	82	14	9	53,5
1Ц2У-200	25k6	58	8	7	28	65m6	105	18	11	71
1Ц2У-250	35k6	82	10	8	38	85m6	130	22	14	90


Приложение 3

РЕДУКТОРЫ ЧЕРВЯЧНЫЕ ОДНОСТУПЕНЧАТЫЕ МОДЕРНИЗИРОВАННЫЕ ТИПА 2Ч-80M — Ч-500M


Общий вид редуктора типа Ч-100М – Ч-160М

ВАРИАНТЫ РАСПОЛОЖЕНИЯ ЧЕРВЯЧНОЙ ПАРЫ

Ч – червяк; К – червячное колесо. Редукторы рассматриваются в вертикальной плоскости. В вариантах 3 и 4 редуктор рассматривается в положении, при котором выходной конец червяка находится со стороны наблюдателя.

ВАРИАНТЫ СБОРКИ РЕДУКТОРОВ:

Варианты сборки рассматриваются при расположении – червяк под колесом.

Способы крепления редуктора на лапах: 2 — со стороны червяка (с нижним червяком); 3 — со стороны колеса (с верхним червяком).

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ РЕДУКТОРА

Редуктор Ч-100М-40-52-1-2-Ц-Ц-УЗ

 $m{Y}$ — тип редуктора; $m{100}$ — межосевое расстояние, мм; $m{M}$ — модернизированный; $m{40}$ — номинальное передаточное число; $m{52}$ - вариант сборки; $m{I}$ — вариант расположения червячной пары; $m{2}$ — вариант крепления редуктора; $m{U}$ — исполнение конца входного вала; $m{U}$ — исполнение конца выходного вала; $m{y3}$ — климатическое исполнение и категория размещения по Γ ОСТ 15150-69

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЧЕРВЯЧНЫХ РЕДУКТОРОВ ТИПА 2Ч-80M –Ч-125M

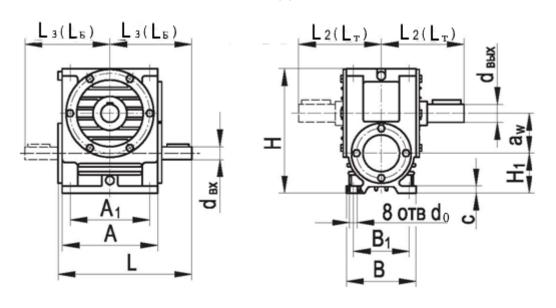
Типо-				Частота	а враще	ния чер	овяка, п	_б , мин ⁻¹		
размер	77		750		-	1000			1500	
редук-	Up	P ₁ ,	T _T ,	ІСПП	P ₁ ,	T _T ,	тепт	P ₁ ,	T _T ,	тепт
тора		кВт	Н·м	КПД	кВт	Н·м	КПД	кВт	Н·м	КПД
	8	3,1	280	0,89	3,6	250	0,9	4,6	212	0,91
	10	2,2	250	0,88	2,6	224	0,89	3,4	190	0,9
	12,5	1,8	250	0,86	2,2	230	0,87	2,8	195	0,89
	16	1,7	280	0,83	1,9	250	0,85	2,5	218	0,86
211	20	1,2	243	0,79	1,5	224	0,81	1,9	195	0,84
2Ч- 80М	25	1,0	243	0,78	1,2	224	0,79	1,5	195	0,83
OUIVI	31,5	1,0	300	0,72	1,1	280	0,75	1,6	250	0,78
	40	0,7	230	0,67	0,9	218	0,71	1,1	195	0,73
	50	0,6	243	0,65	0,8	230	0,66	0,9	206	0,71
	63	0,5	224	0,6	0,6	212	0,62	0,8	190	0,64
	80	0,3	200	0,55	0,4	190	0,58	0,6	175	0,61
	8	5,5	515	0,9	6,5	462	0,91	8,0	387	0,92
	10	4,3	500	0,89	5,1	450	0,9	6,3	375	0,91
	12,5	3,6	515	0,88	4,2	462	0,9	5,3	387	0,9
	16	2,8	500	0,85	3,4	450	0,86	4,2	387	0,88
Ч-	20	2,3	487	0,81	2,7	437	0,84	3,4	375	0,86
100M	25	1,8	475	0,8	2,2	437	0,83	2,7	375	0,85
100101	31,5	1,7	515	0,74	2,0	475	0,75	2,6	412	0,79
	40	1,3	475	0,7	1,6	437	0,72	2,0	387	0,75
	50	1,1	475	0,69	1,3	437	0,71	1,6	387	0,74
	63	0,8	375	0,6	0,9	345	0,63	1,2	315	0,66
	80	0,6	355	0,58	0,7	335	0,6	0,9	300	0,65
	8	9,0	850	0,91	10,5	750	0,92	13,5	650	0,93
	10	7,1	825	0,9	8,2	725	0,91	10,5	630	0,92
	12,5	5,7	825	0,89	6,6	725	0,9	8,5	630	0,91
	16	4,8	850	0,86	5,6	750	0,86	7,3	670	0,88
y_	20	3,8	825	0,84	4,5	750	0,85	5,8	650	0,87
125M	25	2,9	775	0,82	3,5	700	0,83	4,5	615	0,85
123111	31,5	3,3	1000	0,75	3,8	900	0,77	4,9	800	0,8
	40	2,3	850	0,72	2,7	775	0,74	3,4	690	0,78
	50	1,8	800	0,7	2,1	725	0,72	2,7	650	0,75
	63	1,4	750	0,66	1,7	700	0,69	2,1	615	0,72
	80	1,2	650	0,6	1,4	600	0,63	1,8	530	0,66

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЧЕРВЯЧНОГО РЕДУКТОРА ТИПА Ч-160М-Ч-250М

Типо-				Частота	а враще	ния чер	вяка, п	_б , мин ⁻¹		
размер	T 7		750			1000			1500	
редук-	Up	P ₁ ,	T _T ,	ИПП	P ₁ ,	T _T ,	ИПП	P ₁ ,	T _T ,	ИПП
тора		кВт	Н·м	КПД	кВт	Н·м	КПД	кВт	Н·м	КПД
	8	16,9	1600	0,91	20,0	1450	0,93	25,6	1250	0,94
	10	12,7	1500	0,91	14,7	1320	0,92	19,0	1150	0,93
	12,5	10,3	1500	0,9	11,9	1320	0,91	15,4	1150	0,92
	16	10,0	1800	0,87	11,7	1600	0,88	15,0	1400	0,9
TT	20	7,0	1500	0,83	8,0	1320	0,85	10,2	1150	0,87
Ч- 160M	25	5,3	1400	0,81	6,5	1320	0,84	8,0	1120	0,86
100101	31,5	6,2	2000	0,79	7,3	1800	0,8	9,4	1600	0,83
	40	4,2	1600	0,73	4,9	1450	0,76	6,1	1250	0,79
	50	3,1	1450	0,71	3,7	1320	0,73	4,8	1180	0,75
	63	2,3	1320	0,69	2,9	1250	0,71	3,6	1090	0,74
	80	2,1	1320	0,64	2,5	1250	0,68	3,1	1090	0,71
	8	27,3	2560	0,92	35,5	2480	0,93	45,5	2180	0,94
	10	21,6	2500	0,91	27,7	2430	0,92	31,4	1860	0,93
	12,5	19,0	2730	0,90	22,1	2400	0,91	24,7	1810	0,92
	16	15,7	2850	0,89	19,6	2695	0,90	25,3	2345	0,91
Ч-	20	11,6	2630	0,89	14,2	2410	0,89	15,9	1845	0,91
200M	25	9,5	2600	0,86	10,4	2190	0,88	11,6	1660	0,90
200101	31,5	9,5	3145	0,83	11,8	3020	0,85	16,8	2930	0,87
	40	6,5	2680	0,81	8,0	2530	0,83	9,7	2100	0,85
	50	5,2	2620	0,80	6,0	2350	0,81	7,0	1850	0,83
	63	4,4	2600	0,73	4,8	2270	0,79	6,0	2000	0,82
	80	3,9	2800	0,70	4,2	2300	0,72	5,6	2100	0,74
	8	50,9	4880	0,94	55,8	4010	0,94	60,1	2910	0,95
	10	36,0	4215	0,92	39,4	3500	0,93	45,4	2715	0,94
	12,5	33,0	4795	0,91	34,9	3835	0,92	38,4	2840	0,93
	16	28,6	5235	0,90	32,0	4450	0,91	35,4	3320	0,92
Ч-	20	22,6	5130	0,89	24,4	4190	0,90	27,0	3130	0,91
250M	25	16,2	4500	0,87	17,5	3755	0,89	19,7	2815	0,89
230101	31,5	16,8	5715	0,85	20,0	5300	0,87	22,0	4000	0,89
	40	12,0	5110	0,83	14,5	4700	0,85	16,3	3610	0,87
	50	9,3	4820	0,81	10,5	4120	0,82	11,5	3120	0,85
	63	7,2	4485	0,78	8,2	3930	0,80	9,0	3065	0,83
	80	6,2	4600	0,73	7,2	4100	0,75	8,0	3250	0,79

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЧЕРВЯЧНЫХ РЕДУКТОРОВ ТИПА Ч-320M – Ч-500M

Типо-				Частота	а враще	ния чер	вяка, п	_б , мин ⁻¹		
размер	T 7		750		-	1000	•		1500	
редук-	Up	P ₁ ,	T _T ,	тепп	P ₁ ,	T _T ,	тепп	P ₁ ,	T _T ,	итп
тора		кВт	Н·м	КПД	кВт	Н·м	КПД	кВт	Н•м	КПД
	8	82,1	7865	0,94	91,0	6530	0,94	97,2	4720	0,95
	10	64,0	7500	0,92	69,2	6150	0,93	74,0	4430	0,94
	12,5	56,0	8115	0,91	59,1	6490	0,92	63,8	4720	0,93
	16	53,3	9765	0,90	59,0	8200	0,91	62,5	5860	0,92
11	20	35,5	8130	0,90	39,6	6880	0,91	42,6	4940	0,91
Ч- 220М	25	28,0	7820	0,88	29,4	6255	0,89	33,2	4815	0,91
320M	31,5	31,0	10610	0,86	38,5	10200	0,88	41,6	7510	0,90
	40	21,0	9025	0,84	24,0	7820	0,86	25,8	5770	0,88
	50	17,0	8830	0,82	18,6	7355	0,83	19,4	5300	0,86
	63	13,5	8660	0,80	14,9	7330	0,82	16,0	5465	0,85
	80	11,6	8950	0,78	12,6	7500	0,78	14,5	6100	0,83
	8	123,0	11800	0,94	130	9450	0,95	135	6610	0,96
	10	99,6	11720	0,93	103,4	9285	0,94	108,5	6570	0,95
	12,5	90,7	13280	0,92	93,4	10700	0,93	98,6	7380	0,94
	16	82,2	15235	0,91	89,0	12500	0,92	94,8	8985	0,93
11	20	54,5	12500	0,90	59,3	10315	0,91	64,0	7500	0,92
Ч- 400М	25	45,3	12825	0,89	48,0	10320	0,90	54,0	7820	0,91
400101	31,5	55,0	19280	0,87	59,0	15920	0,90	65,5	12000	0,91
	40	36,0	15640	0,85	39,0	12930	0,87	41,0	9320	0,89
	50	28,0	14700	0,83	29,7	12050	0,85	32,0	8830	0,87
	63	24,0	15660	0,81	26,7	13325	0,83	28,0	9660	0,86
	80	20,7	16500	0,78	22,5	14100	0,80	23,6	10100	0,84
	8	150,0	14600	0,95	153,0	11210	0,96	160,0	7790	0,96
	10	123,7	14645	0,93	131,0	11790	0,94	136,0	8215	0,95
	12,5	131,0	19180	0,92	136,0	15125	0,93	140,0	10700	0,95
	16	112,6	21100	0,92	118,0	16800	0,93	126,5	12110	0,94
Ч-	20	86,3	20000	0,91	92,5	16250	0,92	97,6	11560	0,93
500M	25	55,7	15960	0,90	59,0	12825	0,91	64,0	9385	0,92
JUUIVI	31,5	93,5	33060	0,88	99,0	26930	0,90	110,0	20320	0,91
	40	57,0	25565	0,88	61,0	20750	0,89	64,3	14740	0,90
	50	37,5	20300	0,85	40,0	16470	0,86	43,0	12050	0,88
	63	38,5	25320	0,82	40,9	20650	0,84	42,0	15000	0,87
	80	32,9	27200	0,81	36,5	23100	0,83	40,0	17500	0,86

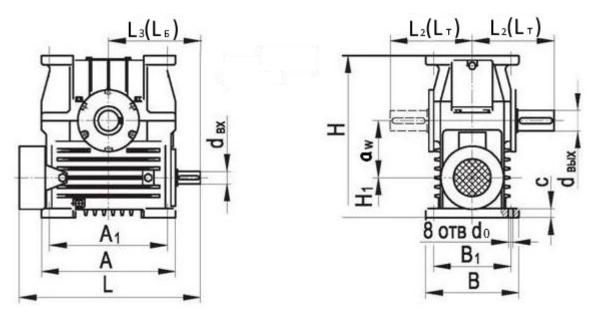

ДОПУСКАЕМЫЕ РАДИАЛЬНЫЕ КОНСОЛЬНЫЕ НАГРУЗКИ

	24-80M	Ч-100М	Ч-125М	Ч-160М	Ч-200М
F_1 , H	800	1000	1400	1900	2300
F ₂ , H	4000	5000	7000	10000	13500

	Ч-250М	Ч-320М	Ч-400М	Ч-500М
F ₁ , H	3200	4000	5000	5500
F ₂ , H	16000	22000	27000	36000

Примечание. F_1 — допускаемая радиальная нагрузка, приложенная в середине посадочной части входного вала; F_2 — допускаемая радиальная нагрузка, приложенная в середине посадочной части выходного вала.

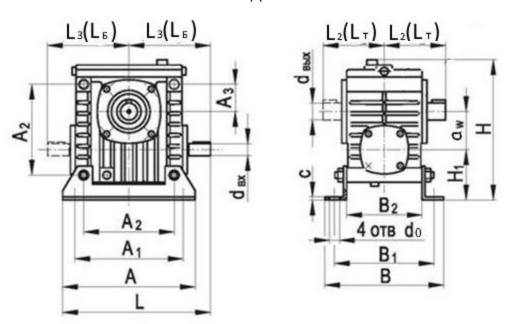
РЕДУКТОРЫ ТИПА Ч-100М – Ч-160М С ОПОРНЫМИ ЛАПАМИ ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ


Тинополиоп						P	азмер	ы, мм						
Типоразмер	a_w	A	A_1	В	B_1	L	L_2	L ₃	Н	H ₁	c	d_0	$d_{\scriptscriptstyle BX}$	$d_{\scriptscriptstyle m BMX}$
Ч-100М	100	240	200	175	140	373	225	225	312	100	18	19	32	45
Ч-125М	125	275	230	230	190	437	230	261	396	111	22	19	32	55
Ч-160М	160	350	300	280	230	550	280	345	500	140	30	22	40	70

РЕДУКТОРЫ ТИПА Ч-200М – Ч-500М С ОПОРНЫМИ ЛАПАМИ

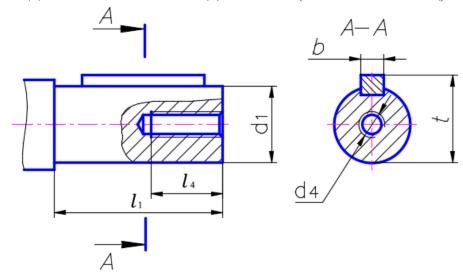
Общий вид редуктора типа Ч-200М – Ч-500М

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ



						Pa	азмер	ы, мм						
Типоразмер	a_w	A	A_1	В	B ₁	L	L_2	L ₃	Н	H_1	c	d_0	d _{BX}	d _{вых}
Ч-200М	200	475	420	330	275	662	340	355	575	160	32	24	45	80
Ч-250М	250	590	520	410	340	815	365	415	710	175	40	28	55	90
Ч-320М	320	690	560	416	245	890	468	515	835	170	70	30	70	120
Ч-400М	400	750	605	585	510	1100	540	575	1090	260	85	39	90	160
Ч-500М	500	1075	870	650	380	1380	665	795	1300	265	100	45	100	180

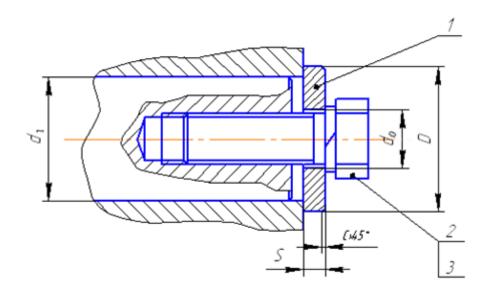
РЕДУКТОР ТИПА 2Ч-80М С ОПОРНЫМИ ЛАПАМИ


ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ

Типораз- мер		Размеры, мм															
	a_w	A	A_1	A_2	A_3	В	B_1	B_2	L	L_2	L ₃	Н	H_1	с	d_0	d _{BX}	$d_{\scriptscriptstyle \mathrm{BMX}}$
24-80M	80	260	225	180	50	212	185	140	290	125	160	265	92	5	15	25	35

Примечание. Размеры ${\bf L}_2$ и ${\bf L}_3$ приведены для цилиндрических концов валов

ЦИЛИНДРИЧЕСКИЕ ВХОДНЫЕ И ВЫХОДНЫЕ ВАЛЫ ЧЕРВЯЧНЫХ ОДНОСТУПЕНЧАТЫХ РЕДУКТОРОВ (ИСПОЛНЕНИЕ – Ц)


РАЗМЕРЫ КОНЦОВ ВАЛОВ

Типоразмер	Размер входного вала, мм							Размер выходного вала, мм					
редуктора	d_1	d_4	l_1	l_4	t	b	d_1	d_4	l_1	l_4	t	b	
2Ч-80М	25	M8	42	20	28	8	35	M10	58	25	38	10	
Ч-100М	32	M10	80	25	35	10	45	M16	110	35	48,5	14	
Ч-125М	32	M10	80	25	35	10	55	M20	110	45	59	16	
Ч-160М	40	M12	110	30	43	12	70	M24	140	50	74,5	20	
Ч-200М	45	M16	110	35	48,5	14	80	M24	170	60	85	22	
Ч-250М	55	M20	110	45	59	16	90	M24	170	60	95	25	
Ч-320М	70	M24	140	50	74,5	20	120	M30	210	75	127	32	
Ч-400М	90	M24	170	60	95	25	160	M36	300	85	169	40	
Ч-500М	100	M30	210	75	106	28	180	M36	300	85	190	45	

Примечания: 1. Допуск диаметра d_1 до 50 мм – k6, свыше 50 мм – m6;

2. Шпонки призматические по ГОСТ 23360-78

ТОРЦЕВОЕ КРЕПЛЕНИЕ ДЕТАЛИ НА ВАЛАХ РЕДУКТОРА

1 - шайба концевая; 2 - болт по ГОСТ 7796 - 70; 3 - шайба по ГОСТ 6402 — 70

Размеры шайбы концевой, мм

Диаметр вала, d_1	D	S	d_0	С	Размеры болта, d x <i>l</i>		
25 - 30	40	5	9	1,0	M8 x 20		
32 - 35	45	5	11	1,0	M10 x 25		
40	50	5	13	1,0	M12 x 30		
45	55	6	17	1,6	M16 x 35		
55	65	6	21	1,6	M20 x 45		
70	80	8	25	2,0	M24 x 50		
80	90	8	25	2,0	M24 x 60		
90	100	8	25	2,0	M24 x 60		
100	110	10	32	3,0	M30 x 75		
120	130	10	32	3,0	M30 x 75		
160	170	12	37	3,0	M36 x 85		