МИНИСТЕРСТВО НАУКИ И ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОМЫШЛЕННЫХ ТЕХНОЛОГИЙ И ДИЗАЙНА»

ВЫСШАЯ ШКОЛА ТЕХНОЛОГИИ И ЭНЕРГЕТИКИ

И.Н. Дмитревич

ОПТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

(ВОПРОСЫ, ТЕСТЫ И ОТВЕТЫ)

Учебное пособие

Санкт-Петербург 2020 УДК 543(075) ББК 24.4 Д 535

Дмитревич И.Н. Оптические методы анализа (вопросы, тесты и ответы): учебное пособие /ВШТЭ СПбГУПТД. – СПб., 2020. – 52 с.

В учебном пособии рассматриваются теоретические и практические аспекты использования оптических методов в анализе химических систем. Пособие составлено в форме вопросов, тестов и ответов к разделу «Оптические методы анализа» в курсе дисциплины «Аналитическая химия и физико-химические методы анализа». Материалы пособия помогут студентам лучше понять изучаемый материал понимания и самостоятельно оценить уровень его усвоения. Пособие предназначено для самостоятельной работы студентов института технологии всех форм обучения, проходящих подготовку по направлениям: 18.03.01 «Химическая технология», 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии» и 29.03.03 «Технология полиграфического и упаковочного производства», а также для студентов института энергетики и автоматизации, обучающихся по направлению 15.03.04. «Автоматизация технологических процессов и производств».

Рецензенты: канд. хим. наук, профессор кафедры физической и коллоидной химии ВШТЭ СПбГУПТД И.И.Осовская; канд. хим. наук, доцент кафедры неорганической химии РГПУ им. А.И.Герцена А.Н. Борисов.

Подготовлено и рекомендовано к печати кафедрой общей и неорганической химии ВШТЭ СПбГУПТД (протокол № 4 от 25.03. 2019г.). Утверждено методической комиссией института технологии ВШТЭ

СПБГУПТД (протокол № 3 от 3.04. 2019г.)

Рекомендовано к изданию Редакционно-издательским советом в качестве учебного пособия.

- © Дмитревич И.Н.,2020
- © Высшая школа технологии и энергетики СПбГУПТД, 2020

ОБЩАЯ ХАРАКТЕРИСТИКА СПЕКТРАЛЬНЫХ МЕТОДОВ АНАЛИЗА

Вопросы и ответы

Вопрос 1

На чем основаны спектральные методы анализа (СМА)?

Ответ. Спектральные методы анализа основаны на взаимодействии электромагнитного излучения с анализируемым веществом.

Вопрос 2

Назовите аналитические сигналы, используемые в СМА.

Ответ. В СМА в качестве аналитических сигналов используются оптическая плотность, светопропускание, атомное поглощение, интенсивность спектральной линии излучения, длина волны (частота) испускаемого или абсорбируемого излучения.

Вопрос 3

Перечислите основные достоинства СМА.

Ответ. Спектральные методы анализа обладают высокой чувствительностью, точностью и селективностью. Они просты, универсальны, легко автоматизируются. СМА не требуют высоких расходов анализируемого вещества.

Вопрос 4

Какова чувствительность СМА?

Ответ. Чувствительность СМА составляет от 10^{-14} г (методы атомно-абсорбционной спектроскопии) до 10^{-5} г (методы фотометрии).

Вопрос 5

Укажите точность СМА.

Ответ. Точность спектральных измерений составляет от 0,5 % до 5 %.

Вопрос 6

Какие принципы лежат в основе классификации СМА?

Ответ. Классификация СМА основана на природе электромагнитного излучения, природе частиц анализируемого вещества и характере взаимодействия электромагнитного излучения с объектом исследования.

Как классифицируются СМА по природе частиц анализируемого вещества? **Ответ.** В зависимости от природы частиц анализируемого вещества СМА делятся на атомные и молекулярные.

Вопрос 8

Как называются СМА, основанные на поглощении и испускании электромагнитного излучения?

Ответ. СМА, основанные на поглощении электромагнитного излучения, называются абсорбционными, методы, сопровождающиеся испусканием света – эмиссионными.

Вопрос 9

Как классифицируются СМА по природе электромагнитного излучения?

Ответ. В зависимости от природы электромагнитного излучения спектральные методы делятся на γ - лучевые, рентгеновские, оптические, инфракрасные, методы вращательной спектроскопии и ядерного магнитного резонанса.

Вопрос 10

На чем основаны оптические методы анализа?

Ответ. Оптические методы основаны на взаимодействии вещества с оптическим излучением в диапазоне длины волны от 200 до 1100 нм.

Вопрос 11

Назовите СМА, обладающие самой высокой чувствительностью.

Ответ. Самой высокой чувствительностью обладают методы атомноэмиссионной и атомно-абсорбционной спектроскопии.

Вопрос 12

Назовите спектральный метод анализа, обладающий наибольшей селективностью.

Ответ. Наибольшей селективностью обладает метод атомноабсорбционной спектроскопии.

Вопрос 13

Назовите наименее трудоемкий и простой метод оптического анализа.

Ответ. Самый простой и наименее трудоемкий метод оптического анализа — фотоколориметрия.

Какой спектральный метод позволяет одновременно проводить качественный и количественный анализ атомов и простых молекул?

Ответ. Для определения качественного и количественного состава атомов и простых молекул используется метод атомно-эмиссионной спектроскопии.

Вопрос 15

Какой спектральный метод дает информацию о природе химических связей в молекуле органического соединения?

Ответ. Информацию о природе химических связей в молекуле органического соединения дает метод молекулярно-абсорбционной инфракрасной (ИК) спектроскопии.

Вопрос 16

Какие спектральные методы используются в качественном анализе?

Ответ. В качественном анализе используются методы атомноэмиссионной и молекулярно-абсорбционной инфракрасной спектроскопии.

Вопрос 17

Какие методы спектрального анализа наиболее часто используются в практике аналитических измерений?

Ответ. В практике аналитических измерений чаще всего используются методы молекулярно-абсорбционной и атомно-эмиссионной спектроскопии.

Тесты

Тест 1

Какой СМА не может быть использован для определения качественного состава вещества?

- а) атомно-эмиссионная спектроскопия;
- б) молекулярно-абсорбционная ИК-спектроскопия;
- г) фотоколориметрия;
- д) спектрофотометрия.

Тест 2

Какой СМА обладает высокой чувствительностью и селективностью? а) атомно-абсорбционная спектроскопия;

- б) молекулярно-абсорбционная спектроскопия;
- г) фотоколориметрия;
- д) атомно-эмиссионная спектроскопия.

Тест 3

Какие СМА основаны на излучении света?

- а) фотоколориметрия;
- б) спектрофотометрия;
- г) атомно-абсорбционная спектроскопия;
- д) атомно-эмиссионная спектроскопия.

ПРИРОДА, СВОЙСТВА И ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

Вопросы и ответы

Вопрос 18

Дайте определение электромагнитного излучения.

Ответ. Электромагнитное излучение — это вид энергии, которая распространяется со скоростью света ($U=3\cdot10^8 \text{м/c}$) и имеет корпускулярноволновую природу.

Вопрос 19

Объясните понятие корпускулярно-волновой дуализм электромагнитного излучения.

Ответ. *Корпускулярно-волновой дуализм* (двойственность) электромагнитного излучения — это способность излучения проявлять одновременно свойства частиц (корпускул) и волн.

Вопрос 20

Какие оптические явления подтверждают квантовую (корпускулярную) природу электромагнитного излучения?

Ответ. Квантовую природу электромагнитного излучения подтверждают явления фотоэффекта, светопоглощения и давления света.

Перечислите оптические явления, подтверждающие волновую природу электромагнитного излучения.

Ответ. Волновую природу электромагнитного излучения подтверждают явления интерференции и дифракции.

Вопрос 22

Назовите основные формы электромагнитного излучения.

Ответ. Основные формы электромагнитного излучения: γ - излучение, рентгеновское, ультрафиолетовое (УФ), видимое, инфракрасное (ИК), микроволновое и радиоизлучение.

Вопрос 23

Назовите оптический диапазон электромагнитного излучения и укажите его составляющие.

Ответ. Оптический диапазон электромагнитного излучения составляет от 200 до 1100 нм и включает УФ, видимое, ИК излучение.

Вопрос 24

Какие параметры используются для характеристики волновых свойств электромагнитного излучения?

Ответ. Волновые свойства электромагнитного излучения характеризуются длиной волны, частотой колебаний, волновым числом, периодом излучения, амплитудой колебаний.

Вопрос 25

Дайте определение длины волны электромагнитного излучения.

Ответ. Длина волны (λ) — это расстояние между двумя максимумами или минимумами на синусоиде волны электромагнитного излучения.

Вопрос 26

Какое излучение называется монохроматическим?

Ответ. Монохроматическим называется электромагнитное излучение с одной длиной волны.

Вопрос 27

Что показывает частота излучения?

Ответ. Частота колебаний (v) электромагнитного излучения показывает число полных циклов колебаний волны за 1 секунду.

Какой волновой параметр является мерой интенсивности монохроматического излучения?

Ответ. Мерой интенсивности монохроматического излучения является амплитуда световой волны.

Вопрос 29

Что показывает волновое число? Как оно связано с длиной волны?

Ответ. Волновое число ($\acute{\upsilon}$) показывает, сколько раз длина волны (λ) укладывается в 1см. Волновое число - величина, обратная длине волны, которая рассчитывается по формуле:

$$\dot{\mathbf{v}} = \frac{1}{\lambda},$$

где

 λ - длина волны (см); $\dot{\nu}$ - волновое число (см⁻¹).

Вопрос 30

Как рассчитывается энергия кванта электромагнитного излучения?

Ответ. Энергия кванта электромагнитного излучения рассчитывается по формуле:

$$\mathbf{E} = \mathbf{h} \cdot \mathbf{v}$$
 или $\mathbf{E} = \mathbf{h} \cdot \frac{\mathbf{C}}{\lambda}$,

где

h – постоянная Планка (6,63·10⁻³⁴ Дж·с);

 $c - c kopoctь c вета (3.10^8 m/c);$

v – частота излучения (Γ ц);

 λ – длина волны (см).

Тесты

Тест 4

Какие оптические явления подтверждают квантовую (корпускулярную) природу электромагнитного излучения?

- а) интерференция;
- б) давление света;
- г) светорассеяние;

д) фотоэффект.

Тест 5

Какие оптические подтверждают волновую явления природу электромагнитного излучения?

- а) интерференция;
- б) светопоглощение;
- в) дифракция;
- г) давление света.

Тест 6

Какая волновая характеристика излучения является мерой его интенсивности?

- а) длина волны;
- б) амплитуда;
- в) частота колебаний;
- г) волновое число.

Тест 7

Какое электромагнитное излучение обладает наибольшей энергией?

- а) рентгеновское излучение;
- б) видимое излучение;
- в) ИК;
- г) радиочастотное излучение.

Тест 8

Какой вид оптического излучения обладает наибольшей энергией?

- а) ИК;
- б) видимое излучение;
- в) УФ.

Тест 9

Чему равна энергия фотона монохроматического излучения с длиной волны 500 нм?

- а) 4 ·10⁻¹⁹ Дж; б) 4 ·10¹⁹ Дж;
- в) 47·10⁻¹⁰Дж; г) 47·10⁻⁵ Дж.

АТОМНЫЕ И МОЛЕКУЛЯРНЫЕ СПЕКТРЫ

Вопросы и ответы

Вопрос 31

Какова природа испускания и поглощения рентгеновского излучения?

Ответ. Испускание и поглощение рентгеновского излучения происходит в результате перемещения электронов на внешних и внутренних энергетических подуровнях.

Вопрос 32

Объясните природу поглощения ИК излучения.

Ответ. При поглощении веществом ИК излучения световая энергия переходит в энергию колебания атомов и вращательного движения молекул.

Вопрос 33

Какова природа атомного испускания и поглощения УФ и видимого света?

Ответ. Поглощение атомами света в УФ и видимой областях спектра объясняется переходом внешних валентных электронов на более высокий энергетический уровень. Испускание света происходит при переходе электронов на более низкий подуровень.

Вопрос 34

Дайте определение спектра электромагнитного излучения.

Ответ. Спектр электромагнитного излучения — это упорядоченная совокупность спектральных линий, которая соответствует распределению интенсивности испускаемого излучения по длине волны или частоте.

Вопрос 35

Какую зависимость отражает спектр электромагнитного поглощения?

Ответ. Спектр электромагнитного поглощения отражает зависимость оптической плотности или коэффициента пропускания анализируемого объекта от длины волны или частоты поглощаемого им монохроматического излучения.

Вопрос 36

Какую зависимость отражает спектр электромагнитного излучения?

Ответ. Спектр электромагнитного излучения отражает зависимость интенсивности (плотности) излучения от длины волны или частоты испускаемого света.

Назовите основные виды электромагнитных спектров.

Ответ. Различают три вида электромагнитных спектров: линейчатые, полосатые и сплошные.

Вопрос 38

Какой спектр имеет белый свет?

Ответ. Белый свет имеет непрерывный спектр.

Вопрос 39

Какие вещества и при каких условиях образуют непрерывный спектр испускания?

Ответ. Непрерывный спектр испускания образуют нагретые до высокой температуры твердые тела, жидкости и сильно сжатые газы.

Вопрос 40

Опишите полосатые спектры испускания.

Ответ. Полосатые спектры испускания представляют набор цветных полос, четко разграниченных темными промежутками.

Вопрос 41

Какие вещества образуют полосатые спектры испускания?

Ответ. Полосатые спектры испускания образуют вещества, молекулы которых состоят из плотно связанных атомов.

Вопрос 42

Какой спектр имеют атомы и ионы газообразных веществ?

Ответ. Атомы и ионы газообразных веществ имеют линейчатый спектр.

Вопрос 43

Назовите прибор, используемый для получения электромагнитных спектров.

Ответ. Для получения электромагнитных спектров используется спектрограф.

Вопрос 44

Назовите диспергирующие элементы спектрографа.

Ответ. В качестве диспергирующих элементов в спектрографе используются треугольные линзы и дифракционные решетки.

Вопрос 45

На чем основано диспергирующее действие треугольной линзы?

Ответ. Диспергирующее действие треугольной линзы основано на изменении показателя преломления линзы в зависимости от длины волны направляемого на нее излучения.

Вопрос 46

Какой спектральный параметр характеризует качественный состав вещества?

Ответ. Качественный состав вещества оценивается по длине волны (λ) или частоте (ν) поглощаемого или испускаемого им излучения.

Вопрос 47

Какой спектральный параметр характеризует количественный состав системы?

Ответ. Количественный состав системы оценивается по интенсивности поглощаемого или испускаемого ею излучения.

Тесты

Тест 10

Какие виды излучения инициируются переходами внешних валентных электронов?

- а) ИК излучение;
- б) УФ излучение;
- в) γ излучение;
- г) видимое излучение.

Тест 11

Какое излучение инициируется ядерными переходами в атоме?

- а) ИК излучение;
- б) УФ излучение;
- в) γ излучение;
- г) видимое излучение.

Тест 12

Какие виды излучения не вызывают электронных переходов в атоме?

- а) радиоволны;
- б) ИК излучение;
- в) ү излучение;
- г) видимое излучение.

Тест 13

Какой вид имеют атомные спектры испускания?

- а) непрерывный спектр;
- б) линейчатый спектр;
- в) полосатый спектр.

Тест 14

Какой элемент спектрального прибора используется для разложения электромагнитного излучения в спектр?

- а) источник возбуждения;
- б) коллиматор со щелью;
- в) дифракционная решетка;
- г) фотоэлемент.

Тест 15

На чем основано диспергирующее действие треугольной призмы?

- а) на зависимости показателя преломления материала призмы от длины волны направленного на нее излучения;
- б) на зависимости коэффициента рефракции призмы от длины волны направленного на нее излучения;
- в) на зависимости интенсивности свечения материала призмы от длины волны направленного на нее излучения;
- г) на зависимости коэффициента светопропускания призмы от частоты направленного на нее излучения.

ОПТИЧЕСКИЕ МЕТОДЫ АТОМНО -ЭМИССИОННОЙ И АТОМНО-АБСОРБЦИОННОЙ СПЕКТРОСКОПИИ

Вопросы и ответы

Вопрос 48

Назовите область использования атомно-эмиссионной спектроскопии (АЭС).

Ответ. Методы АЭС используются для определения качественного и количественного состава атомов и простых молекулах.

Вопрос 49

Перечислите основные достоинства АЭС.

Ответ. Методы АЭС просты, высокочувствительны, не требуют больших затрат времени и легко автоматизируются.

Вопрос 50

На чем основаны методы АЭС?

Ответ. Методы АЭС основаны на регистрации оптических спектров испускания термически возбужденных атомов или одноатомных ионов.

Вопрос 51

Перечислите основные элементы атомно-эмиссионной установки. Какую функцию они выполняют?

Ответ. Установка для атомно-эмиссионного анализа состоит из следующих элементов:

- источник возбуждения, в котором анализируемое вещество переводится в атомарно-возбужденное состояние;
- диспергирующее устройство (призма, дифракционная решётка, светофильтры), разлагающее эмиссионное излучение на монохроматические составляющие;
- приёмник излучения (детектор), преобразующий световую энергию в электричество;
- устройство для регистрации спектра.

Вопрос 52

В каком состоянии находится анализируемое вещество в источнике атомно-эмиссионного возбуждения?

Ответ. В источнике атомно-эмиссионного возбуждения анализируемое вещество переводится в атомарный «пар» (плазму).

Вопрос 53

Перечислите источники возбуждения в АЭС.

Ответ. В качестве источников возбуждения в АЭС используются пламя, электрическая дуга, высоковольтная искра.

Вопрос 54

Какие процессы протекают в атомно-эмиссионном источнике возбуждения?

Ответ. В атомно-эмиссионном источнике возбуждения протекают следующие процессы: испарение растворителя, переход анализируемого вещества в газообразное состояние, атомизация молекул, возбуждение и частичная ионизация атомов, испускание света возбужденными атомами.

Какой параметр атомно-эмиссионного источника возбуждения определяет природу и физическое состояние исследуемого вещества?

Ответ. Природа и физическое состояние исследуемого вещества определяются температурой атомно-эмиссионного источника возбуждения.

Вопрос 56

Какую температуру имеет пламенный источник возбуждения?

Ответ. Температура пламенного источника возбуждения составляет 1500-3000°С.

Вопрос 57

Как осуществляется подача анализируемого раствора в пламенный источник возбуждения?

Ответ. В пламенной фотометрии анализируемый раствор пневматически распыляется в форме аэрозоля в пламя газовой горелки.

Вопрос 58

Какие металлы могут быть определены методом пламенной фотометрии?

Ответ. Методом пламенной фотометрии могут быть определены щелочные и щелочно-земельные металлы.

Вопрос 59

Объясните причины ограниченных возможностей пламенной фотометрии.

Ответ. Из-за низкой температуры пламени методы пламенной фотометрии пригодны только для определения легкоатомизируемых и возбудимых элементов (щелочных и щелочно-земельных металлов).

Вопрос 60

Опишите принцип возбуждения атомов в дуговом электрическом разряде.

Ответ. Под действием дугового электрического разряда в источнике возбуждения происходит пробой и ионизация атмосферного воздуха. Энергия образовавшейся плазмы возбуждает атомы, вызывая переход валентных электронов на более высокий энергетический подуровень.

Вопрос 61

При какой температуре происходит атомизация и возбуждение атомов в электрической дуге?

Ответ. Атомизация и возбуждение атомов в электрической дуге происходит в температурном диапазоне от 3000 до 7000°C.

Почему для АЭС с электрическими источниками возбуждения нет ограничений по атомарному составу анализируемого вещества?

Ответ. Методы АЭС с электрическими источниками возбуждения не имеют ограничений по атомарному составу анализируемого вещества, так как высокая энергия электрической дуги и искрового разряда позволяет атомизировать и возбуждать атомы практически любого элемента.

Вопрос 63

В каком агрегатном состоянии может находиться анализируемое вещество при возбуждении в электрической дуге или искровом разряде?

Ответ. В методах АЭС с электрическими источниками возбуждения (электрическая дуга, искровой разряд) анализируемое вещество может находиться в жидком или твердом состоянии.

Вопрос 64

Из какого материала изготавливаются электроды электрической дуги в АЭС?

Ответ. В АЭС электроды электрической дуги изготавливаются из графита, спектр которого состоит из ограниченного числа линий.

Вопрос 65

Из каких материалов изготавливаются электроды электрической дуги при анализе чистых металлов и сплавов?

Ответ. В атомно-эмиссионном анализе чистых металлов или сплавов функцию основного электрода выполняет анализируемый образец металла. Противоэлектродом служит медный или графитовый стержень.

Вопрос 66

Как подается проба анализируемого вещества в электрическую дугу атомно-эмиссионного источника возбуждения?

Ответ. При возбуждении атомов в электрической дуге проба анализируемого вещества подается в специальный канал (полость) нижнего электрода. Если анализируемое вещество находится в жидком состоянии, то раствор вводится по каплями в канал и выпаривается перед внесением следующей капли раствора. При работе с твердым веществом анализируемая проба смешивается с порошком графита и набивается в углубление электрода.

Вопрос 67

Опишите механизм возникновения спектров в атомно-эмиссионном анализе.

Ответ. Под действием высокой температуры источника возбуждения валентные электроны атомов анализируемого вещества переходят из

основного состояния в возбужденное, перемещаясь на более высокий энергетический подуровень. Приблизительно через 10^{-8} с они спонтанно возвращаются на нижележащую или основную энергетическую орбиталь. При этом избыточная энергия выделяется в виде дискретных электромагнитных колебаний, которым соответствует определенная длина и частота волны. Вследствие этого интенсивность и положение линий в эмиссионном спектре строго индивидуальны для каждого атома.

Вопрос 68

Сформулируйте правила отбора для электронных переходов.

Ответ. Электронные переходы в атомах подчиняются следующим правилам отбора:

- при переходе электронов на новую орбиталь спин электрона не должен меняться;
- разрешены электронные переходы между орбиталями, отличающимися только на одно квантовое число;
- запрещены переходы, при которых происходит возбуждение более одного электрона.

Вопрос 69

Опишите атомно-эмиссионные спектры.

Ответ. Атомно-эмиссионные спектры состоят из цветных линий, разделенных широкими темными полосами. Такие спектры называют линейчатыми.

Вопрос 70

Какой области электромагнитного излучения соответствуют атомно-эмиссионные спектры?

Ответ. Атомно-эмиссионные спектры соответствуют видимому и УФ излучению.

Вопрос 71

Какие измерительные средства используются для регистрации и анализа атомно-эмиссионных спектров?

Ответ. Регистрация и анализ атомно-эмиссионных спектров проводится визуально с помощью стиллоскопов и стиллометров, фотографически с использованием спектрографов и фотоэлектрически на основе спектрометров.

Вопрос 72

Как измеряется интенсивность эмиссионного излучения в спектрографе?

Ответ. В спектрографе интенсивность эмиссионного излучения измеряется микрофотометром по степени почернения характерной линии на фотографии спектра анализируемого вещества

Вопрос 73

Какая линия атомно-эмиссионного спектра называется последней?

Ответ. В атомно-эмиссионной спектроскопии последней называется линия, которая остается в спектре при предельно малой концентрации определяемого элемента.

Вопрос 74

Как идентифицируются атомы по длине волны последней линии эмиссионного спектра эмиссионного спектра?

Ответ. Последней линии эмиссионного спектра каждого атома соответствует строго определенная длина волны, по величине которой с помощью специальных атласов и таблиц может быть идентифицирован исследуемый элемент.

Вопрос 75

Как по спектрам сравнения можно определить длину волны последней линии атомно-эмиссионного спектра?

Ответ. Для определения длины волны последней линии (λ_X) снимаются спектры анализируемого вещества и элемента сравнения. Элемент сравнения выбирается таким образом, чтобы длины волны его спектральных линий (λ_1 и λ_2) были максимально близки к последней линии анализируемого вещества и располагались в следующей последовательности:

$$\begin{array}{c|c} a_1 & a_2 \\ & \longleftrightarrow & & \\ \lambda_1 & \lambda_X & \lambda_2 \end{array}$$

Измерив расстояния между последней линией анализируемого вещества и линиями в спектре сравнения (a_1 и a_2), рассчитывается значение λ_X по формуле:

$$\lambda_{X} = \lambda_{1} + (\lambda_{2} - \lambda_{1}) \frac{a_{1}}{a_{1} + a_{2}}$$

Назовите факторы, влияющие на интенсивность линий атомно-эмиссионного спектра.

Ответ. На интенсивность линий атомно-эмиссионного спектра влияют температура источника возбуждения, вероятность и энергия электронных переходов, концентрация анализируемого вещества и присутствие в пробе посторонних примесей.

Вопрос 77

Как связана интенсивность линий атомно-эмиссионного спектра с концентрацией анализируемого элемента?

Ответ. Зависимость интенсивности линий (I) атомно-эмиссионного спектра от концентрации анализируемого вещества (C) выражается эмпирической формулой Ломакина–Шейбе:

$$I = a \cdot C^b$$
.

где

I – интенсивность спектральной линии;

с – концентрация анализируемого вещества;

а – коэффициент, зависящий от режима работы источника возбуждения, его стабильности и температуры;

b – коэффициент, учитывающий самопоглощение (поглощение испускаемых квантов невозбужденными атомами).

Вопрос 78

Напишите выражения линейной и логарифмической форм уравнения Ломакина—Шейбе. Укажите условия их применения.

Ответ. При невысоких концентрациях (b = 1) между интенсивностью излучения и концентрацией анализируемого вещества наблюдается линейная зависимость:

$$I = a \cdot C$$

При средних и высоких концентрациях (b \neq 1) уравнение Ломакина—Шейбе имеет логарифмическую форму:

$$1g I = 1g a + b1gC$$

Как определяется концентрация вещества по интенсивности спектральной линии атомно-эмиссионного спектра?

Ответ. Определение концентрации по атомно-эмиссионному спектру основано на уравнении Ломакина–Шейбе. Для этого снимается серия эмиссионных спектров для эталонных растворов в условиях, соответствующих анализу исследуемого образца. На основе полученных данных строится градуировочный график в координатах I от C или 1g I от1gC, по которому определяется концентрация анализируемого вещества по интенсивности линий его эмиссионного спектра.

Вопрос 80

На чем основан метод атомно-абсорбционной спектроскопии (ААС)?

Ответ. Метод ААС основан на поглощении атомным паром анализируемого вещества монохроматического оптического излучения, энергия кванта которого соответствует энергии резонансного перехода электронов в атоме определяемого элемента.

Вопрос 81

Назовите аналитический сигнал в методе ААС.

Ответ. В методе ААС аналитическим сигналом является величина уменьшения интенсивности резонансного излучения.

Вопрос 82

Перечислите основные достоинства ААС.

Ответ. ААС — простой, экспрессный метод анализа, обладающий высокой селективностью и чувствительностью.

Вопрос 83

Какое излучение в ААС называется резонансным?

Ответ. Резонансным излучением в ААС называется монохроматическое излучение, длина волны которого соответствует квантовой энергии возбуждения атома анализируемого вещества.

Вопрос 84

Что такое плазма?

Ответ. Плазма («атомный пар») — это частично или полностью ионизированный газ, состоящий из электронов, положительных ионов и нейтральных атомов.

Вопрос 85

Опишите схему прибора ААС.

Ответ. Прибор для ААС состоит из источника излучения, атомизатора, монохроматора, приемного и регистрирующего устройства.

Вопрос 86

Опишите устройство источника излучения в ААС.

Ответ. В ААС источником излучения служит лампа с полым катодом, которая состоит из стеклянного баллона с кварцевым окошком, через которое проходит резонансное излучение. Баллон заполнен инертным газом (аргоном). В нем установлены два электрода, один из которых (полый катод) имеет вогнутую форму и изготовлен из анализируемого металла (или покрыт слоем этого металла).

Вопрос 87

Опишите принцип получения резонансного излучения в ААС.

Ответ. Для получения резонансного излучения в ААС на электродах лампы с полым катодом создается высоковольтный разряд, под действием которого атомы инертного газа ионизируются и «выбивают» из катода атомы металла, идентичные составу анализируемой пробы. Возбужденные атомы металла, возвращаясь в устойчивое состояние, испускают излучение, квантовая энергия которого соответствует энергии возбуждения анализируемого элемента.

Вопрос 88

Какой спектр имеет источник излучения в ААС?

Ответ. Источник излучения в ААС имеет линейчатый спектр.

Вопрос 89

Какие виды излучения моделирует источник света в ААС?

Ответ. Источник света в ААС моделирует видимое и УФ излучение.

Вопрос 90

Почему в ААС используется резонансное, а не монохроматическое излучение?

Ответ. В ААС используется резонансное излучение, так как его спектр максимально приближен к атомарному спектру исследуемого элемента, что гарантирует эффективное поглощение света и обеспечивает высокую точность измерений. Монохроматическое излучение в ААС не применяется, так как спектральные полосы монохроматического излучения значительно шире спектральных линий атомов $(10^{-4}-10^{-5})$ нм, что затрудняет абсорбцию света.

При какой температуре проводится атомизация вещества в ААС? Дайте обоснование выбранному режиму.

Ответ. В ААС атомизация вещества проводится при температуре от 1700 до 3000°С, которая гарантирует распад молекул на атомы при сохранении устойчивого состояния валентных электронов.

Вопрос 92

Перечислите требования, предъявляемые к атомизаторам в ААС.

Ответ. Атомизаторы в ААС должны обладать энергией, которая гарантирует распад молекул анализируемого вещества, но не вызывает возбуждения их атомов. Процентное содержание возбужденных атомов в атомизаторе не должно превышать 0.02-0.1%.

Вопрос 93

Назовите основные виды атомизаторов в ААС.

Ответ. В ААС используются пламенные и электротермические атомизаторы.

Вопрос 94

Опишите устройство пламенного атомизатора в ААС.

Ответ. Пламенные атомизаторы представляют собой горелки с горючей смесью воздуха с ацетиленом (2200° C) или оксида азота (I) с ацетиленом (3000° C).

Вопрос 95

Опишите устройство и принцип действия электротермического атомизатора в ААС.

Ответ. Электротермические атомизаторы представляют графитовые трубки, нагретые электрическим током до температуры до 3000° С, внутри которых находится графитовая кювета. Раствор исследуемой пробы помещается в кювету, где под действием энергии дуги постоянного тока происходит испарение растворителя и распад анализируемого вещества на атомы.

Вопрос 96

Какую функцию выполняют монохроматоры в приборах ААС?

Ответ. Монохроматоры в приборах ААС отсекают спектральные линии источника излучения (лампы с полым катодом), молекулярные полосы и линии постороннего излучения.

Какой закон используется для расчета концентраций в ААС?

Ответ. Для расчета концентраций в ААС используется закон Бугера-Ламберта-Бера.

Вопрос 98

Напишите формулу основного закона атомного светопоглощения в степенной форме.

Ответ. Основной закон атомного светопоглощения (закон Бугера-Ламберта-Бера) в степенной форме выражается следующей формулой:

$$\mathbf{I} = \mathbf{I}_0 \cdot \mathbf{e}^{-\kappa \cdot \mathbf{L} \cdot \mathbf{C}},$$

где

 I, I_0 – интенсивность прошедшего и падающего излучения;

L – толщина поглощающего слоя (см);

с – концентрация определяемого элемента (моль/л);

к – атомный коэффициент поглощения.

Вопрос 99

Напишите формулу основного закона атомного светопоглощения в линейной форме.

Ответ. Основной закон атомного светопоглощения (закон Бугера-Ламберта-Бера) в линейной форме выражается следующей формулой:

$$A = \lg(I_0/I) = K \cdot L \cdot C,$$

где

 $I,\,I_0$ – интенсивность прошедшего и падающего излучения;

L – толщина поглощающего слоя (см);

c — концентрация определяемого элемента (моль/л);

к – атомный коэффициент поглощения.

Вопрос 100

Дайте сравнительную оценку методов абсорбционной и эмиссионной атомной спектроскопии.

Ответ. В отличие от АЭС методы ААС не имеют ограничений по атомарному составу анализируемой пробы, так как роль температурного воздействия в абсорбционной спектроскопии ограничивается только

атомизацией вещества. Спектр атомного поглощения проще эмиссионного из-за отсутствия спектральных помех при использовании резонансного излучения. Чувствительность методов AAC выше AЭC.

Вопрос 101

Какова чувствительность ААС?

Ответ. Чувствительность методов AAC составляет от 10^{-12} - 10^{-14} г (10^{-5} - 10^{-8} %).

Вопрос 102

Сопоставьте чувствительность ААС и молекулярно-абсорбционной спектроскопии (МАС).

Ответ. Чувствительность ААС выше молекулярно-абсорбционной спектроскопии, так как коэффициент атомной абсорбции (к) значительно выше молярного коэффициента поглощения (є).

Вопрос 103

Назовите основные недостатки ААС.

Ответ: ААС имеет следующие недостатки:

- сложное, дорогостоющее оборудование;
- необходимость замены катода излучателя при изменении состава анализируемой пробы.

Тесты

Тест 16

Какой элемент не может быть определен методом пламенной фотометрии?

- а) кальций;
- б) натрий;
- в) железо;
- г) калий

Тест 17

Какой энергетический источник не пригоден для возбуждения переходных металлов?

- а) пламя;
- б) электрическая дуга;
- в) высокочастотная дуга;
- г) искра.

Тест 18

Какие электронные переходы запрещены правилом отбора?

- a) $3S \rightarrow 3p$;
- б) $2S \rightarrow 2p$;
- в) переход с изменением спина;
- г) 1S→2S.

Тест 19

Какие элементы излучают свет в пламени водородно-воздушной смеси?

- а) щелочные металлы;
- б) инертные газы;
- в) галоиды;
- г) щелочно-земельные металлы.

Тест 20

Какие формулы используются для расчета концентрации в методе ААС?

- a) $A = \varepsilon \cdot L \cdot C$;
- б) $I = a \cdot C^b$;
- в) $A = k \cdot L \cdot C$;
- Γ) 1g I = 1g a + b · 1g C.

Тест 21

Какое назначение имеют атомно-эмиссионные спектры?

- а) определение фазового состава вещества;
- б) получение информации о природе межатомных связей;
- в) определение качественного и количественного состава атомов;
- г) определение количественного состава молекул.

Тест 22

Назовите источник излучения в ААС?

- а) лампа накаливания;
- б) кварцевая лампа;
- в) лампа с полым катодом;
- г) галогенная лампа.

Тест 23

Что гарантирует высокую селективность ААС?

- а) использование резонансного источника излучения;
- б) высокая стабильность атомизатора;
- в) высокая температура атомизации;
- г) использование монохроматора.

Тест 24

Из какого материала может быть изготовлен полый катод лампы резонансного излучения?

- а) графит;
- б) металл определяемого элемента;
- в) любой металл;
- г) сплав металлов, содержащий определяемый элемент.

Тест 25

Какой анализ выполняется методом ААС?

- а) фазовый;
- б) количественный;
- в) количественный и качественный;
- г) качественный.

ОПТИЧЕСКИЕ МЕТОДЫ МОЛЕКУЛЯРНО-АБСОРБЦИОННОЙ СПЕКТРОСКОПИИ (ФОТОКОЛОРИМЕТРИЯ, СПЕКТРОФОТОМЕТРИЯ, ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ)

Вопросы и ответы

Вопрос 104

Перечислите методы молекулярно-абсорбционной спектроскопии (МАС).

Ответ. К методам МАС относятся фотометрия (фотоколориметрия, спектрофотометрия) и ИК- спектроскопия.

Вопрос 105

Назовите основные достоинства МАС?

Ответ. Методы МАС обладают следующими достоинствами: высокая чувствительность $(10^{-4}-10^{-6} \text{ моль/л})$ и точность (1-3%), простота, широкий диапазон рабочих концентраций (от $10^{-3}-10^{-4}$ до 20-30%).

Вопрос 106

На чем основаны методы МАС?

Ответ. Методы МАС основаны на поглощении молекулами или сложными ионами монохроматического излучения.

Почему в молекулярной спектроскопии редко используются эмиссионные метолы анализа?

Ответ. В молекулярной спектроскопии редко используются эмиссионные методы анализа, так как при возбуждении эмиссионного излучения возрастает риск разрушения молекул анализируемого вещества и требуется более сложное аналитическое оборудование.

Вопрос 108

Объясните механизм молекулярного светопоглощения с точки зрения изменения внутренней энергии анализируемого вещества.

Ответ. При молекулярном светопоглощении энергия излучения передается молекулам или сложным ионам анализируемого вещества. Увеличение внутренней энергии приводит к усилению вращательного движение молекул, колебательного движения атомов и переходу электронов на более высокий энергетический уровень. Общее изменение внутренней энергии молекулы при светопоглощении может быть представлено следующей формулой:

$$\mathbf{E}_{\mathbf{o}\mathbf{6}\mathbf{H}} = \mathbf{E}_{\mathbf{B}\mathbf{p}\mathbf{a}\mathbf{H}} + \mathbf{E}_{\mathbf{K}\mathbf{o}\mathbf{J}} + \mathbf{E}_{\mathbf{3}\mathbf{J}.\mathbf{n}\mathbf{e}\mathbf{p}}$$

Вопрос 109

Как соотносятся значения энергии вращения молекул, колебаний атомов и электронных переходов?

Ответ. Соотношение значений энергий вращения молекул, колебаний атомов и электронных переходов составляет 1 :100 :1000.

Вопрос 110

Укажите волновой диапазон молекулярного светопоглощения в фотометрии?

Ответ. Волновой диапазон молекулярного светопоглощения в фотометрии составляет от 120 до 1100 нм (ультрафиолетовое, видимое и ближнее инфракрасной излучение).

Вопрос 111

Опишите молекулярный спектр поглощения в фотометрии.

Ответ. Молекулярный спектр поглощения в фотометрии представляет совокупность перекрывающихся полос со сложной линейчатой структурой и волнистым контуром. Такие спектры называются полосатыми.

Объясните линейчатую структуру полос поглощения молекулярных спектров.

Ответ. Так как Еэл.пер. >> Екол>> Евр, то возбуждение электронных переходов сопровождается изменением колебательной энергии атомов, что в свою очередь отражается на изменении вращательной энергии молекул. Вследствие этого молекулярные спектры отражают изменение электронно-колебательно-вращательного состояния молекул. Энергии возбуждения электронов соответствуют широкие полосы спектра, а энергии колебательно-вращательных переходов — плотно расположенные внутри полос линии.

Вопрос 113

Назовите критерии оценки эффективности светопоглощения в МАС.

Ответ. В МАС оценка эффективности поглощения света проводится по величине оптической плотности (A) или светопропусканию (T).

Вопрос 114

Как рассчитывается величина оптической плотности (А)?

Ответ. Оптическая плотность рассчитывается по формуле:

$$A = -Ig I/I_0,$$

где

А – оптическая плотность исследуемого раствора;

I – интенсивность прошедшего света;

 I_0 – интенсивность падающего света.

Вопрос 115

В каких единицах измеряется оптическая плотность?

Ответ. Оптическая плотность – безмерная величина.

Вопрос 116

В каких пределах изменяется оптическая плотность?

Ответ. Оптическая плотность изменятся от 0 до ∞ .

$$T = \frac{I}{I_0},$$

где

Т – светопропускание исследуемого раствора;

I – интенсивность прошедшего света;

 I_0 — интенсивность падающего света.

Что характеризует величина светопропускания?

Ответ. Светопропускание характеризует долю светового потока, прошедшего через исследуемый раствор.

Вопрос 119

В каких единицах измеряется светопропускание?

Ответ. Светопропускание измеряется в долях единицы или в процентах.

Вопрос 120

В каких пределах изменяется светопропускание?

Ответ. Светопропускание в долях единицы изменятся от 0 до 1, в процентах от 0 до 100.

Вопрос 121

Какая зависимость существует между оптической плотностью и светопропусканием?

Ответ. Оптическая плотность и светопропускание связаны следующими соотношениями:

$$A = -Ig T$$
 (Т выражено в долях единицы);

$$A = 2 - Ig T$$
 (Т выражено в %).

Вопрос 122

Чему равны оптическая плотность и светопропускание, если исследуемый раствор не поглощает свет?

Ответ. Для раствора, не поглощающего свет, A=0; T=1 или T=100 %.

Вопрос 123.

Чему равны оптическая плотность и светопропускание, если исследуемый раствор полностью поглощает свет?

Ответ. Для раствора, полностью поглощающего свет, $A = \infty$; T = 0.

Вопрос 124

Сформулируйте закон аддитивности оптической плотности для многокомпонентного раствора.

Ответ. Если в растворе находится несколько веществ, не взаимодействующих между собой, то при поглощении монохроматического

излучения оптическая плотность раствора равна сумме значений оптической плотности его компонентов.

$$A_{000\text{ ML}} = A_{1+} \ A_{2+} \ A_{3} \dots + A_{n},$$

где $A_{\text{общ.}}$ – общая оптическая плотность раствора;

 $A_{1}, A_{2}, A_{3}, A_{n}$, — оптическая плотность компонентов раствора.

Вопрос 125

Какую зависимость отражает основной закон молекулярного светопоглощения (закон Ламберта-Бугера-Бера)?

Ответ. Основной закон молекулярного светопоглощения отражает зависимость снижения интенсивности монохроматического света, прошедшего через раствор, от концентрации раствора и толщины поглощающего слоя.

Вопрос 126

Напишите в степенной форме математическое выражение закона Ламберта-Бугера-Бера для МАС.

Ответ. Закон Ламберта-Бугера-Бера в степенной форме для МАС выражается следующей формулой:

$$I = I_0 \cdot 10^{-\varepsilon \cdot L \cdot C}$$

где

 I, I_0- интенсивность прошедшего и падающего излучения;

L – толщина поглощающего слоя (см);

с - концентрация раствора (моль/л);

ε – молярный коэффициент поглощения.

Вопрос 127

Напишите в линейной форме математическое выражение закона Ламберта-Бугера-Бера для МАС.

Ответ. Закон Ламберта-Бугера-Бера в линейной форме для МАС выражается следующей формулой:

$$A = \varepsilon \cdot L \cdot C$$

где

А – оптическая плотность раствора;

L – толщина поглощающего слоя (см);

с – концентрация раствора (моль/л);

 ϵ — молярный коэффициент поглощения

Дайте определение молярного коэффициента поглощения (є). Укажите его размерность

Ответ. Молярный коэффициент поглощения (ϵ) равен оптической плотности раствора концентрацией 1 моль/л при толщине светопоглощающего слоя1см. ϵ имеет размерность: π моль⁻¹·см⁻¹.

Вопрос 129

От чего зависит молярный коэффициент поглощения (ε)?

Ответ. Молярный коэффициент поглощения (є) зависит от природы поглощающего вещества, длины волны падающего света и от температуры.

Вопрос 130

Зависит ли молярный коэффициент поглощения от концентрации анализируемого раствора?

Ответ. Молярный коэффициент поглощения не зависит от концентрации анализируемого раствора.

Вопрос 131

Что является критерием оценки чувствительности фотометрических измерений?

Ответ. Чувствительность фотометрических измерений оценивается по величине молярного коэффициента поглощения.

Вопрос 132

Назовите условия выполнения закона Ламберта-Бугера-Бера в молекулярной спектроскопии.

Ответ. Для выполнения закона Ламберта-Бугера-Бера в молекулярной спектроскопии должны соблюдаться следующие условия: поглощаемое излучение должно быть монохроматическим, пучок падающего света параллельным, толщина светопоглощающего слоя не должна превышать 5 см, температура и рН раствора должны быть постоянны. Исследуемый раствор должен быть истинным, разбавленным, с ограниченным временем созревания окраски.

Вопрос 133

Укажите оптимальный диапазон концентраций, в котором выполняется закон Ламберта-Бугера-Бера?

Ответ. Закон Ламберта-Бугера-Бера выполняется при концентрации анализируемого раствора менее 0,01 моль/л.

Как классифицируются методы МАС по природе электромагнитного излучения?

Ответ. В зависимости от природы электромагнитного излучения методы МАС делятся на фотометрические, основанные на поглощении видимого и УФ излучения фотоколориметрия и спектрофотометрия), и методы ИК спектроскопии.

Вопрос 135

Какова чувствительность фотометрических измерений?

Ответ. Чувствительность фотометрических измерений составляет от 10^{-5} до 10^{-7} моль/л.

Вопрос 136

Назовите основные этапы фотометрических измерений.

Ответ. Фотометрические измерения проводятся в следующей последовательности:

- в фотоколориметрии исследуемый компонент переводится в окрашенную форму;
- выбирается спектральная область фотометрирования;
- измеряется оптическая плотность или светопропускание исследуемого раствора;
- рассчитывается концентрация анализируемого вещества.

Вопрос 137

Назовите аналитический сигнал в фотометрии.

Ответ. Аналитическим сигналом в фотометрии является оптическая плотность или светопропускание.

Вопрос 138

Укажите диапазон значений оптической плотности, в котором погрешность фотометрических измерений минимальна.

Ответ. Погрешность фотометрических измерений минимальна при значениях оптической плотности от 0,1 до 1,0.

Вопрос 139

Что объединяет методы фотоколориметрии и спектрофотометрии?

Ответ. Методы фотоколориметрии и спектрофотометрии объединяют следующие закономерности:

- светопоглощение происходит в оптическом диапазоне;

– сопоставление значений интенсивности падающего и прошедшего через раствор света осуществляется фотоэлектрически.

Вопрос 140

Проведите сравнительный анализ возможностей и аналитических характеристик методов спектрофотометрии и фотоколориметрии.

Ответ. По сравнению с фотоколориметрией методы спектрофотометрии являются более точными и высококочувствительными. Они позволяют анализировать не только окрашенные (как в фотоколориметрии), но и бесцветные растворы. Спектрофотометры имеют сложную конструкцию и обычно снабжены электронными устройствами (усилителями фототока, дисплеями).

Вопрос 141

На чем основан метод фотоколориметрии?

Ответ. Метод фотоколориметрии основан на сравнении интенсивности приближенного к монохроматическому оптического излучения до и после прохождения его через окрашенный раствор.

Вопрос 142

Перечислите основные узлы фотоколориметра.

Ответ. Фотоколориметр состоит из источника излучения, светофильтра, кювет с исследуемым раствором и раствором сравнения, фотоэлемента и регистрирующего устройства.

Вопрос 143

Назовите волновой диапазон измерений в фотоколориметрии.

Ответ. В фотоколориметрии измерения проводятся в видимой области спектра при длине волны от 400 до 760 нм.

Вопрос 144

Назовите область светопоглощения окрашенных растворов.

Ответ. Окрашенные растворы поглощают свет в видимой области спектра.

Вопрос 145

Назовите источники излучения в фотоколориметре.

Ответ. Источником излучения в фотоколориметре является лампа накаливания или галогенная лампа.

Опишите способ получения окрашенной формы в фотометрии.

Ответ. Для получения окрашенной формы в фотометрии к бесцветной пробе добавляется фотометрический реагент. Продукт их взаимодействия, имеющий характерную окраску, является аналитической формой для последующего фотометрирования.

Вопрос 147

Перечислите требования, предъявляемые к цветным реакциям в фотоколориметрии.

Ответ. Цветные реакции в фотоколориметрии должны протекать быстро, избирательно и необратимо. Окраска аналитической формы должна быть стабильной во времени и устойчивой к световому воздействию.

Вопрос 148

Опишите принцип получения монохроматического излучения в фотоколориметрии.

Ответ. В фотоколориметрии монохроматическое излучение получается с помощью цветных светофильтров, избирательно пропускающих видимый свет в узком волновом диапазоне.

Вопрос 149

Почему в фотоколориметрии поглощаемое излучение не является строго монохроматическим?

Ответ. В фотоколориметрии поглощаемое излучение не является строго монохроматическим, так как используемые для монохроматизации светофильтры позволяют выделить участки спектра шириной от 10 до 100 нм.

Вопрос 150

Как визуально подбирается цвет светофильтра при фотоколориметрии окрашенных однокомпонентных растворов? Приведите пример.

Ответ. При визуальном выборе светофильтра в фотоколориметрии однокомпонентных растворов цвет светофильтра должен быть дополнительным к цвету исследуемого раствора. Например, если раствор окрашен в желтый цвет, то светофильтр выбирается синий, и наоборот.

Вопрос 151

Опишите методику выбора светофильтра в фотоколориметрии однокомпонентного раствора.

Ответ. Выбор светофильтра в фотоколориметрии однокомпонентного раствора основан на измерении оптической плотности раствора с различными светофильтрами. По полученным данным выбирается светофильтр, для которого оптическая плотность максимальна.

Вопрос 152

Как выбирается спектральная область фотометрирования, если полосы поглощения окрашенной формы анализируемого вещества (XR) и фотометрического реагента R перекрываются?

Ответ. Фотометрирование окрашенной формы анализируемого вещества, полоса поглощения которого совпадает с фотометрическим реагентом, проводится в диапазоне значений длин волн, при котором отношение A_{XR}/A_R максимально.

Вопрос 153

Перечислите методы определения концентраций в прямой фотоколориметрии.

Ответ. Для определения концентрации в прямой фотоколориметрии используются методы калибровочного графика, сравнения, стандартных добавок и дифференциальной фотометрии.

Вопрос 154

Когда в фотоколориметрических измерениях используется метод калибровочного графика?

Ответ. Метод калибровочного графика используется для серийных измерений концентрации раствора в отсутствии посторонних примесей.

Вопрос 155

Какой метод прямой фотоколориметрии используется в единичном анализе однокомпонентного раствора?

Ответ. В единичном анализе однокомпонентного раствора используется фотоколориметрический метод сравнения.

Вопрос 156

Назовите метод прямой фотоколориметрии, используемый для определения следов анализируемого компонента при избытке посторонних веществ.

Ответ. Для фотоколориметрического анализа следов определяемого компонента при избытке посторонних веществ используется метод добавок.

Какой метод фотоколориметрии используется для определения концентрации вещества в пробе неизвестного состава?

Ответ. Для определения концентрации вещества в пробе неизвестного состава используется метод добавок.

Вопрос 158

Укажите область применения дифференциальной фотометрии.

Ответ. Метод дифференциальной фотометрии используется для анализа растворов средних и высоких концентраций.

Вопрос 159

Назовите отличительные особенности дифференциальной фотометрии?

Ответ. В дифференциальной фотометрии функцию раствора сравнения выполняет не растворитель, а раствор анализируемого вещества с известной концентрацией. Это позволяет измерять оптическую плотность растворов средних и высоких концентраций, не превышая предельно допустимого значения оптической плотности (A=0,1-1,0) и обеспечивая таким образом требуемую точность измерений.

Вопрос 160

Опишите основные этапы фотометрического титрования (косвенной фотометрии).

Ответ. Фотометрическое титрование выполняется в три этапа:

- измерение оптической плотности исследуемой системы в процессе титрования;
- построение кривой фотометрического титрования и определение эквивалентного объема титранта;
- расчет концентрации анализируемого вещества по значению эквивалентного объема титранта.

Вопрос 161

В каких координатах строится кривая фотометрического титрования?

Ответ. Кривая фотометрического титрования строится в координатах: оптическая плотность исследуемого раствора от объема добавленного титранта.

Вопрос 162

Сопоставьте метрологические показатели прямой и косвенной фотометрии.

Ответ. Косвенная фотометрия превосходит по точности селективности методы прямой фотометрии.

И

Вопрос 163

Почему точность фотометрического титрования выше прямой фотометрии?

Ответ. Точность фотометрического титрования выше прямой фотометрии, так как погрешность измерения объема титранта меньше погрешности определения оптической плотности.

Вопрос 164

Какие виды излучения используются в спектрофотометрии? Укажите их волновые границы.

Ответ. В спектрофотометрии используется УФ (200-400 нм), видимое (400-760 нм) и ближняя область ИК излучения (760-1100 нм).

Вопрос 165

Назовите источники излучения в спектрофотометрии.

Ответ. Источниками излучения в спектрофотометрии являются вольфрамовая (для видимого и ИК излучения), водородная и дейтериевая (для УФ) лампы.

Вопрос 166

Почему спектрофотометрический анализ превосходит по точности, чувствительности и селективности методы фотоколориметрии?

Ответ. Спектрофотометрический анализ превосходит по точности, чувствительности и селективности методы фотоколориметрии благодаря высокой монохромности абсорбируемого излучения.

Вопрос 167

Какова степень монохромности электромагнитного излучения в спектрофотометрии?

Ответ. Степень монохромности электромагнитного излучения в прецизионных спектрофотометрах составляет ± 2 нм, в более грубых приборах ± 10 нм.

Вопрос 168

Какое устройство используется для монохроматизации света в спектрофотометрах?

Ответ. Для монохроматизации света в спектрофотометрах используются монохроматоры.

Вопрос 169

Перечислите основные узлы монохроматоров и объясните их назначение.

Ответ. Монохроматоры состоят из следующих частей:

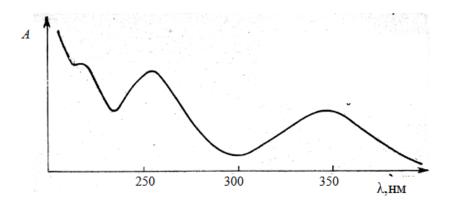
- источник света;
- диспергирующее устройство, разлагающее белый свет в спектр (треугольная призма или дифракционная решетка);
- приспособление, регулирующее ширину светового пучка (комбинация линз и щелей).

Вопрос 170

Назовите аналитический сигнал, используемый в спектрофотометрии. Каким должно быть излучение при его измерения?

Ответ. Аналитическим сигналом в спектрофотометрии является оптическая плотность (A) или пропускание (T), измеренные при условии строгой монохромности абсорбируемого излучения (λ = const).

Вопрос 171


Какие функциональные зависимости устанавливаются методами спектрофотометрии?

Ответ. Методами спектрофотометрии устанавливаются зависимости $A = f(\lambda)$, $A = f(\nu)$ или $T = f(\lambda)$, $T = f(\nu)$, на основе которых строятся спектральные кривые молекулярного светопоглощения или светопропускания.

Вопрос 172

Приведите графическое изображение молекулярного спектра поглощения в координатах A от λ .

Ответ. Пример графического изображения молекулярного спектра поглощения в координатах A от λ .

Вопрос 173

Как по молярным спектрам поглощения можно идентифицировать окрашенные органические соединения?

Ответ. Молекулы окрашенных органических соединений содержат специфические хромофорные группы, которым на спектре поглощения соответствуют характерные полосы. Идентификация исследуемого вещества основана на сопоставлении длины волны характерной полосы хромофорной группы с данными каталога эталонных спектров органических соединений.

Вопрос 174

Какие законы используются при спектрофотометрическом анализе смеси красителей?

Ответ. При разработке методики спектрофотометрического анализа смеси красителей используются законы аддитивности и светопоглощения (Ламберта – Бугера – Бера).

Вопрос 175

Почему метод фотоколориметрии не пригоден для количественного анализа смеси красителей?

Ответ. Метод фотоколориметрии не пригоден для количественного анализа смеси красителей, так как при низкой степени монохромности абсорбируемого света возрастает погрешность определения молярных коэффициентов поглощения, что значительно снижается точность результатов анализа.

Вопрос 176

Назовите основные этапы спектрофотометрического анализа двухкомпонентной смеси красителей.

Ответ. Спектрофотометрический анализ двухкомпонентной смеси красителей проводится в следующей последовательности:

- построение спектральных кривых поглощения стандартных растворов красителей (**A и B**) и их смеси на основе изучения зависимости оптической плотности от длины волны поглощаемого излучения;
- выбор оптимальных значений длин волн (λ_1 и λ_2) для расчета молярных коэффициентов поглощения индивидуальных красителей;
- определение оптических плотностей смеси красителей при выбранных длинах волн ($Acm(\lambda_1)$ и $Acm(\lambda_2)$)по спектру их поглощения ;
- расчет молярных коэффициентов поглощения для индивидуальных красителя при выбранных длинах волн $\epsilon A(\lambda_1)$, $\epsilon A(\lambda_2)$ и $\epsilon B(\lambda_1)$, $\epsilon B(\lambda_2)$ по формуле:

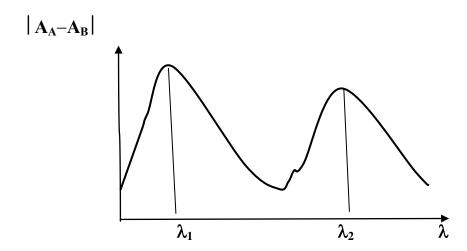
$$\varepsilon(\lambda) = \frac{A_{\lambda}}{l \cdot C_{MCY}},$$

где A_{λ} — оптическая плотность красителя при длине волны λ ;

l - толщина светопоглощающего слоя (см);

Сисх - исходная концентрация красителя (моль/л);

— расчет концентраций красителей в смеси (C_A и C_B) по формулам:


$$C_{A} = \frac{\text{Acm}(\lambda 1) \cdot \epsilon B(\lambda 2) - \text{Acm}(\lambda 2) \cdot \epsilon B(\lambda 1)}{\epsilon A(\lambda 1) \cdot \epsilon B(\lambda 2) - \epsilon A(\lambda 2) \cdot \epsilon B(\lambda 1)},$$

$$C_B = \frac{\text{Acm}(\lambda 2) \cdot \epsilon \text{A}(\lambda 1) - \text{Acm}(\lambda 1) \cdot \epsilon \text{A}(\lambda 2)}{\epsilon(\lambda 1) \cdot \epsilon \text{B}(\lambda 2) - \epsilon \text{A}(\lambda 2) \cdot \epsilon \text{B}(\lambda 1)}.$$

Вопрос 177

Как выбираются оптимальные значения длин волн для расчета молярных коэффициентов поглощения красителей в спектрофотометрическом анализе их смеси?

Ответ. Для расчета молярных коэффициентов поглощения красителей выбираются значения длины волны, соответствующие максимумам на графической зависимости абсолютных разностей оптических плотностей красителей ($|A_A - A_B|$) от длины волны абсорбируемого излучения (λ).

Вопрос 178

Укажите волновой диапазон, соответствующий ближней, средней и дальней областям ИК излучения.

Ответ. Ближней области ИК излучения соответствует диапазон длин волн от 780 до 2500 нм (2,5мкм), средней от 2,5 до 25мкм и дальней от 25 до 400 мкм.

Вопрос 179

Какой волновой диапазон обычно используется в ИК спектроскопии?

Ответ. В ИК спектроскопии обычно используется средняя область ИК излучения, которой соответствуют длины волн от 2,5 до 25мкм.

Вопрос 180

В каких единицах измеряется длина волны в ИК спектроскопии?

Ответ. В ИК спектроскопии длина волны излучения измеряется в микрометрах (микронах), мкм.

Вопрос 181

Назовите аналитический сигнал, используемый в ИК спектроскопии для идентификации веществ.

Ответ. В ИК спектроскопии аналитическим сигналом для идентификации вещества является волновое число (ύ).

Вопрос 182

Почему в ИК спектроскопии для характеристики волновой природы света используется не длина волны или частота, а волновое число?

Ответ. В ИК спектроскопии для характеристики волновой природы света используется волновое число, так как его численные значения значительно меньше длины волны и частоты, что облегчает анализ и идентификацию спектров.

Вопрос 183

Как изменяется внутренняя энергия молекул при поглощении ИК излучения?

Ответ. ИК излучение характеризуется сравнительно невысокой энергией (3-60 КДж/ моль), которая при поглощении веществом переходит во внутреннюю энергию вращения молекул и колебания атомов.

Вопрос 184

Почему ИК спектры называются колебательно-вращательными?

Ответ. Так как энергия колебания атомов значительно выше энергии вращения молекул (Екол>> Евр), то при поглощении ИК излучения изменение колебательной энергии атомов сопровождается изменением вращательной энергии молекул. Поэтому ИК спектры называются колебательно-вращательными.

Вопрос 185

Опишите ИК спектры поглощения.

Ответ. ИК спектры поглощения представляют серию колебательных узких полос, состоящих из множества линий вращательных переходов.

Вопрос 186

Какую информацию дают ИК спектры поглощения?

Ответ. ИК спектры поглощения дают информацию о природе и структуре химического соединения.

Вопрос 187

Почему методы ИК спектроскопии редко используются в количественном анализе?

Ответ. Методы ИК спектроскопии ограниченно используются в количественном анализе, так как в длинноволновой области спектра усиливается рассеивание света, что нарушает основной закон светопоглощения и снижает точность и чувствительность аналитических измерений.

Вопрос 188

Назовите классы химических соединений, состав которых определяется методом ИК спектроскопии.

Ответ. Методом ИК спектроскопии можно определить состав органических (в том числе высокомолекулярных) и неорганических соединений.

Вопрос 189

Назовите формы колебаний атомов, определяющих структуру ИК спектров поглощения.

Ответ. Структура ИК спектров поглощения определяется двумя видами колебаний атомов:

- валентные колебания, происходящие в направлении валентных связей с изменением длины связей;
- деформационные колебания, сопровождающиеся изменением валентных

углов без изменения длины связей.

Вопрос 190

Назовите формы колебаний, по характеристическим частотам которых можно идентифицировать класс органического соединения.

Ответ. Для идентификации класса органического соединения проводится анализ ИК спектров на характеристические частоты валентных колебаний (например C-H, C=C) и колебаний функциональных групп (например N-H, O-H, NO_2).

Вопрос 191

Назовите источники излучения в ИК спектроскопии.

Ответ. Для получения излучения в средней области ИК спектра используются раскаленные твердые тела:

- штифт Нернста (стержень из сплава оксидов циркония, иттрия, эрбия, нагретый до $t=1500\text{-}2000~\text{C}^0$);
- «глобар» (штифт из карбида кремния нагретый до $t=1300-1700 \text{ C}^0$).

Вопрос 192

Назовите виды монохроматоров, используемых в ИК спектроскопии.

Ответ. В ИК спектроскопии в качестве монохроматоров используются треугольные линзы и дифракционные решетки.

Вопрос 193

Из каких материалов изготавливаются призмы и кюветы в приборах для ИК спектроскопии?

Ответ. В приборах для ИК спектроскопии призмы и кюветы изготавливаются из галогенидов щелочных металлов (NaCI, LiF, KBr).

Вопрос 194

Перечислите основные преимущества дифракционных решеток по сравнению с призмами.

Ответ. Дифракционные решетки превосходят треугольные линзы по механической стойкости, разрежающей способности и широте спектрального диапазон.

Вопрос 195

Перечислите основные виды детекторов, используемых в ИК спектроскопии.

Ответ. В ИК спектроскопии применяются следующие виды детекторов: фотоэлементы, термопары и болометры.

Вопрос 196

На чем основан принцип действия термопары как детектора ИК излучения?

Ответ. Принцип действия термопары как детектора ИК излучения основан на последовательном преобразовании электромагнитного излучения в тепловую, а затем в электрическую энергию.

Вопрос 197

Объясните принцип действия болометров.

Ответ. Принцип действия болометра основан на изменении электрического сопротивления термочувствительного элемента (платины, никеля или их сплава)при нагревании его потоком ИК излучения.

Вопрос 198

Назовите основные направления использования ИК спектроскопии в физико-химическом анализе.

Ответ. Методы ИК спектроскопии используются для получения информации о типах и ориентациях функциональных групп в молекулах органических и неорганических веществ, поверхностной и внутренней структуре сорбентов, качественном и количественном анализе полимеров.

Вопрос 199

Перечислите основные достоинства ИК спектроскопии.

Ответ. ИК спектроскопия обладает следующими достоинствами— это единственный метод спектрального анализа, который позволяет проводить качественный и структурный анализ органических и неорганических соединений без нарушения их первоначальной структуры, независимо от агрегатного состояния (твердое, жидкое, газообразное).

Тесты

Тест № 26

По какой формуле рассчитывается оптическая плотность раствора?

a) A =
$$-IgI/I_0$$
;

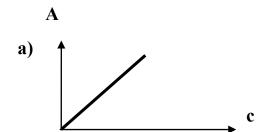
б)
$$A = IgI/I_0$$
;

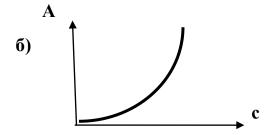
B) A =
$$I/I_0$$
;

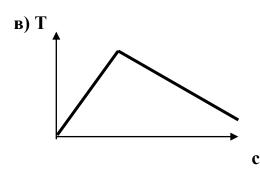
$$\Gamma$$
) A = $-IgI_0/I$.

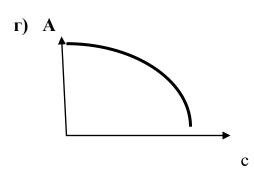
Чему равна оптическая плотность раствора со светопропусканием 50%?

- a) 1,3;
- б) 0,75;
- в) 0,30;
- г) 2,5.


Тест № 28


От чего не зависит молярный коэффициент поглощения?


- а) от температуры;
- б) от природы поглощающего вещества;
- в) от длины волны падающего света;
- г) от концентрации.


Тест № 29

Какой графическая зависимость отражает закон Ламберта- Бугера- Бера?

Тест № 30

Каким должен быть раствор, анализируемый методами фотометрии?

- а) концентрированным;
- б) истинным;
- в) коллоидным;
- г) бесцветным.

Тест № 31

Какое уравнение соответствует закону Ламберта- Бугера- Бера?

- a) $A = \varepsilon \cdot L \cdot C$;
- б) $A_{\text{общ.}} = A_{1+} A_{2+} A_{3.....+} A_n;$
- $B) I = a \cdot C^b :$
- Γ) A= k·L·C.

Тест № 32

Какое уравнение подтверждает основной закон светопоглощения?

- a) $A = \kappa \cdot c + b$;
- б) $A = \kappa \cdot c b$;
- B) $\frac{A}{l_1} = \frac{A_2}{l_2}$; Γ) $\frac{\varepsilon_{\lambda 1}}{l_1} = \frac{\varepsilon_{\lambda 2}}{l_2}$.

Тест № 33

Какая величина и при каком условии является аналитическим сигналом в фотоколориметрии?

- а) оптическая плотность при любом значении длины волны;
- б) светопропускание при любом значении длины волны;
- в) оптическая плотность в узком диапазоне длин волн, отвечающем полосе пропускания светофильтра;
- г) оптическая плотность в узком диапазоне длин волн, отвечающем полосе поглощения светофильтра.

Тест № 34

Какой параметр определяет чувствительность методов фотоколориметрии?

- а) толщина поглощающего слоя раствора;
- б) молярный коэффициент поглощения;
- в) рН раствора;
- г) избыток добавляемого фотометрического реагента.

Тест № 35

На чем основаны фотометрические методы анализа?

- а) на отражении света;
- б) на свечении, вызванном переходом электронов из возбужденного состояния в основное;
- в) на преломлении света;
- г) на избирательном поглощении света раствором.

Какое условие соответствует методу спектрофотометрии?

- а) анализ основан на поглощении полихроматического света;
- б) в ходе анализа не используются монохроматоры;
- в) анализ основан на поглощении строго монохроматического света;
- г) измерение оптической плотности основано на визуальном сопоставлении интенсивности световых потоков направленного и прошедшего через исследуемый раствор.

Тест № 37

Какое уравнение отражает правило аддитивности оптической плотности?

a) A =
$$\varepsilon_1 \cdot L_1 \cdot C_1 + \varepsilon_2 \cdot L_2 \cdot C_2 + \dots + \varepsilon_n \cdot L_n \cdot C_N$$
;

$$δ$$
) $A = ε_1 \cdot L_1 \cdot C_1 - Σ (ε_2 \cdot L_2 \cdot C_2 + ε_n \cdot L_n \cdot C_N);$

$$B)\;A=\frac{\epsilon_1{\cdot}L_1{\cdot}C_1+\epsilon_2{\cdot}L_2{\cdot}C_2+....\;\epsilon_n{\cdot}L_n{\cdot}C_n}{\epsilon_1{\cdot}L_1{\cdot}C_1};$$

$$\Gamma)\;A=\frac{\epsilon_1\cdot L_1\cdot C_1+\epsilon_2\cdot L_2\cdot C_2+....\epsilon_n\cdot L_n\cdot C_n}{\Sigma\left(\epsilon_2\cdot L_2\cdot C_2+....\epsilon_n\cdot L_n\cdot C_n\right)}.$$

Тест № 38

Какую функцию выполняют светофильтры в фотоколориметрии?

- а) разлагают полихроматический свет на монохроматические составляющие;
- б) пропускают лучи полихроматического света;
- в) пропускают излучение в волновом диапазоне, соответствующем максимальному поглощению исследуемого раствора (A = max);
- г) пропускают лучи строго монохроматического света.

Тест № 39

Какой параметр определяет чувствительность фотометрических измерений?

- а) оптическая плотностью раствора;
- б) молярный коэффициент поглощения;
- в) стехиометрическое количество фотометрического реагента;
- г) избыточное количество фотометрического реагента.

Тест № 40

В какой области светопоглощения (светопропускания) относительная ошибка фотометрических измерений меньше 2 %?

- а) в области светопропускания от 25 до 70 %;
- б) в области светопоглощения от 0,1 до 2;
- в) в области светопропускания от 0 до 100 %;
- г) в области светопоглощения от 0,1 до 1.

Тест №41

Какое условие выполняется при фотометрировании анализируемой формы X, полоса поглощения которой совпадает с фотометрическим реагентом R?

- a) $\varepsilon_X > \varepsilon_R$;
- δ) ε_X \lt ε_R;
- B) $\varepsilon_{\rm X} = \varepsilon_{\rm R}$;
- г) отношение ε_{X} / ε_{R} или A_{X} / A_{R} наибольшее.

Тест № 42

Какой метод определения концентрации используется при проведении серийных анализов для контроля за технологическим процессом?

- а) метод сравнения;
- б) метод добавок;
- в) метод калибровочного графика;
- г) фотометрическое титрование.

Тест №43

Какое уравнение используется для расчета концентрации в методе сравнения?

a)
$$c_x = c_{cT} \cdot (I_x + I_{cT});$$

6)
$$c_x = c_{ct} \cdot (I_x - I_{ct});$$

$$_{B}) c_{x} = c_{cT} \cdot A_{x}/A_{cT};$$

$$\Gamma$$
) $c_x = c_{cT} \cdot A_{cT} / A_x$.

Тест № 44

Какое уравнение используется для расчета концентрации в методе стандартных добавок?

$$a)\frac{A_x}{A_{x+д}} = \frac{C_x}{C_x - C_{\mathcal{I}}};$$

б)
$$\frac{A_{x+д}}{A_x} = \frac{C_x}{C_x + C_\pi}$$
;

в)
$$\frac{A_{x}}{A_{x+\mu}} = \frac{C_{x}}{C_{x}+C_{\mu}};$$
 г) $\frac{A_{x+\mu}}{A_{x}} = \frac{C_{x}}{C_{x}-C_{\mu}}.$

Укажите метод фотометрического анализа, позволяющий определить содержание одного из компонентов смеси неизвестного состава?

- а) дифференциальный метод;
- б) метод добавок;
- в) метод калибровочного графика;
- г) фотометрическое титрование.

Тест № 46

Когда нельзя использовать метод стандартных добавок?

- а) в присутствии посторонних примесей;
- б) если зависимость оптической плотности от концентрации раствора линейная;
- в) если зависимость оптической плотности от концентрации раствора нелинейная;
- г) если концентрация исследуемого раствора низкая.

Тест № 47

Какой раствор выполняет функцию сравнения в методе дифференциальной фотометрии?

- а) стандартный раствор определяемого компонента с наименьшей концентрацией;
- б) раствор определяемого компонента с любой концентрацией;
- в) растворитель;
- г) вода.

Тест № 48

Какой метод фотоколориметрии целесообразно использовать при анализе растворов высокой концентрации?

- а) дифференциальная фотометрия;
- б) фотометрическое титрование;
- в) метод калибровочного графика;
- г) метод стандартных добавок.

Тест № 49

Какие растворы исследуют методом дифференциальной фотометрии?

- а) разбавленные растворы со значениями оптической плотности от 0.05 до 0.2;
- б) растворы со значениями оптической плотности от 0,05 до 0,9;
- в) концентрированные растворы, у которых значение оптической плотности больше единицы.

Тест № 50

- В чем преимущество спектрофотометрии по сравнению с фотоколориметрией?
- а) в спектрофотометрии не требуется строгого постоянства рН;
- б) в спектрофотометрии не используется монохроматическое излучение;
- в) в спектрофотометрии не обязателен количественный перевод определяемого компонента в окрашенное соединение;
- г) спектрофотометрия обеспечивает более высокую чувствительность и точность анализа.

Тест № 51

В какой среде проводятся фотометрические реакции ионов металлов с анионами сильных кислот?

- а) в нейтральной среде;
- б) при любом значении рН;
- в) в кислых средах;
- г) в щелочной среде.

Тест № 52

Какой источник излучения нельзя использовать в ИК спектроскопии?

- а) штифт Нернста;
- б) кварцевая лампа;
- в) глобар;
- г) ртутная разрядная лампа.

Тест № 53

Из каких материалов изготавливаются призмы и кюветы в ИК спектроскопии?

- а) галогениды шелочных и щелочноземельных металлов;
- б) кварцевое стекло;
- в) обычное стекло;
- г) галогенид серебра.

Выберите описание, соответствующее ИК спектру поглощения.

- а) набор отдельных линий;
- б) сплошные широкие полосы;
- в) узкие полосы, включающие большое количество линий;
- г) сплошной спектр, образованный за счет перекрывания широких полос.

Тест № 55

Укажите вид внутренней энергии, в которую переходит энергия ИК-излучения в молекулярно-абсорбционной спектроскопии.

- а) энергия перехода оптических электронов на более высокий энергетический подуровень;
- б) энергия перехода внутренних электронов на более высокий энергетический подуровень
- в) энергия ускорения колебательного движения атомов и вращательного движения молекул;
- г) энергия электронных переходов на более низкий энергетический подуровень.

Ответы на тесты

Общая характеристика спектральных методов анализа.

1- г; 2- а; 3- д.

Природа, свойства и основные характеристики электромагнитного излучения.

4 - б, д; 5- а, в; 6 - б; 7- а; 8 - в; 9- а.

Атомные и молекулярные спектры.

10 - б, г; 11-в; 12 - а, б; 13 -б; 14 - в; 15- а.

Оптические методы атомно-эмиссионной и атомно-абсорбционной спектроскопии.

16- в; 17 -а; 18 -в; 19 -а; 20 -б,г; 21 - в; 22- в; 23- а, б; 24 -б, г; 25- б.

Оптические методы молекулярно-абсорбционной спектроскопии.

(фотоколориметрия, спектрофотометрия, инфракрасная спектроскопия)

26 -a; 27-B; 28 - Γ; 29 -a; 30 -6; 31-a; 32-B; 33 -B; 34 -6; 35-Γ; 36-B; 37- a; 38 -B; 39 -6; 40 - Γ; 41 -Γ; 42 -B; 43 -B; 44 -B; 45-6; 46 -B; 47- a; 48- a; 49-B; 50-B, Γ; 51-B; 52-6; 53 -a, Γ; 54 -B; 55-B.

Библиографический список

- 1. Васильев В.Т. Аналитическая химия. В 2 кн. Кн. 2. Физико-химические методы анализа: учебник для студентов вузов, обучающихся по химико-технологическим специальностям 5-е изд., стереотип. М.: Дрофа, 2005. -383 с.
- 2. Тикунова И.В., Дробницкая Н.В., Артеменко А.И. Справочное руководство по аналитической химии и физико-химическим методам анализа: учебное пособие. М.: Высшая школа, 2009.- 413 с.
- 3. Аналитическая химия /под ред. Ю.С. Золотова— М.: Высшая школа, 2000.- 463 с.
- 4. Скуг Г., Уэст Г. Основы аналитической химии. В 2 т. М.: Мир,1979. 418 с.
- 5. Оптические методы анализа: учебно-методическое пособие/ Г.Ф. Пругло, А.А., Комиссаренков, В.А. Фёдоров. СПб, СПбГТУРП. 2010. -52 с.

Оглавление

Общая характеристика спектральных методов анализа	
Вопросы и ответы	3
Тесты	5
Природа, свойства и основные характеристики электромагнитного излучения	F
Вопросы и ответы	6
Тесты	8
Атомные и молекулярные спектры	
Вопросы и ответы1	0
Тесты1	
Оптические методы атомно-эмиссионной и атомно-абсорбционно	й
спектроскопии.	
Вопросы и ответы	3
Тесты	4
Оптические методы молекулярно-абсорбционной спектроскопии.	
(фотоколориметрия, спектрофотометрия, инфракрасная спектроскопия)	

Вопросы и ответы	.26
Тесты	
Ответы на тесты.	51
Библиографический список	52

Учебное издание

Ирина Николаевна Дмитревич

ОПТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА (ВОПРОСЫ, ТЕСТЫ И ОТВЕТЫ)

Учебное пособие

Редактор и корректор В.А.Басова

Техн. редактор Л.Я.Титова

Темплан 2020, поз 3

Подп. к печати

Формат 60/80/16

Бумага тип. №1

Печать офсетная. Печ.л.3,25. Уч.- изд. 3,25 л;

Ризограф Высшей школы технологии и энергетики Санкт-Петербургского государственного университета промышленных технологий и дизайна. 198095, СПб., ул. Ивана Черных, 4.