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ПРЕДИСЛОВИЕ 
 
Данное учебное пособие разработано для студентов магистратуры 

Института энергетики и автоматизации, обучающихся по направлению 
подготовки «Автоматизация технологических процессов и производств», для 
изучения академического аспекта английского языка.  

Основной задачей курса «Иностранный язык. Английский язык. 
Automation Engineering» является обучение практическому владению научной 
речью в сфере профессиональной коммуникации.  

Основой построения программы обучения является направление, или 
аспект, «Язык для специальных целей» (Language for Specific Purposes – LSP). 
Данный аспект предполагает развитие навыков, необходимых для освоения 
соответствующего регистра речи.  

Целью данного курса является подготовка высококлассного специалиста 
международного уровня, одной из составляющих в будущей профессиональной 
деятельности которого станет языковая грамотность и культура речи. Задачи, 
стоящие перед студентом: закрепление навыков правильного английского 
произношения (Oxford English); знание особенностей построения научно-
технических текстов из оригинальных источников и овладение техникой работы 
с ними; самостоятельный поиск и извлечение информации на иностранном языке 
и ее дальнейшее применение в профессиональной сфере; умение поддержать и 
вести беседу с зарубежными специалистами на темы широкого спектра с учетом 
различных деловых культур. 

В аспекте «Язык для специальных целей» осуществляется: развитие 
навыков чтения специальной литературы с целью получения информации; 
знакомство с основами перевода литературы по специальности. Обучение языку 
специальности ведется на материале произведений речи на профессиональные 
темы. 

Освоение учащимися фонетики (для правильного чтения учащимися 
технических терминов и аббревиатур), грамматики, синтаксиса, 
словообразования, сочетаемости слов, а также активное усвоение наиболее 
употребительной лексики и фразеологии английского языка происходит не в 
виде заучивания свода правил, а в процессе работы над связными, законченными 
в смысловом отношении текстами. 

Обучение предусматривает: а) формирование фонематического слуха 
посредством аудирования; б) формирование практических навыков и умений 
чтения и перевода; в) развитие устной речи; г) отработку грамматического 
материала с последующим использованием в разговорной речи;  
д) формирование навыков самостоятельной работы. 

В программу самостоятельной работы студентов входят освоение 
теоретического и практического материала, разобранного вместе с 
преподавателем на занятиях, подготовка к практическим занятиям в форме 
словарной работы со статьей, запоминание произношения и написания новых 
слов и выражений, построение и разучивание диалогов по учебной программе, 
формирование умений свободно выражать мысли на изучаемом языке, 
составлять эссе и делать презентацию по заданной теме. 
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ЧАСТЬ I. ФОНЕТИКА 
 
 

Английский алфавит 
 
 

1. A a  [ eɪ ]  14 N n  [ en ] 

2. B b  [ bi: ]  15 O o  [ əʊ ] 

3. C c  [ si: ]  16 P p  [ pi: ] 

4. D d  [ di: ]  17 Q q  [ kju: ] 

5. E e  [ i: ]  18 R r  [ ɑ: ] 

6. F f  [ ef ]  19 S s  [ es ] 

7. G g  [ dʒi: ]  20 T t  [ ti: ] 

8. H h  [ eɪtʃ ]  21 U u  [ ju: ] 

9. I i  [ aɪ ]  22 V v  [ vi: ] 

10. J j  [ dʒeɪ ]  23 W w  [ 'dʌbl'ju: ] 

11. K k  [ keɪ ]  24 X x  [ eks ] 

12. L l  [ el ]  25 Y y  [ waɪ ] 

13. M m  [ em ]  26 Z z  [ zed ] 
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Чтение окончания -s (-es) 
 
 
-s читается [z] после гласных и звонких согласных: 
  lives, mills, stands, forms, stays, tries, trees, goes, studies, cars; 
  
 [s] после глухих согласных: 
  likes, parents, flats, stops, asks, maps; 
 
 [ɪz] после шипящих и свистящих звуков [s, z, ʃ, ʧ, ʒ, ʤ]: 
  sizes, boxes, watches, bridges, colleges, washes, wishes, gases,  
  a'ddresses, pages, uses, branches, classes. 
 
Примечание: помните, что окончание -s бывает у существительных и глаголов. 
 
Не следует путать:  

– у существительных окончание -s – признак множественного числа: papers 
(бумаги, документы), books, students, forms (формы), lights (огни); 

– у существительных окончание -'s – признак притяжательного падежа 
(отвечает на вопрос чей?). Сравните: 

my friend   мой друг 
my friends   мои друзья 
my friend's work  работа моего друга 
my friends' work  работа моих друзей 
 

– у глаголов окончание -s – признак третьего лица единственного числа во 
времени Present Simple: he (she) reads – он (она) читает, he (she) knows – он 
(она) знает, he (she) goes – он (она) идет, he (she, it) lights – он (она, оно) 
освещает, it snows – идет снег, he (she, it) influences – он (она, оно) влияет. 

 
Задание 1. Прочтите следующие слова: 

advises, matches, prizes, sheets, thinks, works, photos, stories, shows, throws, pulps, 
cooks, rises, 'services, causes, forces, cities, maps, pages, judges, passes, sciences, tries, 
answers, presses, places, praises, stops, asks, wishes, takes, papers, fibers, chemicals, 
inches, roots, de'velops, 'surfaces, pro'duces, makes, wastes, 'furnaces, 'purposes, 
woods, 'processes, 'influences, bags, 'methods, 'differences, 'differs, 'offers, su'ggests, 
pro'poses, studies, reaches, runs, scientists. 
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Чтение окончания -ed 
 
 
-ed читается [d] после звонких согласных и гласных:  
   formed, dried, tried, closed, played, studied, changed, functioned, 
   contained, used, planned, employed; 
  

[t] после глухих согласных:  
   worked, watched, stopped, helped, liked, stressed, forced, 
   walked, cooked, pulped; 
 
 [ɪd] после согласных t и d: 
   waited, invited, wanted, decided, visited, de'manded, com'pleted, 
   su'pported, acted, di'rected, consisted, 'limited, tested, resulted. 
 

Задание 2. Прочтите следующие слова: 
washed, di'vided, de'veloped, burned, im'proved, ab'sorbed, pro'duced, helped, learned, 
'regulated, mixed, 'generated, 'operated, pro'vided, liked, in'tended, turned, ex'tracted, 
com'bined, suited, bleached, 'separated, 'processed, trained, con'verted, solved, missed, 
di'ssolved, re'mained, in'cluded, heated, produced, po'lluted, 'influenced, 
manu'factured, con'taminated, changed, looked, littered, a'ttracted, dropped, e'quipped, 
printed, planted, warmed, lasted. 
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ЧАСТЬ II. ГРАММАТИКА 
 
 

Перевод двучленных и многочленных атрибутивных словосочетаний, 
выраженных существительными («цепочки» существительных) 

 
 

Инструкция 1. Двучленные или многочленные атрибутивные 
словосочетания, или «цепочки» существительных, – это словосочетания, 
состоящие из существительного и определений, расположенных слева от него.  

В качестве левого определения могут быть существительные (от двух до 
пяти или шести). Существительным могут предшествовать: прилагательное, 
причастие, местоимение или числительное, а также сочетания из этих слов, 
соединенные дефисом. 

Необходимо обратить внимание на то, что внутри такого сочетания слова 
не отделены друг от друга ни артиклями, ни предлогами, ни запятыми: 

strong acid pump; 
white water treatment equipment; 
high consistency oxygen bleaching system. 
Для перевода «цепочки» существительных важно найти в ней основное 

слово. Помните, что основным словом любой «цепочки» существительных 
является последнее существительное, с которого и следует начинать анализ 
такой «цепочки». Все существительные и другие части речи, стоящие слева от 
основного слова, являются определениями к нему (отвечают на вопрос «какой?», 
«какие?»). Справа от основного слова, указывая на то, что «цепочка» 
закончилась, может стоять новый артикль, предлог, местоимение, 
прилагательное, причастие или глагол-сказуемое с предшествующим наречием 
или без него. 

 
I. Перевод двучленных словосочетаний («цепочки» состоят из двух 

существительных) 
 
Инструкция 2. Перевод двучленных словосочетаний начинаем с 

последнего существительного, а существительное, стоящее слева, переводится 
существительным в родительном падеже. 
 
Образец: 1) pulp quality   - качество целлюлозы 

2) water level             - уровень воды 
3) wood consumption  - расход древесины 
4) cooking time   - продолжительность варки 

 
stock (волокнистая масса) preparation; stock temperature; stock production; sheet 
properties; sheet formation (формование). 
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Инструкция 3. В «цепочке», состоящей из двух существительных, первое 
переводится прилагательным. 
Образец: 1) wood fiber            - древесное волокно 

2) gas bleaching       - газовая отбелка 
3) cooking acid        - варочная кислота 
4) paper stock          - бумажная масса 

 
wood chips; acid digester; wood species (порода); sulphite digestion; oxygen 
bleaching; stock pump; laboratory tests; spruce chips; bleaching plant (отдел); hand 
operation; pine chips; water vapor; cooking process; bag paper. 
 

Инструкция 4. Перевод «цепочки» существительных начинаем с 
последнего существительного, а первое переводим существительным с 
предлогом (в, из, на, для и др.). 
Образец: 1) hardwood pulp – целлюлоза из лиственной древесины 

2) drying costs – затраты на сушку (затраты, связанные  
с сушкой) 

3) pollution control – борьба с загрязнением 
 
digester pressure; softwood pulp; acid (кислая среда) hydrolysis; linen (льняное 
тряпье) paper; board products; evaporator (испаритель) gases; hardwood sulphite 
pulp. 

 
II. Перевод многочленных словосочетаний («цепочки» 

существительных состоят из трех и более существительных и других 
частей речи) 
 

Инструкция 5. При переводе многочленных словосочетаний рекомендуем: 
1) перевести последнее существительное «цепочки»; 
2) разбить остальную часть словосочетания на смысловые группы и перевести 

их (внутри смысловой группы анализ проводится слева направо); 
3) перевести все словосочетание (всю «цепочку»), следуя справа налево. 

 
Образец: 1) stock mixing| system – система для смешивания массы; 

2) wood fiber| products – изделия из древесного волокна; 
3) water quality| results – результаты по качеству воды; 
4) stock preparation| machine operation – работа машины по 
приготовлению массы. 

В данных словосочетаниях – по две смысловые группы. Основное слово 
выделено курсивом. 
 

Переведите, следуя инструкции 5. 
a) 
chip packing (уплотнение) device; 
strong acid pump; 
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stock preparation machine; 
paper machine operation; 
fiber suspension flow; 
b) 
paper formation (формование) time; 
chlorine dioxide generation (образование); 
pulp preparation operation (процесс); 
steam flow rate; 
headbox (напорный ящик) control (регулирование) system; 
с) 
chain (цепь) length distribution (распределение); 
fiber length distribution; 
chemicals recovery system; 
heat transfer (передача) coefficient; 
water conservation costs (затраты); 
d) 
fiber wall thickness; 
cooking liquor circulation; 
gas diffusion constant; 
quality control method; 
paperboard test (анализ) result; 
e) 
plant design changes; 
cooking liquor pressure; 
stock preparation equipment; 
air pollution (загрязнение) problem; 
air pollution abatement (уменьшение); 
water purity level (степень). 
 
Образец: sodium base| sulfite pulping 
   Sulfite pulping – сульфитная варка; 
   Sodium base – натриевое основание; 
   = сульфитная варка на натриевом основании. 
 

Переведите, используя образец: 
various cooking liquor composition; 
high yield sulfite pulp; 
constant vapor phase region; 
ammonia base sulfite pulping; 
caustic soda recovery (регенерация) system; 
white water (оборотная вода) treating equipment; 
paper mill steam supply (обеспечение); 
particle size distribution determination; 
calcium base cooking liquor. 
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Инструкция 6. Если «цепочка» существительных начинается с 
прилагательного, необходимо обратить внимание на то, к какому слову оно 
относится. 
 
Образец:        1) high yield pulp – целлюлоза с высоким выходом;  
        2) new sheet structure – новая структура листа; 
        3) maximum cooking temperature – максимальная  
                          температура варки. 

 
Инструкция 7. В состав «цепочки» существительных в качестве 

определения могут входить числительные, местоимения, причастия, 
существительные в притяжательном падеже и т. д. Обратите внимание, к какому 
слову эти определения относятся. Помните, что основное слово словосочетания 
– последнее существительное. 
 
Образец:            1) this high pressure steam – этот пар высокого давления; 
                           2) rate determining factor – фактор, определяющий скорость. 
 

Инструкция 8. Иногда одно из слов «цепочки» существительных 
необходимо перевести поясняющими словами (группой слов). 
 
Образец:           1) paperboard machine – машина для выработки картона; 
        2) chipping operation – предприятие, осуществляющее 

заготовку щепы; 
        3) bark products – продукты переработки коры. 
 
 

Страдательный залог глаголов 
(The Passive Voice) 

 
 

Инструкция 1. Страдательный залог глагола употребляется в том случае, 
если само подлежащее не действует, действие совершается над ним. 

Глагол-сказуемое в страдательном залоге можно найти в предложении по 
вспомогательному глаголу "to be" в соответствующем времени, лице и числе и 
Past Participle (причастию прошедшего времени смыслового глагола). 

Примечание 1 
Past Participle (Participle II) образуется путем прибавления окончания -ed к 

правильным глаголам. Если глагол неправильный, употребляется его 3-я форма 
(built, taken, written…). Рекомендуем повторить 3 формы неправильных глаголов. 

Примечание 2 
Обратите внимание на то, что Past Participle правильных глаголов 

совпадает по форме со временем Past Simple (produced, achieved). Определить их 
можно только в контексте. (Подробнее о Past Participle см. в разделе, 
посвященном причастиям). 
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Таблица 1 – Страдательный (пассивный) залог. Образуется: глагол to be (в соответствующем времени) + Participle II 

Правила и способы перевода Пример Перевод 
1. Страдательный залог показывает, что 
действие глагола-сказуемого направлено на 
лицо или предмет, выраженный подлежащим. 
В ряде случаев подлежащее переводится 
прямым или косвенным дополнением и 
ставится, соответственно, в форме 
винительного или дательного падежа. 

He was given a task. Ему дали задание. 

We were informed that a new 
idea had been advanced recently. 

Нас информировали, что новая идея 
была выдвинута недавно. 

2. Если после глагола в пассиве есть 
дополнение с предлогом by или with, то оно 
указывает, кем или чем производится 
действие. Предлоги переводятся «путем», 
«при помощи», «посредством» либо 
соответствуют творительному падежу и не 
переводятся.  

The calculation is done by 
computer programs. 

Подсчеты делаются 
компьютерными программами 
(при помощи компьютерных 
программ).  

The production line is supplied 
with raw material. 

Производственная линия снабжается 
сырьем. 
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Продолжение табл. 1 
Правила и способы перевода Пример Перевод 

3. Сочетанием глагола «быть» с кратким 
страдательным причастием с суффиксами  
-н- или -т-. Глагол «быть» в настоящем 
времени опускается. 

The mill is built by the workers. 
are built 
was built 
were built 
has been built 
have been built 
shall/will be built 
will be built 

Фабрика построена рабочими. 
построены 
была построена 
были построены 
была построена 
были построены 
будет построена 
будут построены 

4. Глаголом на -ся в соответствующем 
времени, лице и числе. 

The goods are being sold with  
profit. 

were being sold  

Эти товары продаются с 
прибылью. 

продавались 
5. Глаголом действительного залога в 3-м 
лице множественного числа, в 
неопределенно-личном предложении. 

The company’s account is checked. 
was checked 
will be checked 

Отчет компании проверяют. 
проверили 
будут проверять 
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Окончание табл. 1 
Правила и способы перевода Пример Перевод 

6. Глаголы с относящимся к ним предлогом, которые 
переводятся также глаголами с предлогом: 

to depend on – зависеть от 
to insist on – настаивать на 
to look at – смотреть на 
to rely on – опираться на 
to speak of (about) – говорить о 
to refer to – ссылаться на, называть 
to deal with – иметь дело с и др.  

переводятся глаголами в неопределенно-личной форме, 
причем соответствующий русский предлог ставится перед 
английским подлежащим. 

The new plant is much spoken 
about. 
 
This article was often referred to. 
 
 
 
 
 

О новом заводе много 
говорят. 
 
На эту статью часто 
ссылались. 

7. Глаголы без предлогов, которые переводятся глаголами 
с предлогом: 

to affect – влиять на 
to answer – отвечать на 
to influence – влиять на 
to follow – следовать за и др.  

переводятся глаголами в активном залоге или 
неопределенно-личной форме, причем соответствующий 
русский предлог ставится перед английским подлежащим. 

The conditions of work are 
greatly affected by the 
government. 

На условия работы 
сильно влияет 
правительство. 
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Неличные формы глагола 
Инфинитив (Infinitive) 

 
 

Инфинитив – основная форма глагола, от которой образуются все личные 
формы глагола во всех группах времен в действительном и страдательном 
залогах. Инфинитив, или неопределенная форма глагола, сочетает в себе 
свойства глагола и существительного. 

Признаком инфинитива является частица "to". Она иногда опускается: 
– после модальных и вспомогательных глаголов; must (can) produce; do not 

produce; Did the mill produce? Will produce и т. д. 
– после глаголов физического восприятия: see, hear, feel, watch, notice в 

объектных инфинитивных оборотах и некоторых других случаях. 
  
Инструкция 1 
Повторите формы инфинитива: 

Время Active Voice Passive Voice 
Indefinite – выражает действие, 
одновременное с действием, 
выраженным глаголом-сказуемым 

to produce to be produced 

Perfect – выражает действие, 
предшествовавшее действию, 
выраженному глаголом-сказуемым 

to have 
produced 

to have been 
produced 

Continuous – длительный характер действия to be producing ___ 
Perfect Continuous – действие началось в 
прошлом и все еще продолжается 

to have been 
producing 

___ 
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Функции инфинитива 
 
 

Инструкция 2 
Помните, что инфинитив в роли подлежащего всегда стоит перед 

сказуемым (в начале предложения). 
Переводится:  
               1) существительным; 
      2) неопределенной формой глагола. 
Образец: To know English is necessary. – Необходимо знать английский. Знание 

английского необходимо. 
 

Инструкция 3 
Инфинитив в роли обстоятельства цели отвечает на вопрос «для чего?», 

«с какой целью?». Стоит либо в начале, перед подлежащим, либо в конце 
предложения. Может вводиться союзами so as (to) – с тем, чтобы, in order (to) – 
для того чтобы. 
Переводится: 

1) неопределенной формой глагола с союзом «чтобы», «для того, 
чтобы»; 

2) существительным с предлогом «для». 
Образец: To know English you should work hard. – Чтобы знать английский, вы 

должны много работать. 
Инструкция 4 
Инфинитив в роли обстоятельства следствия отвечает на вопрос «для 

чего?» и стоит после слов too – слишком, enough, sufficiently – достаточно, 
sufficient – достаточный, very – очень. Переводится неопределенной формой 
глагола с союзом «(для того) чтобы». Сказуемое при переводе часто имеет 
оттенок возможности. 
Образец:     1) I am too tired to go to the exhibition – Я слишком устал, чтобы идти 

на выставку (чтобы я мог пойти…) 
2) He is clever enough to understand it. – Он достаточно умен, чтобы 

(он мог) понять это.  
  

Примечание 
В английском языке слово "enough" всегда стоит после прилагательного, 

но перевод следует начинать именно с "enough", а потом переводить 
прилагательное: strong enough – достаточно прочный; accurate enough – 
достаточно точный и т. д. 
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Инструкция 5 
Обратите внимание на инфинитив в роли определения. Он всегда стоит 

после определяемого существительного и отвечает на вопрос «какой?». 
Инфинитив в роли определения чаще всего имеет форму страдательного залога 
и переводится определительным придаточным предложением, вводимым 
союзным словом «который». Сказуемое русского предложения выражает 
долженствование, будущее время или возможность. 
Образец: 1) The method to be used – метод, который нужно (можно, 

будут) использовать. 
2) A beater roll breaks up the material to be pulped. – Барабан ролла 

измельчает сырье, которое нужно превратить в массу 
(которое будет превращено в массу).  

 
Инструкция 6 
Инфинитив – часть сказуемого. Инфинитив может быть частью: а) 

простого сказуемого; б) составного именного или в) составного модального 
сказуемого (=составного глагольного сказуемого) лишь в том случае, если ему 
предшествуют глаголы to be, to have, модальный или вспомогательный глагол. 
Образец: 1) The purpose of the system is to maximize production. – Цель этой 

системы – максимально повысить производительность. Цель 
системы состоит в том, чтобы максимально… Целью 
системы является максимальное повышение… 

2) The system is (has) to maximize production = The system must 
(should) maximize production. – Эта система должна 
максимально повысить производительность. 
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Таблица 2 – Причастие 

Вид причастия 
Функция в предложении и перевод 

часть сказуемого определение обстоятельство 

1. Participle I 
 Active voice 
selling 
writing 

He is selling his goods. 
Он продает свои товары. 
 
(Для образования времен 
группы Continuous. 
Самостоятельно не 
переводится). 
 

The merchant selling his goods pays a 
profits tax. 
Торговец, продающий свои товары, 
платит налог с прибыли. 
 
The seller examined the letter 
containing an interesting offer. 
Продавец изучил письмо, 
содержавшее интересное 
предложение. 
 
(Причастие на -щий, -вший). 

(When, while) selling his goods, 
the merchant pays a profits tax. 
Продавая свои товары, 
торговец платит налог с 
прибыли.  
 
(Деепричастие на -а, -я). 

2. Participle I 
Passive voice 
being sold 
being written 

The goods are being sold. 
 
Товары продаются. 
 
(Для образования группы 
времен Continuous 
пассивного залога. 
Самостоятельно не 
переводится). 

The goods being sold were foreign 
made. 
 
Продаваемые товары были 
произведены за границей.  
 
(Причастие на -емый, -имый). 

(While) being moved the goods 
are insured against all risks. 
Когда их перевозят (во время 
перевозки) товары страхуются 
против всех рисков.  
(Придаточное 
обстоятельственное 
предложение; существительное 
с предлогом). 
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Окончание табл. 2 

Вид причастия 
Функция в предложении и перевод 

часть сказуемого определение обстоятельство 
3. Participle II 
Passive voice 
sold 
written 

1) He has sold his goods. 
Он продал свои товары. 
(Для образования времен 
Perfect. Самостоятельно не 
переводится). 
2) The goods are sold.  
Товары проданы.  
(Для образования пассивного 
залога. Самостоятельно не 
переводится). 

The goods sold gave substantial 
profit. 
Проданные товары принесли 
существенную прибыль. 
The problem discussed yesterday 
is very important.  
Проблема, обсуждавшаяся 
вчера, очень важна.  
(Причастие на -щийся, -мый,  
-ный, -тый, -вшийся). 

If sold, the goods will give substantial 
profit. 
Если их продать, товары принесут 
существенную прибыль.  
 
(Обстоятельственное придаточное 
предложение). 

4. Perfect 
Participle 
active voice  
having sold 
having written 

– – Having sold his goods he got 
substantial profits. 
Продав свои товары, он получил 
существенную прибыль.  
(Деепричастие на -ив, -ав). 

5. Perfect 
Participle 
Passive voice 
having been 
sold 
having been 
written 

– – Having been sold, the goods gave 
substantial profit.  
После того как товары были 
проданы, они принесли существен- 
ную прибыль. (Придаточное обсто- 
ятельственное предложение). 
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Таблица 3 – Герундий 

Функция в предложении Примеры Перевод 

1. Подлежащее Chartering of ships is very important 
for shipments of goods. 

Фрахтование кораблей (фрахтовать 
корабли) очень важно для перевозки 
товаров. 
(Инфинитив, существительное). 

2. Часть сказуемого The main task is keeping customer’s 
accounts. 

Главная задача – хранение счетов 
клиентов (хранить счета клиентов).  
(Существительное, инфинитив). 

3. Прямое дополнение The situation requires controlling the 
supply.  

Ситуация требует управлять 
(управления) поставками.  
(Инфинитив, существительное). 

4. Определение (обычно с предлогом 
of, for после существительного) 

The ability of influencing the commerce 
is studied attentively. 

Способность влиять (влияния) на 
торговлю изучается внимательно. 
(Существительное, инфинитив). 

5. Обстоятельство 
(обычно с предлогами: 
in – при, в то время как, 
on (upon) – по, после, 
after – после, 
before – перед, 
by – творит. падеж, 
instead of – вместо того чтобы, 
for – для и т. д. 

He is able to discuss the terms of an 
order without receiving our special 
authorization.  

Он может обсуждать условия заказа 
без получения (не получая) нашего 
специального разрешения на это. 
(Существительное с предлогом, 
деепричастие с отрицанием). 
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ЧАСТЬ III. ЧТЕНИЕ НАУЧНЫХ СТАТЕЙ 
 
 

Article 1 
 
 

Task 1. Read the text below. 
 

Near-perfect automation: investigating performance,       trust, and visual attention 
allocation 

(Cyrus K. Forugi, Shannon Devlin, Richard Pack, Noel L. Brown, Ciara Sibley, 
Joseph T. Coyne) 

 
Abstract 
Over the past decade, the number of deployed automated technologies has 

sharply increased. We are quickly moving to a new phase of human-automation 
interaction where humans may be monitoring near-perfect automated systems. In many 
cases, these systems will be 99.9 % reliable or higher (e. g., United States Department 
of Defense, 2017). However, humans are still likely to be tasked to intervene when it 
does fail, and those failures are projected to be costlier than before (Onnasch et al., 
2014). Although there is an immediate, real-world need to understand how humans 
inter- act with these near-perfect automated systems, there is a dearth of research. Here, 
our goal was to holistically assess performance, trust, and visual attention during the 
monitoring of a near-perfect automated system that fails 1 % of the time. 

1. Human performance and automation 
Introducing automation to offset a human’s limitations in attention and reduce 

manpower hours seems primarily advantageous. However, research has clearly shown 
that trade-offs exist when introducing automation such as the loss of situation 
awareness (Endsley & Kiris, 1995), manual skill (Bainbridge, 1983), and overall 
system trust (Hoff & Bashir, 2015). Researchers have used many terms to describe 
these trade-offs: for example, “automation conundrum” (Endsley, 2017) and “irony of 
automation” (Bainbridge, 1983). Endsley (2017) describes the problem well: “The 
more automation is added to a system, and the more reliable and robust that automation 
is, the less likely that human operators overseeing the automation will be aware of 
critical information and able to take over manual control when needed.” 

Automated systems of the future will likely have near-perfect reliability (e. g., 
99.9 %), and it is unlikely that humans will be able to reliably detect these rare-event 
failures and, even less likely, be able to then step in to correct said failures. Very little 
research has evaluated how well humans can detect rare-event automation failures in 
these near-perfect automated systems. A bulk of the previous research has evaluated 
how well humans detect failures with automation ranging from 60 % to 90 % reliability 
(e. g., Chancey et al., 2017; Dixon & Wickens, 2006; Dixon et al., 2007; Foroughi et 
al., 2019; Rovira et al., 2007). Some researchers have found human performance 
increases as automation reliability increases (e. g., Chancey et al., 2017), while others 
have found that human performance improves when interacting with a varied reliability 
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automated system as opposed to a consistently reliable system (Parasuraman et al., 
1993). Recently, our group showed that although the combined human–automation 
accuracy increased as automation reliability increased, the contribution from the 
human’s detecting of automation failures (specifically, when it missed a target) 
remained relatively stable as the automation reliability increased. That is, the 
contribution from the human remained mostly consistent as the reliability of the auto- 
mated system increased (Foroughi et al., 2019). 

We do not expect humans to perform well in a task where automation failures 
are extremely rare (e. g., vigilance task; see Parasuraman, 1986; Warm et al., 2008). 
However, establishing a specific point estimate that can be considered “poor” 
performance at the onset of the experiment is challenging. In realistic terms, unless 
humans are able to detect these rare-event failures at a high rate, their role as an 
automation monitor may not be worthwhile. With that being said, including additional 
measures such as subjective trust ratings and attention allocation as a function of 
whether someone detected the automation failures helps in holistically understanding 
the human’s role when monitoring these systems. Including these analyses could 
inform how to achieve a more effective human–automation interaction and 
subsequently improve technology design or training practices. For example, studying 
a human’s trust calibration process of automation has led to an increased understanding 
of human–automation interactions as they happen in real time. 

2. Trust in Automation 
Trust is a human’s attitude that another entity (e. g., human, machine, system) 

will help achieve one’s goals in the face of uncertainty and vulnerability (Lee & See, 
2004). A human’s behavior with a system can be dramatically affected by their level 
of trust (Muir, 1994; Muir & Moray, 1996). For example, very high trust in an 
automated system can lead to a person over-relying (not enough monitoring) or over-
complying (blind acceptance), even if it is unreliable, a state known as complacency 
(Parasuraman & Riley, 1997). On the other hand, under-trust leads to humans shunning 
automation and suffering the negative effects of manual performance in intensive 
situations (e.g., experiencing mental overload or catastrophic performance outcomes). 
This relationship between reliability and trust is sometimes referred to as “trust 
calibration” (Lewandowsky et al., 2000; Parasuraman & Riley, 1997). Calibration is a 
continuous process as it updates and evolves with the present situation. 

Because of the important role that trust plays in human–automation performance 
(Lee & Moray, 1994), a great deal of research has sought to examine what affects trust 
and how it affects performance (Hoff & Bashir, 2015; Lee & See, 2004). One of the 
most well studied factors is the reliability, or perceived reliability of the system. In an 
early investigation of how trust is influenced by system characteristics, Lee and Moray 
(1994) found that human trust in a system could simply be predicted by, among other 
things, the level of reliability of the system itself. However, research has found that 
trust is lost faster than it is regained (Wiegmann et al., 2001). Additionally, humans 
have been found to narrow their attentional resources on the area of automation where 
it did fail, leading to decreased surveillance of the rest of the system (Dixon & Wickens, 
2006; Thomas & Wickens, 2004). While the coupling of human However, with regard 
to near-perfect automation, there are two related remaining questions regarding 
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performance and the dynamics of trust. First, consistent with prior research, we expect 
humans to have high levels of trust with exposure to more reliable systems. Does this 
high level of trust result in complacent behaviors, such as marked, quantitative decrease 
in attentional narrowing, and contribute to reduced performance in detecting extremely 
rare failures? The second question is in regard to the dynamics of trust: how is trust 
affected by extremely rare failures? It could be argued that extremely rare failures are 
more memorable and could result in more extreme trust dynamics than with moderate 
reliability automation. However, trust may be able to be adequately rebuilt due to the 
system’s overwhelming reliability the majority of the time, which has been a challenge 
with moderately reliable systems. These questions can be accessed via measuring trust 
levels over several different time points, and can be especially informative when they 
come after a rare-event automation failure. However, another potential way to quantify 
and further understand the impact that these extremely rare failures have on the 
operator is by studying their real-time attention allocation. 

3. Attention allocation and automation 
Previous research studying human–automation interaction has relied on a variety 

of different eye-tracking metrics (Bagheri & Jamieson, 2004; Dehais et al., 2015; Sarter 
et al., 2007; Thomas & Wickens, 2004). Recently, research has specifically 
investigated how eye tracking can be used as an objective measure of operator’s trust 
of an automated system (Glaholt, 2014; Hergeth et al., 2016; Parasuraman & Manzey, 
2010; Victor et al., 2018). Research generally supports monitoring frequency to be 
inversely related to human trust–meaning the more the human trusts the automation, 
the less frequently it will be monitored (Bagheri & Jamieson, 2004; Brown & Noy, 
2004; Hergeth et al., 2016; Moray & Inagaki, 1999). Hergeth et al. (2016) found this 
to be evident, but investigated if it was primarily due to a decrease in monitoring in 
general. They compared the total amount of time monitoring the automated tasks to the 
total amount of time monitoring all the other non-automated tasks. This ratio measure 
was positively correlated, meaning changes in monitoring the automation was not 
solely due to changes in monitoring in general. Hergeth et al. (2016) suggest future 
research should continue to study monitoring ratios when humans have more 
“decisional freedom,” for example, when they are not explicitly instructed on how to 
attend to tasks and to investigate if other eye-tracking metrics can be sensitive and 
reliable measures of trust. When research expands to additional eye-tracking metrics, 
it usually captures the static and aggregate patterns of visual attention, and sometimes 
only in reference to a specific area of interest (AOI). For example, Victor et al. (2018) 
found that in a simulated autonomous vehicle environment, the percentage of glances 
on the road was not able to predict a human’s ability to intervene in a timely that the 
overarching goal of the present work was to observe any differences in visual attention 
allocation patterns between participants who did and did not detect each automation 
failure, both types of metrics and analyses were included. Finally, eye-tracking metrics 
that are found to be consistently different between performance groups will be analyzed 
in the same method as the trust ratings (i. e., by detection rate and over time) in order 
to make comparisons between the two results. 
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4. Current study motivation and goals 
The current study was motivated by the immediate need to understand how 

humans interact with near-perfect automated systems by assessing three information 
streams essential to successfully monitoring and detecting rare- event automation 
failures: performance, trust, and visual attention allocation. To do this, we deployed 
the Supervisory Control Operations User Testbed (SCOUT), an automated supervisory 
control environment (Fig. 1) that was designed to simulate the current and future 
demands of  unmanned aerial  vehicle (UAV) pilots (Sibley et al., 2016). 

 
 

 
 

Figure 1. The supervisory control user testbed (SCOUT) 
 
 

The reliability of this environment was 99.9 %, meaning participants 
encountered only two automation failures while completing the experiment. Subjective 
trust questions were asked throughout the experiment, and eye-tracking data were 
collected as a real-time index of visual attention allocation. Our goals were to (1) 
determine how well participants could detect the rare-event automation failures, (2) 
determine how subjective trust changes as a function of detection rates, and (3) 
determine the relation between visual attention allocation and detection type. 

5. Method 
This research complied with the American Psychological Association Code of 

Ethics and was approved by the Institutional Review Boards at both the U.S. Naval 
Research Laboratory and George Mason University. Informed consent was obtained 
from each participant. 

5.1. Participants 
Seventy-three students with normal or corrected-to-normal vision (M age = 20.5 

years, SD age = 4.2 years, 51 females) from George Mason University participated in 
this research for course credit. 
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5.2. Tasks 
The Supervisory Control Operations User Testbed (SCOUT) is a simulated 

supervisory control environment (Fig. 1) designed by scientists at the U.S. Naval 
Research Laboratory (Sibley et al., 2016) to simulate the current and future demands 
of UAV pilots. This testbed requires individuals to plan a search mission using three 
UAVs, then monitor those UAVs while completing secondary tasks. Some of these 
tasks include responding to chat updates from command (e. g., confirming flight status 
or relaying intelligence) and updating UAV information (e. g., updating flight speed or 
altitude). SCOUT includes many self-report probes including trust, fatigue, and 
workload. 

Importantly, when a UAV reaches its target, the sensor search feed for that UAV 
becomes active, and the user must monitor the search feed to identify possible targets. 
The search feed is automated such that the system will help the user identify targets by 
highlighting possible targets with a gold box (Fig. 2). This automation is immediately 
displayed with no delay. Each sensor search feed had a different target shape—either 
a triangle, circle, or square (see Target ID in Fig. 2), meaning all other shapes for that 
feed were defined as distractors. All objects would enter at the top of the feed and then 
vertically scroll down it for 14 s. In that time, the automation was tasked to high- light 
each target with a gold box. For example, if a sensor search feed’s target was a triangle, 
the participant would need to ensure that all of the triangles (i. e., potential targets) that 
scrolled across the screen were highlighted, and none of the circles or squares (i. e., 
distractor targets) were not highlighted. The state of any object (i. e., highlighted or not 
highlighted) could be changed by clicking on that object. Each search feed had a 
different target resulting in participants searching for triangles in one feed, circles in 
another feed, and squares in the third feed. 

 
 

 
 

Figure 2. An example of the sensor search feeds from SCOUT 
 
 

There is an icon below each sensor search feed indicating the target of interest: 
square, triangle, and circle from left to right respectively, as noted by the red arrows. 
The automated system automatically highlights targets by placing a gold box around 
them. Participants were tasked to ensure that the automated system accurately identifies 
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the correct targets. If the automated system misses a correct target (miss) or incorrectly 
highlights the wrong target (false alarm), participants must click on the object to fix 
the error. In this specific example, we have shown all four possible outcomes of what 
the automated system could do. The red labels are added for this figure and are not in 
the experiment. To correct the automation failure (i.e., miss or false alarm), participants 
would need to click on the shape to either select or deselect it appropriately. 

5.3. Equipment 
A 24-inch Dell P2415Q monitor set at 2560 × 1440 resolution was used for this 

experiment. The participants used a standard mouse and QWERTY keyboard to 
complete the task. For the eye-tracking data collection, a Gazepoint GP3 eye tracker 
with a sampling rate of 60 Hz and 0.5–1 degree of visual accuracy was used and placed 
right below the monitor. Participants sat approximately 65 cm (25.6 in) from the 
monitor. The eye tracker was calibrated for each participant using a 9-point calibration 
program built by Gazepoint. The GP3 provides left and right eye point of gaze in pixels 
and assigns a binary quality measure to each point to indicate whether the system 
believes the data is valid or not. Based on these three values, each data point was 
marked as either valid or invalid for analysis. A valid data point was one where its 
quality measure was maximized and both the left and right point of gaze was a positive 
coordinate value. Only valid data points were used for eye-tracking metric calculations. 

5.4. Procedure 
After signing an informed consent form, participants were instructed to be 

comfortably seated in the desk chair where the experiment would take place. First, the 
participant calibrated to the eye tracker using the Gazepoint GP3 software. Next, 
participants completed a fixation test as an additional calibration tool. Participants then 
completed a luminance change task and the shortened automated operation span. These 
tasks were not analyzed for this manuscript, as both are part of a larger individual 
differences project that is not yet complete. 

Participants then completed a SCOUT training session to learn how to properly 
complete the task. During training, participants were informed that the automation may 
not be perfect and that they would need to ensure that all targets were correctly 
identified. After completion, participants were given a short comprehension test about 
SCOUT to ensure that they understood all of the features of the task. Participants were 
shown a static screenshot of SCOUT and asked to answer questions about features 
within the task (e.g., Can you tell me the current speed of Vader 11? How many targets 
are in Vader 11’s sensor feed?”). Participants were required to answer every question 
correctly to continue. All participants answered all the comprehension questions 
correctly on their first attempt. 

Participants then completed a 40-min experimental scenario within SCOUT. For 
this experiment, all three UAVs had preset targets and no participants deviated the 
UAVs from their targets. All three search feeds activated within 1 s of each other 
ensuring near equal display time. Participants had 14 s to decide if any object was 
incorrectly highlighted or not highlighted, and to correct the object accordingly. 
Objects appeared at a rate of 1 every 5s, on average for each sensor search feed. Objects 
could be on multiple search feeds at once. Chat queries (e. g., What percentage of fuel 
is remaining for Eagle 83?) occurred every 60 s on the lower right side of SCOUT. 
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These events did not coincide with the manually injected automation errors (mentioned 
below) to avoid split attention. 

For this experiment, with the exception of the two manually injected automation 
failures, the automation reliability was set to 100 %. These manually injected 
automation failures (namely, one automation miss and one automation false alarm) 
occurred at approximately 19:05 and 39:05 in the center sensor feed (for concerns 
about the impact of center-bias, see Supplemental Material). Participants were not 
given specifics on which sensor feed an automation failure could occur. The types of 
failures (i.e., miss and false alarm) were counterbalanced. These two automation 
failures made the overall automation reliability of the system 99.9 % across the entire 
experiment. Additionally, participants were prompted with a trust question at four time 
points: approximately 10:15, 19:25, 30:15, and 39:25. They were specifically asked 
“To what extent do you trust (i. e., believe in the accuracy of) the automation aid in 
this scenario?” and were able to respond using a sliding scale from “Not at all” to 
“Completely.” After completing the SCOUT scenario, participants completed a short 
demographics survey. 

6. Results 
All analyses were screened for outliers and violations in normality. Outliers were 

considered to be anything beyond 1.5x of the interquartile range (IQR). If outliers were 
detected, they were removed from the dataset and if normality was not met, 
corresponding nonparametric tests (e. g., Mann–Whitney) were used. The selected 
significance level was α = .05. For omnibus tests, partial eta squared (ηp 2) is reported 
for effect size, where the values of .01, .06, .14 are interpreted as small, medium, and 
large effect size, respectively (Cohen, 1988). For tests of means, effect size is reported 
by using Cohen’s d and values of 0.2, 0.5, 0.8, which indicate a small, medium, and 
large effect size, respectively (Cohen, 1988). 

6.1. Performance  
Overall, 34 % (25 of 73) of the participants correctly identified the automation 

miss and 67 % (49 of 73) correctly identified the automation false alarms. As for the 
distribution of participants detecting failures in general, 18 did not detect any failure, 
36 detected one failure (i. e., the first or second failure), and 19 detected both failures. 
To summarize how automation failure type and timing impacted performance, when 
the first failure was an automation miss (37 of 73 participants), 15 participants detected 
no failure across the entire experiment, nine participants detected both failures, four 
participants detected only the first failure (miss), and nine participants detected only 
the second failure (false alarm). When the first failure was an automation false alarm 
(36 of 73 participants), three participants detected no failure across the entire 
experiment, ten participants detected both failures, 21 participants detected only the 
first failure (false alarm), and two participants detected only the second failure (miss). 
To summarize, the data show that the main driver of performance was the type of 
automation failure (i.e., miss or false alarm) as opposed to the timing of the failure. 
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6.2. Trust 
Fig. 3 presents the changes of subjective trust ratings as a function of time and 

detection performance. Using the lme4 package within R (Bates et al., 2014), we ran a 
mixed-effects model with time and detection rate as predictors (fixed effects), and 
subjective trust rating as the outcome variable. Time is a within-subject factor with 
four levels: Time 1 (before a failure occurred), Time 2 (after one failure occurred), 
Time 3 (10 min after the first failure occurred), and Time 4 (after the second failure 
occurred). Detection rate is a between-subject factor with four levels: None (did not 
detect either failure), First (detected the first failure only), Second (detected the second 
failure only), and Both (detected both failures). We found a significant main effect of 
time (F(3,69) = 8.5, p < .001), a significant main effect of detection (F(3,207) = 4.1,  
p = .007), and a significant interaction (F(9,207) = 18.6, p < .001). We were interested 
in determining whether subjective trust ratings changed following the detection of a 
failure. This resulted in running different analyses by detection group. Consistent with 
the first failure effect (Wickens & Xu, 2002), for the group that detected the first 
failure, a paired contrast between T1 and T2 revealed a significant decrease between 
subjective trust scores (MDIFF = −6.72, SE = 2.01, p = .001, d = .50). For the group 
that detected the second failure, a paired contrast between T3 and T4 revealed a 
significant decrease between subjective trust scores (MDIFF = −11.64, SE = 3.04,  
p < .001, d = 2.19). To further explore the simple main effect of time, we ran a one-
way repeated-measures ANOVA for the group that did not detect any failure and one 
for the group that detected both failures. For the group that detected no failures, a one-
way repeated measures ANOVA revealed an effect of Time (F(3,51) = 12.41, p < .001, 
ηp 2 = .422) such that subjective trust rating increased over time. For the group that 
detected both failures, a one-way repeated-measures ANOVA revealed an effect of 
Time (F(3,54) = 14.46, p < .001, ηp 2 = .446) such that subjective trust rating decreased 
over time.  

 
 

 
 

Figure 3. Mean subjective trust ratings (±SE) as a function of time and detection 
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The vertical blue lines provide an approximate visual representation of when the 
automation failures occurred. Time is a within-subject factor with four levels: T1 
(before a failure occurred), T2 (after one failure occurred), T3 (10 min after the first 
failure occurred), and T4 (after the second failure occurred). Detection is a between-
subject factor with four levels: None (did not detect either failure), First (detected the 
first failure only), Second (detected the second failure only), and Both (detected both 
failures). 

6.3. Eye Tracking 
6.3.1. Overall eye-tracking analysis 
Mean time between fixations (MTBF) was not significantly different for those 

who did or did not detect the miss or for those who did and did not detect the false 
alarm (all p > .05). This result suggests the speed of visual attention allocation was not 
significantly different between performance groups. Normalized gaze transition (GTE) 
and stationary gaze entropy (SGE) were not significantly different between those who 
did and did not detect the miss or between those who did and did not detect the false 
alarm (all p > .05). 

The local metrics, that is, the ones focused on the center sensor feed as that was 
the specific AOI associated with the automation failure, were then calculated. For total 
dwell ratio of the center sensor feed, those who detected the miss had significantly 
higher total dwell ratio (M = .31, SD = .09) than those who missed the miss (M = .19, 
SD = .08; (t(33.027) = −4.3532, p < .001, d = 1.442). Those who detected the false 
alarm (M = .263, SD = .09) had a significantly higher total dwell ratio than those who 
missed the false alarm (M = .183, SD = .09; t(15.371) = −2.3698, p = .031, d = .8965). 
This suggests that those who detected the miss and false alarm had a significantly 
higher proportion of time in the center sensor feed than those who did not detect the 
miss and false alarm. For the number of transitions to the center sensor feed, those who 
detected the miss had significantly more transitions, to this feed (M = 2185,  
SD = 722.3) than those who did not detect the miss (M = 1413.8, SD = 629.1; t(35.719) 
= −3.548, p = .001, d = 1.141). Similarly, those who detected the false alarm had 
significantly more transitions to the center sensor feed, (M = 1938.8, SD = 738.2) than 
those who did not detect the false alarm (M = 1356.4, SD = 739.83; 
t(15.647) = −2.148, p = .047, d = .7881). This suggests that those who detected the 
miss and false alarm transitioned to the center sensor feed more frequently than those 
who did not detect the miss and false alarm. 

6.3.2. Two-minute window centered around each automation failure 
For MTBF, there was no significant difference between those who did and did 

not detect the miss or false alarm (p > .05). There was no significant difference in 
normalized GTE for those who did and did not detect the miss (p > .05). However, 
there was a significant difference between those who did (M = .41, SD = .064) and did 
not detect the false alarm (M = .35, SD = .049; t(13.634) = −2.366, p = .0334, 
d = .9815), suggesting the 2-min scan sequence of those who detected the false alarm 
was more complex than those who did not detect the false alarm. There was no 
significant difference in normalized SGE for those who did and did not detect the miss 
or false alarm (p > .05). 
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As for metrics focused specifically on the center sensor feed, that is, the one 
experiencing the automation failure, those who detected the miss had significantly 
higher total dwell ratio (M = .37, SD = .09) than those who missed the miss (M = .21, 
SD = .07; U = 10, p < .001, d = 1.906). Those who detected the false alarm (M = .38, 
SD = .15) also had a significantly higher total dwell ratio than those who did not detect 
the false alarm (M = .14, SD = .07, t(18.247) = −5.2144, p < .001, d = 2.096). So for 
the minute before and after the automation failure, those who detected the miss and 
false alarm spent a significantly higher proportion of time in the center senor feed 
(relative to all other AOIs), than those who did not detect the miss and false alarm. For 
the number of transitions to the center sensor feed it was found, again, that those who 
detected the miss had significantly more transitions, to the center sensor feed  
(M = 114.9, SD = 31.1) than those who did not detect the miss (M = 67.33,  
SD = 23.7, U = 17, p < .001, d = 1.733). Similarly, those who detected the false alarm 
had significantly more transitions to the center sensor feed, (M = 107.9, SD = 42.1) 
than those who did not detect the false alarm (M = 43.8, SD = 4.65,  
t(20.67) = −6.647, p < .001, d = 2.741). This suggests that for the minute before and 
after the automation failure, those who detected the miss and false alarm transitioned 
to the center sensor feed significantly more frequently than those who missed the miss 
and false alarm. 

6.3.3. Over time analysis for the local eye-tracking metrics as a function of 
detection 

In an attempt to robustly address our third research goal (i. e., examine the 
relation between visual attention allocation and detection type), we also analyzed the 
local eye-tracking metrics in the same format as the trust ratings (as a function of 
detection rate and over time). We limited this analysis to the local eye-tracking metrics 
only given the consistent significant differences found with these metrics between 
those who do and do not detect each type of automation failure. A two-way mixed 
ANOVA where the between-subject effect was the four performance groups (no 
detection, only first failure detected, only second failure detected, detected both 
failures) and within-subject effect was time period (i.e., the durations of T1–T4) was 
used for both local eye-tracking metrics. For dwell ratio, there was a main effect of 
performance group (F(3,35) = 6.87, p < .001) but not time (F(3,105) = 2.355, p = .076) 
nor their interaction (F(9,105) = 1.889, p = .061). For number of transitions, there was 
a main effect of performance group (F(3,33) = 4.708, p = .08) and time  
(F(3,99) = 225.904, p < .001) but no significant interaction (F(9,99) = 1.810, p = .076). 
Therefore, individuals may not update their visual attention strategies even when they 
detect errors in near-perfect automation which is in stark contrast to the trends found 
with the trust ratings. 

7. Discussion 
The goal for this research was to improve our understanding of how humans 

interact with near-perfect automated systems by assessing three important human-
automation interaction features: performance, trust, and attention allocation. Overall, 
34 % of the participants correctly identified the automation miss, and 67 % correctly 
identified the automation false alarm. Consistent with prior research (e. g., Bliss, 
2003; Chancey et al., 2015), participants detected significantly more false alarms than 
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misses. Unfortunately, misses are often costlier than false alarms (e.g., bomb 
detection), and although false alarms are often considered annoying and can lead to 
“cry wolf” syndrome (Parasuraman & Riley, 1997), some evidence suggests that 
domain experts are more accepting of false alarms than misses (Masalonis & 
Parasuraman, 1999). Regardless, in general, the results found that the number of 
participants who detected both automation failures and the number who detected 
neither was practically equal, whereas the number of participants that detected one of 
the failures was approximately twice as many as either group. In summary, the 
performance results from this research show that that humans are only marginally 
reliable (34 % and 67 %) at intervening to correct rare-event automation failures. One 
could argue that any intervening detection from a human could be worthwhile, even if 
the improvement is marginal. The key assumption to this argument is that the additional 
cost of that improvement is minimal. It is possible that training or expertise could 
improve these detection trends, but previous research in supervisory control suggests 
it is unlikely training alone will lead to acceptable performance levels (e. g., Victor et 
al., 2018) and training would come at some cost (e. g., money, time, etc.). In summary, 
if near-perfect automation systems are going to include human monitoring as a layer 
of overall system reliability, research needs to study the human’s monitoring process 
in these environments and design for them accordingly. Part of this process is the 
person’s trust calibration process. 

The trust ratings from participants trended as expected: trust decreased when 
participants detected the automation failure(s) and increased when they did not. 
However, the rate at which trust was lost and rebuilt was unexpected. One interesting 
finding from this analysis is that those who detected the first automation failure, but 
not the second, reported that their trust levels recovered to a level that was similar to 
the first trust reading, (i. e., the first 10 min of the simulation where no automation 
failures occurred) and similar to those who detected no automation failures. However, 
trust decreased rapidly from start to end for those who detected both automation 
failures. For context, the automation was 99.9 % reliable, even with the two failures, 
but trust dropped to ~60 % for those who detected both failures. This further supports 
that the trust calibration process is not directly proportional to automation reliability 
and is highly variable as the human detects failures. Future studies should precisely 
examine the relationship between the number of automation failures and the dynamics 
of trust recovery. The eye-tracking analysis helps to clarify the discrepancy between 
automation reliability and trust. 

There were no significant differences between the two performance groups 
(those who did and did not detect the automation failures) when comparing global 
visual attention patterns over the entire experimental session, which is inconsistent with 
some previous work (Bagheri & Jamieson, 2004). This may be due to the length of the 
scenario being 40 min and possibly “washing out” any general visual attention 
allocation trends. Given that operators in the field may be tasked to this role for much 
longer amounts of time, this emphasizes the need for eye-tracking analyses to be 
analyzed on a more “real-time” basis in order to accurately capture the current state of 
the operator. This is somewhat supported in the present work, given that gaze transition 
entropy was significantly different between those who did and did not detect the false 
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alarm for the 2-min analysis only, meaning the more complex scan patterns for those 
who detected the false alarm was only evident during the 2 min centered around the 
automation failure. This finding suggests global eye-tracking metrics should be 
analyzed on a more granular basis if they are to be informative of performance 
differences with near-perfect automation. Future research should further corroborate 
these findings with the exploration of different types of metrics and time intervals. 

Alternatively, the local eye-tracking metrics (i. e., the ones associated with the 
specific sensor search feed where the automation failures happened) were significantly 
different between performance groups (i. e., those who did and did not detect each type 
of automation failure) and for all analyses (i. e., the entire experimental session, the 2 
min centered around the automation failure, and overall detection rates). Overall, 
participants who detected the automation failures spent the most time monitoring the 
center sensor feed for an average of 21 %–24 % of all monitoring time. They also 
visited this feed 1.2–1.8 times more than any other search feed (i.e., the left and right 
sensor feeds) and 1.3–9.2 times more than any other AOI. These results directly 
quantify how participants narrow their attention when near-perfect automation failed, 
which is consistent to previous work (Dixon & Wickens, 2006; Thomas & Wickens, 
2004). These results also begin to make direct comparisons on how visual attention 
patterns differ between the trust levels of those who detected none and both automation 
failures. Interestingly, the trust ratings changed dramatically over time depending on 
detection rates, but the local eye-tracking metrics did not. There are two potential 
explanations for this: the first being a characteristic of the system and the second being 
a characteristic of the human. The first potential explanation of these diverging trends 
is due to a positive feedback loop (Smith & Smith, 1987): if you detect automation 
failures, you believe you are sufficiently monitoring the automation, so you do not 
change your monitoring approach. If you do not detect errors, you are unaware that 
automation needs to be monitored at all, so you do not change your monitoring 
approach. Second is the monitoring rates of automation are trait and not state based, 
that is, monitoring rates are more dependent on the characteristics of the person than 
the characteristics of the environment. Future studies could directly address these 
competing theories, but regardless, both will need to eventually inform how to provide 
active, real-time assistance to the operator. This is clearly warranted because regardless 
of some operators monitoring the automation “sufficiently” (whatever is defined as 
sufficient for the environment/automation at hand) and some not, the current evidence 
suggests those monitoring rates are relatively stagnant over time even as failures are 
detected, suggesting that failure detection is not sufficient feedback to impact changes 
in visual attention allocation patterns. Furthermore, the analysis of the local eye-
tracking metrics highlights that the level of sufficiency may come at a high and 
unrealistic visual attention cost to the operator (e. g., spending ~21 % of time 
monitoring one sensor feed of the whole display). Even more concerning is this cost 
may not lead to a reciprocal benefit of substantially improved system reliability as 
participants were not overwhelmingly reliable in correcting automation failures. As a 
sanity check, all eye-tracking data were screened to ensure participants were not 
attending to a secondary task when the automation failed. Given that no participants 
were attending to a secondary task, this suggests that participants either (1) missed the 
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failure even when their point of gaze was in the center sensor feed that is, inattentional 
blindness or (2) they were allocating their attention elsewhere without being prompted 
to do so. To investigate if there were instances of in attentional blindness, the eye-
tracking data were used to determine if at least one fixation was present in the center 
sensor feed at some point during an automation failure (i. e., the 14 s it was in the center 
sensor feed) yet it was still not detected. Of the 59 instances where an automation 
failure was not detected (across both automation failure types), 42 had at least one 
fixation in the center sensor feed during the automation failure (i. e., 71.2 % of all 
instances). This alarming percentage of in attentional blindness seems to further 
indicate that the current cost of humans monitoring near-perfect systems outweighs any 
benefit. In total, the eye-tracking analysis shows the need to study eye-tracking metrics 
in more granular units of time to detect potential performance decrements, to include 
local eye-tracking metrics (i.e., ones that contextually relate to the task’s goals) and to 
determine optimal visual attention allocation patterns. Future work should thoroughly 
validate all of these aspects before delivering final design guidance for near-perfect 
automated systems. 

This work is not without limitations. The generalizability of the work needs to 
be limited as this was a lab-based experiment. This experiment was only 40-min long, 
and it is likely that real-world operators will be interacting with near-perfect automated 
systems for much longer periods of time. However, this could suggest that our 
performance findings are understating the negative effects (e. g., vigilance decrement). 
Relatedly, the participants may not be representative of the person who would be tasked 
to this kind of monitoring, making it even more important to tease out state- and trait-
based effects in monitoring. Finally, the monitoring task itself was (purposefully) 
simple, in order to have participants reach task proficiency in a relatively short amount 
of time. Realistically, monitoring tasks will be more contextually relevant to a specific 
aspect in a given field and will most likely be done by an expert, which may make the 
task more engaging and better prioritized. Future research should incorporate these 
elements, as well as the suggestions made above, when investigating human 
performance, trust, and visual attention allocation in near-perfect automated 
environments. 

8. Conclusion 
Taken together, the performance, trust, and eye-tracking data show that humans 

are not well suited for monitoring near-perfect automated systems. Performance is 
inadequate and calls into question whether humans should ever be in these roles. 
Additionally, inadequate performance is problematic as it dictates the trust calibration 
process, coming at a large cost to the human’s attentional resources. From a human 
factors standpoint, improving the human–computer interface design of the system may 
be an appropriate first step. For example, uncertainty communication has been found 
to increase automation transparency and assist in correcting operator’s mental models 
of the automation, which informs the trust calibration process (Beller et al., 2013; 
Endsley, 2017; Victor et al., 2018). Incorporating eye-tracking to aid the operator’s 
overt visual attention allocation may improve performance, but as evidenced by data 
from this experiment, it is not a certainty (i. e., 71.2 % of in attentional blindness 
instances). More generally, trying to understand the traits and current state of the 
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operator may be more informative on their ability to successfully complete these tasks. 
Eye tracking may be able to aid in that understanding (e. g., apply the method used in 
Mracek et al., 2014 to parse out the trait and state levels of eye-tracking metrics that 
have found to differ on both of these levels, for example, de Haas et al., 2019; 
Tsukahara et al., 2016), but more work in this domain is needed. In conclusion, this 
research shows that humans are not well suited in the monitoring of near-perfect 
automated systems. Should humans be pushed into these roles, far more research is 
needed to understand how to best design for them. 
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Words and word combinations: 
– automation [ɔːtəˈmeɪʃ(ə)n] – автоматизация; 
– performance [pəˈfɔːm(ə)ns] – производительность;  
– trust [trʌst] – доверять;  
– visual attention [ˈvɪʒ(j)ʊəl əˈtɛnʃ(ə)n] – зрительное внимание;  
– manpower hours [ˈmænpæʊə ˈaʊəz] – рабочее время; 
– behaviour [bɪˈheɪvjə] – поведение; 
– near-perfect [nɪə ˈpɜːfɪkt] – почти идеальный;  
– bottleneck [ˈbɒt(ə)lnek] – узкое место;  
– eye tracking [aɪ ˈtrakɪŋ] – технология отслеживания положения глаз;  
– measure [ˈmeʒə] – мера;  
– scrolled across [skrəʊld əˈkrɒs] – прокручивать; 
– altitude [ˈæltɪtjuːd] – высота; 
– confirm [kənˈfɜːmɪŋ] – подтверждать, утверждать; 
– highlight [ˈhaɪlaɪt] – основной момент; 
– triangle [ˈtræɪæŋɡ(ə)l] – треугольник; 
– approximately [əˈprɒksɪmətlɪ] – приблизительно; 
– correctly [kəˈrek(t)lɪ] – правильно, верно; 
– attempt [əˈtem(p)t] – попытка; 
– below [bɪˈləʊ] – ниже, внизу. 
 

Task 2. Summarize all the ideas of the article and write an essay. 
Task 3. Make a presentation based on the article. 
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Article 2 
 
 

Task 1. Read the text below. 
 

Progress and prospects for accelerating materials science with automated and 
autonomous workflows 

(by Helge S. Stein, John M. Gregoire) 
 

Abstract 
Accelerating materials research by integrating automation with artificial 

intelligence is increasingly recognized as a grand scientific challenge to discover and 
develop materials for emerging and future technologies. While the solid state materials 
science community has demonstrated a broad range of high throughput methods and 
effectively leveraged computational techniques to accelerate individual research tasks, 
revolutionary acceleration of materials discovery has yet to be fully realized. This 
perspective review presents a framework and ontology to outline a materials 
experiment lifecycle and visualize materials discovery workflows, providing a context 
for mapping the realized levels of automation and the next generation of autonomous 
loops in terms of scientific and automation complexity. Expanding autonomous loops 
to encompass larger portions of complex workflows will require integration of a range 
of experimental techniques as well as automation of expert decisions, including subtle 
reasoning about data quality, responses to unexpected data, and model design. Recent 
demonstrations of workflows that integrate multiple techniques and include 
autonomous loops, combined with emerging advancements in artificial intelligence 
and high throughput experimentation, signal the imminence of a revolution in materials 
discovery. 

1. Introduction 
Grand missions, such as combating climate change through proliferation of 

renewable energy technologies, necessitate technological advancements for which 
discovery of functional materials is often a prerequisite. Historically, transformative 
materials discoveries have been the result of serendipity from experimenting in a 
related area and/or decades of systematic materials development. Early examples of 
automated synthesis and screening techniques were implemented to accelerate both 
processes, for example in the identification of a hysteresis-free shape memory 
alloy. Continued automation of materials experiments is motivated by potential 
benefits including lowering per-experiment costs and eliminating human error, and to 
enable active learning-driven experiments that identify and explore the most promising 
regions of materials parameter space. In solid state materials science, advancements in 
automation have largely been driven by the combinatorial materials science 
community, where comprehensive exploration of a high dimensional materials 
parameter space requires a substantial number of synthesis and screening experiments. 
While these efforts have provided automation of individual research tasks for a wide 
variety of materials and functional properties, manual execution of several experiment 
steps, as well as manual design of experiments and data interpretation, result in 
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partially-automated workflows. The emerging vision of autonomous materials 
discovery requires a higher level of automation. Establishment of an autonomous 
workflow is referred to as “closing the loop” since complete task-to-task integration is 
required to allow computer-controlled iteration. Initial and ongoing progress towards 
realizing such closed-loop systems can be tracked by the level of process automation 
and integration in a workflow. 

Sanchez-Lengeling and Aspuru-Guzik recently described the advent of closed-
loop experimentation as a paradigm shift in materials and molecular discovery. The 
illustration of Fig. 1 provides the high level template of a closed-loop workflow, and 
in the present work we critically review the progress towards this vision in solid 
materials experiments. The integration of sequential automated processes is 
challenging due to the need for mutually compatible parameters and planning, with 
requirements spanning from a commensurate sample format, to a protocol for decision-
making based on results from the prior experiment, and to the identification of 
measurement failure. To facilitate the analysis of where process integration has been 
successfully implemented as well as the remaining challenges, we present a framework 
and ontology for the automation of the materials experiment lifecycle. 

 
 

 
Figure 1. High level comparison of paradigms for materials/molecular sciences. Left: 
current paradigm exemplified with redox flow batteries. Right: closed-loop discovery 

utilizing inverse design and a tightly integrated workflow to enable faster 
identification, scale-up and manufacturing. Figure reproduced from Science,  
361, 6400, 360–365 with permission from The American Association for the 

Advancement of Science 
 
 

The exploration of vast materials spaces (i. e. composition, structure, processing, 
morphology) via combinatorial materials science has yielded a wide variety of 
discoveries and advancements in fundamental knowledge and has additionally 
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produced experiment databases with unprecedented breadth of materials and measured 
properties, as exemplified by the recent publication of the High Throughput 
Experimental Materials database (HTEM) based on photovoltaics materials and the 
Materials Experiments and Analysis Database (MEAD) based on solar fuels materials. 
These compilations of raw and analyzed data from individual combinatorial materials 
science laboratories complement the suite of computational materials databases as well 
as a rapidly growing number of materials data repositories including the Citrination 
platform, the Materials Data Facility (MDF), and text mining of the literature. For the 
purposes of the present analysis of automating materials science workflows, these 
databases serve as successful examples of experiment automation and as resources that 
can be used to accelerate experiment planning, for example by training machine 
learning models to identify promising materials. In such planning, it is important to 
note complementary search goals of optimizing a given material property and 
establishing relationships that represent fundamental materials knowledge. Mapping 
composition–structure–processing–function relationships is a tenet of combinatorial 
materials research, which contrasts with direct implementation of active learning to 
optimize one or a few properties without requiring acquisition of data to elucidate the 
underpinnings of the materials optimization. Indeed the experiment workflow and its 
operation must be designed to meet the specific research goals, although workflow 
automation is important for accelerating many different modes of discovery. 

We discuss the lifecycle of materials science experiments and the three primary 
stages of workflow acceleration, (i) the integration of new techniques into traditional 
research tasks to accelerate process throughput, (ii) the integration of research tasks 
into a cohesive workflow to mitigate bottlenecks, and (iii) integration of tasks with 
automated analysis and decisions to close experiment loops and enable autonomous 
iteration thereof. We find that the solid state materials science community has 
demonstrated tremendous progress in the first stage, substantial progress in the second 
stage including high throughput workflows, and seminal demonstrations in the third 
stage with relatively simple workflows, making concurrent advancement of both the 
level of autonomy and extent of the workflow a priority research direction. 

2. The experimental materials science research lifecycle 
At a high level, the experiment lifecycle† for functional materials discovery 

consists of a set of core research tasks: synthesis, processing, characterization and 
performance evaluation. This set transcends the specific techniques used to perform 
each task, and their generality is evident in their consistent discussion in reviews, 
laboratory workflow descriptions, and database designs for high throughput materials 
science. Often unmentioned, though virtually always performed, are the additional core 
research tasks of planning, data management, data interpretation, and quality control. 
Individual and sequences of experiments require these tasks, with the extent and style 
varying with research strategy. In a traditional materials experiment, the 4 experiment 
tasks are performed manually, as are the complementary 4 tasks, for example planning 
via a stated hypothesis and data management via lab notebooks. The corresponding 
workflow can be represented as shown in Fig. 2a and represents the foundation on 
which more advanced and accelerated workflows are built. As noted above, the first 
stage of workflow acceleration involves implementation of techniques we refer to as 
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“accelerators” into one or more of the workflow tasks. Classifying all possible 
accelerators is more subjective than the above classification of workflow tasks, and for 
the present work we find the 6 accelerators noted in Fig. 2b enable effective annotation 
of experimental workflows from the literature. Some accelerator-task combinations are 
readily achievable, for example parallelization of processing by annealing multiple 
materials in a furnace. Other combinations may not be meaningful, such as active 
learning of data management. Of the many combinations that are both meaningful and 
impactful, some have been effectively realized while others are opportunities for 
further experiment acceleration, as summarized below for each accelerator.  

 
 

 
 

Figure 2. (a) Overview of core research tasks with arrows indicating the cyclic 
execution of a traditional materials science experimental workflow. (b) Acceleration 

of each task in a workflow can be obtained by incorporating acceleration 
technique(s), as represented by these 6 types of accelerators 

 
 

3. Automation and parallelization 
Automated execution of a serial experiment typically involves incorporation of 

robotics into a traditional experiment. Parallelization typically involves development 
of custom instrumentation to perform many experiments simultaneously. Both 
approaches are commonly used in combinatorial materials science where accelerated 
synthesis techniques include co-sputtering, co-evaporation, ink-jet 
printing, combinatorial ball-milling, high-throughput hydrothermal synthesis, and bulk 
ceramic hot-pressing. Similarly, the acceleration of the characterization of materials 
properties and evaluation of performance for a target functionality have been the focus 
of extensive methods development in the past two decades, with notable 
demonstrations including electrochemical testing, X-ray diffraction, processing, 
optical spectroscopy, electric properties, shape memory, and phase dynamics. These 
advancements in experiment automation have undoubtedly led to discoveries that 
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would not have been made in the same time frame using traditional techniques. 
Automation and parallelization-based removal of synthesis and characterization 
bottlenecks introduces new challenges for further acceleration of materials discovery, 
which are generally being addressed with data and data science-related accelerators. 

4. Data repositories 
As noted above, the emergence of experiment databases from high throughput 

experimentation offer opportunities for data-based accelerations. The established uses 
of data repositories for accelerating research tasks include the data interpretation for 
crystallography by matching X-ray diffraction patterns to those from a 
database, planning synthesis based on phase diagrams, and planning catalyst 
performance evaluation using computational databases of Pourbaix stability. Data-
driven discoveries are typically enabled by a data repository produced via careful data 
management. While guidelines such as FAIR exist, these general guidelines focus on 
data dissemination and do not express the data management requirements for 
establishing autonomous loops, which require fully automated data ingestion and 
seamless communication between experimental tasks. 

5. Machine learning  
Acceleration by Machine Learning (ML) models encompasses a broad range of 

applications of computer science algorithms to perform regression, classification or 
embedding tasks. The recent literature abounds with discussions of the existing and 
potential impact of ML in materials research. Given recent reviews covering this 
topic, the present discussion focuses on its role in experiment workflows. ML-based 
acceleration of research tasks typically involves either research planning or data 
interpretation through evaluation of ML models trained on prior data. Representative 
examples include selection of composition spaces for exploring metallic glasses based 
on ML predictions of glass forming ability and identification of ultra-incompressible 
materials. ML methods have also been developed to accelerate data interpretation in 
areas including phase mapping from XRD patterns, microscopy data, signal 
identification in spectroscopy data, annotation of microstructure images, and 
visualization of complex compositions. ML methods can also be developed into active 
learning and reasoning techniques, although due to their different roles with respect to 
experiments, those techniques are discussed separately, as detailed below. 

6. Active learning 
Active learning involves the choice of the next experiment based on an 

acquisition function that typically requires a prediction for a figure of merit and the 
uncertainty thereof. ML models are used for the prediction and uncertainty estimation, 
with a distinguishing feature of active learning being the need to update the model in 
real time during execution of the experimental workflow. Active learning is a key 
component of closed-loop workflows that can ultimately yield self-driving 
laboratories. Algorithms such as Phoenics have been specifically developed for 
chemistry experiments and integrated into workflow management software such as 
ChemOS. The carbon nanotube (CNT) autonomous research system (ARES) 
project, which is discussed further below, is an example of a closed-loop system of a 
workflow where tasks such as data interpretation are readily automated. There have 
been additional implementations of active learning in materials science to accelerate 
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individual tasks, for example by acquiring only the necessary X-ray diffraction patterns 
for phase diagram characterization. Sophisticated examples of active learning in related 
fields including functional genomics, separations optimization, and multi objective 
molecular optimization for small molecule drug discovery. While many optimization-
oriented searches are amenable to acceleration via active learning, its utility for 
materials discovery has yet to be sufficiently explored and demonstrated, making the 
above examples a springboard for assessing the ability of active learning to accelerate 
complex experimental workflows and the generation of fundamental understanding in 
materials science. 

7. Automated reasoning 
For complex measurement workflows where competing interpretations of the 

data need to be considered or a model needs to be reinterpreted given the most recent 
measurements, the data interpretation, quality control, and planning tasks are not 
readily automated with existing algorithms, motivating the development of automated 
reasoning to accelerate these tasks with AI methods that mimic and/or supersede 
human execution of these tasks (i. e. “superhuman performance”). Examples of 
automated incorporation of physics and chemistry-based models into such tasks 
include tuning the morphology of a thin film based on a structure zone diagram and 
fine-tuning the composition to obtain a desired doping type in semiconducting metal 
oxides based on spinel doping rules. The opportunity for AI development in this area 
is the topic of a recent perspective, and among the promising research directions is the 
establishment of generative models that expand the purview of active learning to design 
materials based on desired properties. While inverse design has been successfully 
demonstrated for discovery of functional materials, integration into automated 
workflows remains a challenge for solid state materials research. The corresponding 
high level challenge for closed-loop experimentation of solid state materials is that the 
scope of a given automated synthesis tool is often quite limited compared to the scope 
of materials that may be predicted by an active learning or inverse design algorithm. In 
organic synthesis, for example, there has been more success in developing workflows 
that encompass the entirety of the synthesis scope of interest, enabling deeper 
integration of automated reasoning. 

8. Integration of tasks into a workflow 
The most common type of accelerated discovery workflow consists of an 

automation-accelerated synthesis and an automation-accelerated characterization or 
performance evaluation, followed by extensive manual analysis, interpretation, and 
planning of both additional characterization experiments and future iterations of the 
workflow. Most commonly the highly automated instruments require manual 
interfacing (e.g. alignment, measurement parameter setup, supervision for quality 
control), where an increased human involvement corresponds to a lower degree of 
integration. To simplify the present discussion, we consider two classes of task 
integration with the distinguishing feature being whether expert involvement is 
required, which designates the integration as “expert mediated” and indicates the 
integration is incomplete. This level of integration is prone to creating bottlenecks due 
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to the scarcity of experts. Technique integration by robotics is not distinguished from 
integration by trained technicians in the present work because the resulting impact on 
workflow throughput requires more in-depth evaluation of the specific workflow. 

To further illustrate how accelerated materials experiments have been integrated, 
we inspect four reported projects and construct the corresponding workflows in Fig. 3. 
Each workflow exhibits unique aspects that collectively frame the state of the art in 
accelerated materials discovery and illustrate the intricacies of workflow acceleration. 
The scope of each workflow schematic is the sequence of tasks described in the 
respective publications, and the largest demonstrated equivalent of traditional 
experimentation is provided for each workflow. The primary example of closed-loop 
discovery in solid state materials science is the ARES project for carbon nanotube 
synthesis. Nikolaev et al.14 demonstrated optimization of carbon nanotube growth 
with a workflow that mitigates expert-mediated integration and features acceleration 
by automation and active learning. Automated control of growth temperature, pressure, 
and atmospheric conditions enables a unique growth condition in each experiment, 
with a series of experiments performed by spatially addressing an array of seeds on a 
substrate. Processing and characterization are intertwined as laser illumination 
provides both heating and excitation for Raman spectroscopy, producing spectrograms 
that are analyzed to determine the nanotube growth rate. 14,65 With this materials 
characterization also providing the figure of merit, the workflow contains no further 
performance evaluation. The automated data management and interpretation enables 
closed-loop operation for up to approximately 100 growth experiments planned by 
active learning-based selection of growth conditions. Expert intervention in this closed 
loop occurs occasionally (estimated to be 1–3 %) to assess the quality of the active 
learning and adjust the objective as necessary. Upon exhaustion of the array of CNT 
growth seeds, manual intervention is required to change samples and restart the 
workflow. 
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Figure 3. Workflow diagrams of accelerated materials experimentation spanning 

a range of techniques, strategies and research goals. Based on (a) Nikolaev et al.,14 (b)  
Yan et al.,20 (c) Kusne et al., 66 and (d) Li et al., 29 each workflow involves 

accelerated tasks with various levels of automation and task-to-task integration. The 
productivity for a single pass through the workflow is noted, corresponding to the 
number of equivalent traditional experiments for (a)–(c) and duration of traditional 
experiments for (d). Feedback loops are each labelled with the approximate number 

of iterations per workflow execution (bold), and in (a) and (c) the percentage of 
iterations involving expert mediation is also approximated (italics) 

 
 
The photo anode discovery pipeline in Fig. 2b represents the tiered screening by 

Yan et al. that includes both theory and experiment-based down-selection of candidate 
metal oxides. With respect to the experiments, the computational screening is an 
accelerant and represented as such in the planning task. The Materials Project database 
serves as the primary repository, with additional calculations specific to photo anode 
screening, and while these calculations are critical to the success of the work, they are 
not fully integrated into the experimental workflow. Synthesis, processing, 
characterization, and performance evaluation are accelerated using automation, with 
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tens to thousands of materials being synthesized or measured automatically. While this 
sequence of tasks is in principle amenable to more autonomous operation, setup and 
selection on meaningful experimental conditions are chosen by an expert, resulting in 
expert mediated linkages in the workflow. The heavy use of parallelization and 
automation is supported by automatic data management and quality control, with data 
interpretation requiring expert mediation. A key attribute of this workflow is the 
establishment of automated techniques for a large breadth of experimental tasks, from 
synthesis to performance evaluation that can operate on libraries with up to ca. 2000 
unique materials. The research strategy involves collection of combinatorial materials 
datasets that facilitate data interpretation and scientific discovery, as well as evaluation 
of every prediction from the computational screening to assess its efficacy. These 
aspects of the research limit the value of further task-to-task integration and application 
of active learning, with the broader message being that the impact of the closed-loop 
concept varies with research strategy and goals. 

The workflow of Fig. 3c describes a different implementation of combinatorial 
materials science for studying functional materials where synthesis, processing and 
performance evaluation are accelerated by parallelization and automation with expert-
mediated integration similar to that of Fig. 3b. The unique aspect of this work is the 
use of an active learning loop in the middle of the workflow to accelerate the mapping 
of phase boundaries in a composition library, demonstrating the use of active learning 
in a sub-workflow to accelerate a bottleneck experiment (and save valuable beamline 
time). The synchrotron X-ray diffraction (XRD) characterization described by Kusne 
et al. includes on-the-fly data interpretation and automated selection of the next 
composition for XRD measurements, with occasional expert supervision of the 
clustering-based identification of pure-phase patterns. 

The atomic-scale phase evolution workflow by Li et al. illustrated in Fig. 3d uses 
a specialized nanometer sized reactor to assess phase stability with ca. 1 hour of 
experiment time yielding the same data as over 500 days of annealing in traditional 
bulk experiments. Using data repositories of phase diagrams and stability ranges of 
multicomponent complex metal alloys to plan synthesis, an array of 36 reactors is 
deposited, for example with equiatomic mixtures of the Cantor alloy Cr–Mn–Fe–Co–
Ni. The loop in this workflow is based on the step-wise annealing of the reactor array 
with subsequent atom probe tomography (APT) characterization after each processing 
step. Each APT characterization involves destruction of one of the reactors, and the 
number of reactors is made to be several times larger than the number of processing 
steps due to routine failure of the APT measurement. The critical advancement enabled 
by a small autonomous loop is the real-time monitoring of APT data acquisition with 
well-integrated quality control. Data interpretation is performed by comparison to 
external data and visualization is done through a machine learning model. The richness 
of the APT data coupled with significant annealing time reduction yields high 
throughput knowledge generation even though the workflow contains mostly expert-
mediated integration of tasks. Increased autonomy in the workflow would only be 
warranted after substantial advances in automated data interpretation. 

For each of these workflows, the nominal time to execute the entire workflow is 
on the order of 1 day. The equivalent number of passes through a traditional workflow, 



44 

or the number of days of traditional experimentation to produce the equivalent data, 
provides the nominal acceleration factor of the workflow, which is only equal to the 
acceleration factor of knowledge discovery if the selection of experiments and quality 
of the resulting data is equivalent to those of traditional experiments. Assessment of 
such data value is beyond the scope of the present discussion but remains a critical 
consideration for quantifying workflow acceleration, particularly in settings where the 
research goals involve understanding the underlying materials science as opposed to 
performance optimization. 

9. Conclusions and outlook 
The urgent need for better materials demands faster turnaround cycles from basic 

research, such that better, more efficient, eco-friendlier, and more economically viable 
materials can enter the market sooner than the traditionally observed 40 
years. Accelerated materials experiment workflows have been demonstrated to 
increase throughput by up to a few orders of magnitude compared to traditional 
methods. Surveying the reported workflows reveals two primary areas for workflow 
sophistication, the integration of sequential tasks without requiring expert involvement 
and the expansion of feedback loops to incorporate a larger fraction of the workflow 
tasks. The ARES workflow achieves both of these goals with a relatively small 
workflow compared to the functional materials discovery research where the variety of 
characterization and performance evaluation experiments increases the number of 
workflow tasks as well as the demands on data management, data interpretation, and 
quality control. 

To visualize progress to date and the expected advances from ongoing 
research, Fig. 4 illustrates the continuum of materials workflows in terms of the 
scientific complexity and workflow automation complexity. To elucidate our intended 
meaning of scientific complexity, representative tasks spanning minimal complexity to 
very complex are listed. Arguably the most important aspect of a successful science 
program is the ability to identify interesting problems and ask the important questions 
that guide research activities. These tasks are beyond the purview of present 
autonomous research and will be for the foreseeable future. Advances in natural 
language processing for materials science may automate aspects of scientific 
communication, but critical analysis of the literature and communication of the insights 
provided by a given experiment will continue to rely on human intellect for the 
foreseeable future. 
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Figure 4. Visualization of the landscape of materials experiment workflow in terms  
of the scientific complexity of automated tasks and the workflow automation 
complexity, which is based on the number, variety, speed, and difficulty of 

experimental steps in the workflow 
 

The advancements in combinatorial materials science and high throughput 
experimentation have been largely along this latter axis, and initial demonstrations of 
autonomous loops have made progress on the former axis with automation of more 
intellectually challenging research tasks. The nominal location of the 4 workflows 
from Fig. 3 are noted by stars. While research will push the frontier of automated 
experiments along both axes the most complex scientific tasks will remain the 
responsibility of human experts for the foreseeable future. 

Determining the most effective advancements in a materials experiment 
workflow requires critical evaluation of bottlenecks for progress against the research 
goals. Even when expert mediation is required between tasks, workflow throughput is 
often limited by the manual steps at the front and back ends of automated experiments. 
These peripheral activities, which fall under the intermediate “complicated” level of 
scientific complexity in Fig. 4, can be difficult (or currently impossible) to fully 
automate due to the routine use of expert knowledge, for example in judgement of data 
quality based on extensive previous experience with related data. Advances in artificial 
intelligence (AI) for materials encompasses a wide variety of strategies for addressing 
these challenges, which will be critical for expanding the scope of autonomous loops. 
This approach to pushing the frontier of materials workflows is illustrated by the 
“Materials AI” arrow in Fig. 4 and will ideally accompany the expansion of 
autonomous loops to include more complex and a larger variety of experimental tasks. 
This complementary approach to pushing the frontier of materials workflows is 
illustrated by the “Build on HTE” arrow due to the demonstrated successes in 
experiment automation from the high throughput experimentation community. The 

https://pubs.rsc.org/en/content/articlelanding/2019/sc/c9sc03766g#fig3
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ability to leverage this existing work makes autonomous workflows more readily 
extendable into complex automation as compared to the extremes of complex scientific 
reasoning. 

An outstanding question with regard to the next generation of experimental 
workflows is how to best combat human biases that can severely limit 
innovation. Advanced autonomous experimentation may remove biases within a given 
search space through computationally designed experiments. However, the scope of 
the search space is limited by both instrument capabilities and active learning strategy, 
whose designs originate with human identification of the materials space of interest. 
To the extent that human biases disseminate from the “complex” scientific tasks of Fig. 
4, bias removal within an autonomous workflow must be complemented by 
sociological solutions for removing bias in decisions beyond the experiment workflow. 

We are aware of several research groups that are building autonomous 
experiments in the “next generation” regime of Fig. 4, including emerging reports from 
perovskite synthesis and molecular materials for of organic photovoltaics and organic 
hole transport materials. Continuation of these concerted efforts to increase automation 
and develop tailored AI algorithms will enable the materials science community to 
realize a paradigm shift in scientific discovery where expert scientists can dedicate a 
substantially larger fraction of their time to performing the critical tasks of identifying 
important problems and communicating critical insights. 
 
(Joint Center for Artificial Photosynthesis, California Institute of Technology, 
Pasadena, CA 91125, USA, Division of Engineering and Applied Science, California 
Institute of Technology, Pasadena, CA 91125, USA, First published 20 Sep 2019). 
URL: https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC03766G 
 
 Words and word combinations:  

– encompass [ɪnˈkʌmpəs] – заключать в себе; 
– accelerate [əkˈseləreɪt] – ускорять;  
– workflow [ˈwɜːkfləʊ] – трудовой процесс; 
– proliferation [prəlɪfəˈreɪʃn] – распространение; 
– renewable [rɪˈnjuːəbəl] – возобновляемый; 
– necessitate [nɪˈsesɪteɪt] – сделать необходимым; 
– serendipity [ˌser(ə)nˈdɪpɪtɪ] – интуиция;  
– eliminating [ɪˈlɪmɪneɪtɪŋ] – ликвидация; 
– unprecedented [ʌnˈpresɪdentɪd] – беспрецедентный; 
– throughput [ˈθruːpʊt] – пропускная способность; 
– life cycle [laɪf ˈsaɪk(ə)l] – жизненный цикл; 
– database [ˈdeɪtəbeɪs] – база данных;  
– technique [tekˈniːks] – метод; 
– implementation [ɪmplɪmɛnˈteɪʃ(ə)n] – реализация; 
– anneal [əˈniːl] – отжигать; 
– characterization [karaktərʌɪˈzeɪʃ(ə)n] – характеристика; 
– parallel [ˈpærəlel] – параллельный; 
– spectroscopy [spekˈtrɒskəpɪ] – спектроскопия; 
– establish [ɪˈstæblɪʃɪŋ] – устанавливать, оставлять; 
– ingestion [ɪnˈdʒɛstʃ(ə)n] – прием данных. 

 
Task 2. Summarize all the ideas of the article and write an essay. 
Task 3. Make a presentation based on the article.  
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Article 3 
 
 

Task 1. Read the text below. 
 
 

Towards a model of automation adoption 
(by  Ian McCandliss, Kevin Zish, J. Malcolm McCurry, J. Gregory Trafton 

George Mason University, Peraton Inc., U.S. Naval Research Labs) 
 

Abstract 
This study examines the impact of prior experience on the adoption of 

automation in a supervisory control task. Automation is typically implemented as a 
means of reducing a person’s effort or involvement in a task. When automation is first 
introduced in a new product, the experience on the yet-to-be automated task is variable. 
Some users have experience with the task prior to the automation while others have 
little to no prior experience. Automation adoption between levels of experience was 
investigated in a mixed design study. One group was trained to use a manual version 
of a task before learning of an automated version. A second group was only trained to 
use the automated version of the task. The results of this study indicate that both 
training and experience are needed before users can make robust predictions about 
future automation adoption. 

1. Background 
Automation can be considered the reduction of human intervention through the 

use of automatic control systems. Through the implementation of automation, human 
oversight may be shifted or removed entirely as a part of a system (Parasuraman, 
Sheridan & Wickens, 2000). By shifting attention away from previously necessary 
tasks, cognitive and material resources become freed to be put to new use. Consider 
telephone operation which previously required many humans to manually connect and 
disconnect lines but which has now been supplanted by an almost completely 
autonomous process. Or consider how the seed-drill automated the process of digging 
out a hole, planting a seed and packing soil into place, allowed farmers to plant crops 
faster and over a much larger acreage (Sayre, 2010). 

While these automated systems have been widely adopted, not all attempts at 
automation succeed, at least not immediately. For example, most new cars sold in the 
United States are automatic transmissions, with manual transmissions being in sharp 
decline (Duffer, 2018). In spite of the clear ease of use with which automatic 
transmissions provide (Schoner, 2004), there yet remain people who prefer the more 
reliable “old” way of doing things, as this is primarily what they have grown 
accustomed to using (Akple, Turkson, Biscoff, Borlu & Apreko, 2013). 

When an automated system is introduced, there are some who will gravitate 
towards it and view it as providing additional utility and perceiving it as easier to use 
(Zhang, Zhu & Liu, 2012). Conversely there are others who will view the old way of 
doing things as more reliable (Akple et al., 2013) and refuse to adopt the new 
automation. However, as the automation becomes more widespread and even accepted 
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there will also be people who have had no prior experience with the older technology 
or the way things used to be done. 

Is it possible to then model automation adoption? One way to examine the use 
and adoption of automation may be the Technology Acceptance Model (TAM) 
(Venkatish & Davis, 2000). This model is helpful in many ways as it ascribes the actual 
use of the technology onto several latent variables which can be measured via surveys. 
These latent variables vary from study to study but most often include the Perceived 
Ease of Use (PEOU) and the Perceived Usefulness (PU) of the technology by the user. 
These measures of the user’s perception of the product are then loaded onto the users 
reported Behavioral Intention (BI) to use the product. That is, it is a prospective 
measure of how much, or to what extent, the user will utilize the given technology. 
While there are a number of other versions and successors to the TAM, almost all of 
them contain at least some elements of the initial model (Sanchez & Hueros, 2010). 

While previous studies have assumed a strong relationship between Behavioral 
Intention and Actual Use (AU) of the product, this relationship may be overstated (Lee, 
Kozar & Larsen, 2003). Many studies assume that the relationship is so strong that they 
do not even examine it, halting their examination after obtaining information about the 
BI (Battacherjee & Premkumar, 2004; Helia, Asri, Kusrini, & Miranda, 2018; Leong, 
Ibrahim, Dalvi-Esfahani, Shabazi & Nilashi, 2018; Razmak & Belanger, 2018). A 
potential reason for this disconnect is that measuring actual use is time- consuming and 
difficult and that such findings may be considered settled (Turner, Kitchenham, 
Brereton, Charters & Budgen, 2010). However, there is a danger in following this 
assumption, as the relationship may be altered from previous studies if AU is measured 
using objective or subjective measures (Turner et al., 2010). Given that a core principle 
of automation is to free the user from a task, obtaining measures of actual use of the 
automated technology may be more difficult to acquire than traditional technology. 
Furthermore, the TAM in its most basic form does not account for the impact of prior 
exposure to a technology, or the way a person was first introduced to it. 

This issue could potentially be addressed by utilizing a more complex model 
dubbed the TAM-2 (Venkatish & Davies, 2000) as it does include factors which 
represent experience. However, in this model experience is noted as only acting as a 
moderating variable for perceived social pressure to utilize a new technology. While 
the validity of this conclusion is not in dispute, it does not necessarily capture the way 
automated technology is introduced both to those who have had years of experience 
without it, and those who have always had it as the norm. It also does not differentiate 
this from exposure to the technology over time. Furthermore, it still has the same 
vulnerability as the TAM as BI still fully mediates the relationship between all other 
latent variables and actual use. Consider the impact that simply presenting a new tool 
or object has on a person, especially in an experimental setting. The person may 
incorrectly assume that because it was presented this way that they should provide it 
with a positive rating to align with the experimenters assumed expectations (Lee, Kozar 
& Larsen, 2003; Mummalo & Peterson, 2018). While this could have a strong impact 
on their Perceived Usefulness of an object (as is the case described in the TAM2) it may 
not necessarily have an impact on their actual use of the tool. This in turn would require 
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an examination of the tools actual use, which as stated previously may be difficult 
given that a major part of automation is disengaging the user. 

Given that variables which may be of crucial interest for modeling automation 
are either unexamined or under examined in present TAM literature, it may be more 
prudent to develop a new model which is specifically intended to handle automated 
technologies. In order to develop this model, we start with the most basic variables of 
the TAM, Behavioral Intention to Use and Actual Use of the automation. In order to 
measure these key variables, a task must be developed that meets certain criteria. First 
it must allow the researcher to examine both the participants’ stated Behavioral 
Intention, as well as an objective measure of how frequently or to what degree they 
utilized it. 

Secondly, as the model is intended to measure the adoption of automation and 
automation is meant to supplant a previously manual operation, it follows that the task 
must have both manual and automated functionality. By providing both of these systems 
to participants, they will be able to utilize or abandon automated and manual controls 
as they consider appropriate for the task. 

Thirdly, as the user population lacks uniformity in their experience with either 
automated or manual controls, the task must be controlled to simulate these user groups. 
The task must allow some participants to utilize only manual options at first and later 
provide access to automated options (as a person who has worked in a task for a long 
time would encounter), while allowing other participants full access to all of the tools 
from the beginning (as a neophyte to a task would encounter). 

Lastly, while the latent variables of the TAM may only load onto the participants 
Intention to Use, it would be foolhardy to discount them outright. As such the core 
variables of Perceived Usefulness and Perceived Ease of Use should also be considered 
in the model. 

Formally stated, the goal of this study is to develop a model of Automation 
Adoption and to examine the impact of exposure to automation on actual use of an 
automated system. 

2. Method 
2.1. Participants 
A total of 68 participants (23 males) with ages ranging from 18 to 37 all enrolled 

in undergraduate psychology courses at George Mason University. Thirty two were in 
the full automation condition while thirty one were in the partial automation condition. 
Five participants were excluded from analysis due to technical failures which resulted 
in their data being lost. All participants received course credit for their participation. 
Previous research has indicated that student samples may serve as stand-ins for more 
expert populations, but not for general populations (King and He, 2006). This was 
desirable in this study given the high skill-floor of the task utilized to develop the 
model. 

2.2. Materials 
A computer loaded with the Research Environment for Supervisory Control of 

Heterogeneous Unmanned Vehicles (RESCHU) was used. 
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3. Procedure 
This study involved the use of RESCHU, a complex task created as part of a 

Naval Research Labs project (Boussemart & Cummings, 2008). The task is a 
computerized simulation in which participants must control multiple unmanned aerial 
vehicles (UAV’s) in a dynamic environment to both avoid hazards and send planes to 
designated targets. In this version of RESCHU two UAV’s were required to travel to 
each target. The RESCHU task contains an automation feature that provides additional 
utility over manual controls methods which the participants may also utilize. This 
automated feature is an easy to manipulate component in establishing the conditions for 
this automated feature is an easy to manipulate component in establishing the conditions 
for this study. The layout for the task is displayed below in Fig 1. The first UAV to 
arrive scanned the target for danger; the second UAV to arrive took a photograph of the 
target. There were four control mechanisms for guiding the planes to different targets, 
two manual methods and two that utilized automation. Regardless of the control 
mechanism used, once a plane was assigned to a target a visible straight-line would 
appear between the UAV and the target, denoting its flight path. The plane would then 
fly along the flight-path until it reached the target, unless the participant right clicked 
on a plane while in flight, selected the “add waypoint” button and clicked somewhere 
on the map. In this case planes would begin flying to the waypoint prior to heading to 
the target. This allowed the planes to maneuver around the hazards, denoted in yellow 
circles which would appear and disappear in different portions of the map throughout 
the experiment. 

 

 

 
Figure 1. This displays a view of the overall task arrangement. Planes are numbered 

one through five in blue and are set on the aircraft carrier on the left side of the 
screen. The targets are green diamonds labeled A through E. The yellow circles are 

Hazards which must be avoided 
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The first of the manual controls consisted of right clicking a plane on its starting 

position, clicking the subsequent button that popped up and then clicking on a target. 
The second of the manual controls consisted of clicking and dragging the dot at the 
end of a planes flightpath while it was enroute to a target. The first of the automated 
controls was accessed by right clicking and interfacing with the target. Upon doing so, 
the two nearest planes which were not already enroute to a target would begin flying to 
that target. The second of the controls which used automation was the “Run Play” 
button, displayed in the bottom left corner of the screen. Whenever this button was 
clicked, the nearest unassigned plane would begin flying to the nearest available target. 

Regardless of which control mechanism was used, when the first plane arrived 
at a target, the target would change from green to yellow and the plane would 
automatically begin flying back to the spot it initially took off from. Participants were 
informed that they should avoid having their planes return to the take-off position and 
should instead redirect them in flight. When using the manual controls, the second UAV 
would stop at the target and begin flashing red. Participants would then need to right 
click on the plane and select the pop-up button, which would allow them to begin the 
visual search task as described below. No such visual search task was required if the 
plane was sent via automated controls. 

The visual search task consisted of a photographic image displayed in the upper 
left corner of the screen with a target located somewhere within it. A written description 
for this target was given in a small box immediately below the picture taking are. 
Participants were informed that they would need to read the text in order to identify the 
target in the visual search. Participants were provided with immediate feedback on 
whether or not they were successful in the visual search task via the textbox where they 
received the targets descriptor. 

Participants were informed that they should attempt to score as many points as 
they could within the time allotted. Points could only be scored using the manual 
controls if the user successfully completed the visual search task. In addition to a 
simplified control mechanism, the automated tools also removed the requirement of a 
visual search task on the part of the participant. This allowed them to score points with 
fewer steps. 

4. Design 
Two conditions were used for this experiment. The continuous automation 

condition received access to the automation at the beginning of the experiment. A 
graphical display of the order of events for each condition is shown in Fig. 2. The 
partial automation condition received access to the automated tools only after 
completing a full session with only access to manual controls. While both conditions 
were given an overview of the task, the partial automation condition were not instructed 
in and unable to use the automated tools until later in the experiment. 

After the initial overview, the partial automation condition engaged in a training 
exercise using only the manual control mechanisms. The partial automation group then 
engaged in an experimental trial with only the manual controls. Following this, the 
partial automation group was given a secondary overview and training, now including 
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the automatic controls. This was then followed by two experimental trials in which they 
had full access to all of the tools. 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 2. A display of the order of tasks participants engaged in for each condition 
 
 

During the initial overview, the continuous automation group was fully informed 
of all the tools available to them and underwent a training session with all tools 
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available. After this, the participants engaged in three other sessions with all tools 
available. 

After the participants were introduced to the automated controls, they were given 
a survey meant to measure their intention to use the automated controls. This survey 
was also intended to assess both the users perceived utility and perceived ease of use of 
the automated controls. Subsequent surveys were given out after each session so as to 
assess how these variables changed with experience. At the end of all treatments, 
participants were asked an open ended question about what they thought of the 
automation and their responses recorded by the experimenter. 

5. Results and discussion 
We first examined how frequently participants used automation: If a majority of 

participants eschewed automation (or, conversely, used it exclusively), a model of 
automation usage would be useless, since there would be nothing to predict. 

As Fig. 3 suggests, however, participants varied widely in their automation 
usage. 

 
 

 
Figure 3. The figure shows the frequency of people who utilized the automation when 

automation was available. The extreme ranges represent people who did not use 
automation at all, and those who utilized only automation respectively. The 

intervening columns represent those who utilized some combination of manual and 
automated controls 

 
 

To demonstrate the relationship between Behavioral Intention to Use and Actual 
Use, only surveys that preceded a session were analyzed. Multiple regressions were 
used to determine the impact of Perceived Usefulness and Perceived Ease of Use on 
Intention to use for each condition and survey. For the First survey of the Partial 
Automation Condition (F(2,28) = 25.01, p<.01, R2 = .61) both Perceived Usefulness (β 
= .43, p<.01) and Perceived Ease of Use (β = .52, p<.01) were statistically significant. 
Similar results were found for the Second survey ( F(2,28) = , p<.01, R2 = .68) as both 
Perceived Usefulness (β = .42, p<.05) and Perceived Ease of use (β = .47, p<.01) were 
both significant. 
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While the first survey of the continuous automation condition (F(2,28) = 8.81, 
p<.01, R2 = .34,) did show a significant impact of Perceived Usefulness on intention 
to use (β = .51, p<.01) Perceived Ease of Use did not demonstrate a significant impact 
(β = .24, p > .05). The second survey of the continuous automation condition  
(F(2,29) = 32.4, p<.01, R2=.67) also showed significance for both Perceived 
Usefulness (β = .51, p <.01) and Perceived Ease of Use (β = .30, p<.05). The third 
survey of the Continuous Automation condition (F(2,29) = 45.15, p<.01, R2 = .74) was 
similar to the Continuous Automation condition as it also showed a significant impact 
of Perceived Usefulness (β = .79, p < .01) but did not demonstrate a significant impact 
of Perceived Ease of Use (β = .09, p > .05). 

Multiple regression analysis was also used to determine the impact of the 
participants Behavioral Intention to Use on Actual Use of the automatic tool. The 
partial automation condition’s first survey showed a significant impact of intention to 
use on the actual use of the automated tool (F(1,29) = 8.28, p < .05, R2=0.20). The 
partial automation condition’s second survey also showed a significant impact of 
Behavioral Intention to Use on Actual Use (F(1,29) = 14.26, p < .05, R2 =.31). These 
results indicate that for the partial automation condition Behavioral Intention was 
always a consistent predictor of actual use. 

In contrast, the continuous automation condition’s first survey did not 
demonstrate a significant impact of Behavioral Intention to Use on Actual Use. 
However, the continuous automation condition’s second survey did show a significant 
impact of Behavioral Intention to Use on Actual Use (F(1,30) =7 .75, p < .05, R2 =.18). 
The continuous automation condition’s third survey also showed a continuation of this 
relationship (F(1,30)=20.75, p<.05, R2=.39). The continuous automation condition’s 
relationship between Behavioral Intention to Use and Actual Use, was initially not 
predictive of actual use, but became predictive as the participants gained greater 
exposure to the task. A graphical depiction of the relationship between the latent 
variables (Perceived Usefulness, Perceived Ease of use and Intention to Use) and their 
impact on the participants Actual use is displayed below in Fig. 4. 
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Figure 4. The relationship of the latent variables Perceived Usefulness and Perceived 
ease of Use on Intention to Use by Survey and Condition. It also shows the Impact of 

Intention to use on Actual Use, though this was part of a separate analysis 
 
 
Initial findings support the idea that the treatment of either continuous exposure 

automation or partial automation lead to the key differences in initial behavioral 
outcomes. Participants who were exposed to only automatic controls were initially 
unable to make an accurate prospective judgement on how they would actually use the 
tools. Conversely, those who were exposed first to the manual controls and only later 
had exposure to the automatic controls, were able to make accurate judgements from 
the first time they took the survey. 

However, it is unlikely that the order of introduction of the tools was the full 
reason for this effect, though this may be explored further in future studies. While both 
conditions had exposure to a guided training period prior to taking the first survey, the 
partial automation condition still had more exposure to the task due to the experimental 
design. As the partial automation condition had exposure to nearly a full experimental 
session than the continuous automation condition prior to the first survey, their greater 
experience allowed them to make a more accurate judgement on their behaviors than 
the continuous automation condition did. However, as time went on and the continuous 
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automation condition gained experience equivalent to the partial automation condition, 
their assessment accuracy rose to match that of the other treatment. 

It may then be possible to attribute the earlier overly inflated assessment of 
intention to use to experimenter effects. Given the situation, and the way the questions 
were phrased, participants inflated their estimates of how much they would use the 
automation initially as a means of satisfying what they believed were the experimenters 
expectations. However, after gaining experience with the task in a more realistic way, 
participants in the continuous automation condition were able to provide an accurate 
description of how much they would use automation (Behavioral Intentions). 

This finding has broad reaching effects especially for future automation. 
Generally, the results indicate that if a person has training, but no tangible understanding 
of the environment they will be working in, then their intention to use automation does 
not predict their actual use of it. However, if a person has prior experience with the 
environment, even if they only have a small amount of training with the automation, 
then their BI may in fact be a very strong indicator of how they will utilize the 
automation. 

This provides valuable insight when constructing future studies when model 
building for Automation Adoption. In order to create appropriate comparisons, future 
studies will need to establish a certain level of baseline experience before a full analysis 
can be undertaken. In the meantime, it does provide us with insight about being able to 
predict the actual usage of automation from people who are already familiar with their 
task. How long it takes to reach this state is a matter that future studies may look at. 

Qualitative data was also collected at the end of the experiment with the 
experimenter asking open ended questions about what they thought of the automation. 
While this data requires further analysis, there were consistent patterns of participants 
who chose not to use it of the automation taking them out of the loop. Some 
acknowledged that using the automation would be easier, but that doing so would result 
in them losing control. One of the participants in the partial automation condition stated 
that while using the automation did make things easier, it was also more boring. These 
statements suggest how the model may be refined in the future. The level of 
controllability of the automation could be examined as well as whether or not the 
participants consider the lack of interaction a value adding or value subtracting 
experience. 

In conclusion, these results provide support to the idea that if a person has 
experience in a domain that they can make accurate statement about how they would 
choose to use or disuse a corresponding automated system. This may be helpful when 
an organization seeks to introduce an optional automated tool to a previously non-
automated task and they wish to determine if experienced operators will utilize it or 
not. Future studies may examine how much exposure to a given domain is required 
before this judgement may be accurately made. 
 
(George Mason University , Peraton Inc.2 , US Naval Research Laboratories, First 
Published November 20, 2019).  
URL:  https://journals.sagepub.com/doi/abs/10.1177/1071181319631254 
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Words and word combinations:  
– prior [ˈpraɪə] – прежний; 
– adoption [əˈdɒpʃ(ə)n] – принятие;  
– intervention [ɪntəˈvenʃ(ə)n] – вмешательство; 
– adopt [əˈdɒpt] – принимать; 
– widespread [ˈwaɪdspred] – широко распространенный; 
– examine [ɪɡˈzæmɪn] – исследовать; 
– utilize [ˈjuːtɪlaɪz] – использовать;  
– assume [əˈsjuːm] – предполагать; 
– especially [ɪˈspeʃ(ə)lɪ] – особенно; 
– supplant [səˈplɑːnt] – вытеснять; 
– relationship [rɪˈleɪʃ(ə)nʃɪp] – взаимосвязь, взаимоотношения; 
– significant [sɪɡˈnɪfɪk(ə)nt] – значительный, существенный; 
– initial [ɪˈnɪʃ(ə)l] – начальный; 
– be engaged [ɪnˈɡeɪdʒd] – заниматься; 
– exercise [ˈɛksəsʌɪz] – упражнение, осуществление; 
– including [ɪnˈkluːdɪŋ] – включая, в том числе; 
– access [ˈækses] – доступ, проход; 
– trial [ˈtraɪəlz] – испытание; 
– participant [pɑːˈtɪsɪpənts] – участник; 
– suggest [səˈdʒests] – предполагать; 
– available [əˈveɪləb(ə)l] – доступный. 

 
Task 2. Summarize all the ideas of the article and write an essay. 
Task 3. Make a presentation based on the article. 
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Article 4 
 
 
Task 1. Read the text below. 

 
 

The effects of automation and role allocation on team performance 
(by Murat Dikmen, Yeti Li, Philip Farrell, Geoffrey Ho, Shi Cao, Catherine 

Burns) 
 

Abstract 
An experiment was conducted to investigate the effects of automation and role 

allocation on performance in a simulated picture compilation task with fourteen two-
person student teams. In the absence of automation support, the system integrated 
sensor information. In the presence of automation support, the system both integrated 
sensor information and identified contacts. Roles were assigned either based on warfare 
domain or geographical sectors. Results showed that human-automation system 
performance was similar in two automation conditions, but participants were slower in 
classifying tracks and overall classified fewer tracks when the automation was present. 
We conclude that working with automation may lead to degraded team performance 
due to complacency and additional task complexity. 

1. Introduction 
The effect of automation on individual performance has been relatively well 

studied. However, there is little research on automation in teams, especially in the 
maritime domain (Qin et al., 2019). Compared to a single operator working with the 
automation, a team of multiple operators working with the automation creates new 
challenges that need to be addressed, such as determining appropriate crew size in the 
human automation teams and how crews need to modify task strategies in order to 
adapt to the increased automation capabilities (e.g. allocating tasks between crew 
members and the automation). On behalf of the Royal Canadian Navy, Defence 
Research and Development Canada is exploring how multisensor data fusion (MSDF) 
for constructing the battlespace picture impacts crewing and human-automation ‘team’ 
performance. This work presents an investigation into the effects of increased 
automation capability on team performance in a simulated naval environment 

1.1. Background 
The operations (OPS) room onboard a warship typically is in charge of 

integrating all of the ship’s sensor information. One of the main tasks involves a team 
of operators responsible for building the tactical picture of the ship’s operating 
environment which includes a comprehensive understanding of all the sea surface and 
air traffic in the area. This task is called picture compilation. Picture compilation 
typically involves detecting contacts (i. e. a ship or a plane) with sensors, tracking the 
contacts, evaluating them, and gathering all relevant identification data for the contacts 
(Canadian Forces Naval Operations School, 2007). To do this, operators must integrate 
signals from various sensors such as radars, electronic warfare sensors, and passive 
sensors to build a track that represents the path of a ship or a plane. Tracks must also 
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be classified and identified. For example, a ship might be classified as friendly, neutral 
or hostile. This task is performed by the operators using a variety of information 
sources to assess the contact’s identity such as receiving information from 
transponders, intelligence, and also information from the contacts such as its 
movement, vehicle type, and other key identifiers. Over time, ideally the tracks and 
their identities form an accurate and coherent tactical picture for commanders. 
Automation can support operators performing the picture compilation task. For 
example, data fusion automation could merge the data from various sensors, leaving 
the operators to focus on identifying and assessing the contact. In the future, 
automation can also support human operators in classifying and identifying contacts, 
which is explored in this study. From a human factors perspective, it is important to 
understand how allocating tasks to automation affects crew performance and whether 
any changes to crew size can be realized as a result. While automation can support 
contact classification, the OPS room operators would still be responsible for validating 
the automation. Previous work on the impact of automation on team performance 
showed that automation can lead to reduced mental workload (Jentsch & Bowers, 
1996), however not in all cases (Van Dijk, 2010). Moreover, team performance is only 
improved if the automation is highly reliable (Hillesheim & Rusnock, 2016; Wright & 
Kaber, 2005). At the same time, interaction with higher intelligent agents will likely 
produce some residual error in the agents’ goal achievement (Farrell, 2003), which can 
lead to degraded human-automation team performance. Previous studies have 
investigated teamwork and automation failures (Mosier et al., 1998), adding 
automation as a team member, (Miescher, Spitz, Anastosi, & Lind, 2001), and crew 
composition (Chow, Lamb, Charest, & Labbé, 2016). However, there is little research 
on role allocation in human-automation teams. Traditionally, naval operators separate 
the picture compilation task by warfare domains (i.e., air, surface, and subsurface) such 
that one person is primarily responsible for one warfare domain. However, with 
automation supporting contact classification, it might be more advantageous to 
separate the picture compilation task using other strategies to divide the task load. One 
such method is to split up roles by geographical sectors. This allows for a better 
distribution of task load since operators could divide up the work depending on the 
density of traffic in various sectors to distribute the workload. 

1.2. Overview of the Study 
In the present study, we investigated the impact of automation for track 

classification and operator role allocation on team performance. Two-person teams 
were presented with a picture compilation task in a simulated navy environment. We 
varied the automation capability, as well as the role allocation. 

2. Method 
2.1. Design 
The experiment was a 2 × 2 repeated measures design. Independent variables 

were automation capability and role allocation. Automation capability had two levels: 
(1) system without classification automation support (without classification condition) 
and (2) system with classification automation support (with classification condition). 
These levels were considered as lower and higher level of automation in this study, 
respectively. Role allocation had two levels: (1) role allocation based on geographical 
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division (i. e. west, east) and (2) role allocation based on warfare domain (i. e. surface, 
air). 

2.2. Participants 
Fourteen teams of two university students participated in the study. Team 

members were familiar with each other and had completed at least one course project 
together. The mean age was 21.4, and there were both same-gender and mix gender 
teams in the study. 

2.3. Apparatus 
ISR360 – a multi-sensor multi-tracking software suite by Trackgen Solutions – 

was modified to create a simulated environment for the study that retained realistic data 
fusion and target identification capabilities. The two-person team shared a map that 
displayed their own ship, other ships and aircraft (Fig. 1). Tracks in the own ship’s 
operating environment were produced by simulated sensors (radar and automated 
identification system, AIS). Each track was represented by a symbol which indicated 
that it was a plane or a ship. The color of the symbol indicated whether the identity was 
unknown (yellow), friendly (blue), neutral (green) or hostile (red). The actions of one 
team member were visible on the other member's screen.  
 
 
 

 

 

 

 

 

 

 

 

 

 
Figure 1. Simulator screen. A: Friendly contact (blue). B: Ownship  (black). C: Hostile 

contact (red). D: Unknown contact (yellow) 
 
 

Team members could click on tracks to see its attributes such as speed and 
heading and could classify them using a contextual menu. When a track was classified, 
its symbol changed accordingly to friendly, neutral, or hostile. The simulator also had 
controls to de-clutter the display by turning on or off the shipping lane / flight routes. 
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2.4. Task 
Participants performed a picture compilation task where each team member had 

the shared map on their own workstation. The experiment was divided into four 
scenarios, each corresponding to one condition. In each scenario, participants had to 
classify tracks based on criteria such as speed and heading of the target, altitude (for 
air tracks), and whether the target follows commercial routes. Each property could be 
an indication of a friendly or hostile characteristic. For example, heading towards the 
participants’ own ship was as a hostile characteristic whereas heading away from the 
ship was a friendly characteristic. There were five such characteristics for ships and 
four for planes. Participants had to classify tracks as friendly if it did not have any 
hostile characteristics, neutral if it had some, and hostile if it had more than three hostile 
characteristics. Additionally, participants had to consider any suspicious behavior such 
as sudden turns. These rules were provided during the training. 

In conditions without classification automation, tracks appeared on the screen 
and were classified as unknown tracks. In conditions with classification automation, all 
tracks were pre-classified by automation. The classification automation labeled the 
tracks only as neutral or hostile and it was not able to integrate all criteria for 
classification, and this resulted in an average automation accuracy of 63 %. When the 
classification automation was present, participants had to “verify” the automation's 
decision by reclassifying the tracks. This was considered overriding the automation's 
decision, in which case the automation did not further classify that track. 

In geographic sector-based role allocation conditions, one team member was 
responsible for classifying tracks to the west of their own ship, and the other team 
member to the east. In warfare domain-based role allocation conditions, one team 
member was responsible for classifying ships and the other team member planes. In 
each scenario, whether a track was an air or surface target was known as their symbols 
were different. 

2.5. Procedure 
The experiment consisted of a training session, followed by four main scenarios. 

The order of the scenarios was randomized. During the training, participants 
familiarized themselves with the task by completing several training missions. Before 
each scenario, participants were briefed on the automation capability and role 
allocation. Each scenario started with most of the targets appearing on the screen in the 
first few seconds. Participants had to work as a team (but also within their 
responsibility area) to classify as many tracks as possible. Each scenario was 10-
minutes long. At the end of each scenario, participants completed a NASA-TLX (Hart 
and Staveland, 1988) questionnaire. 

2.6. Measures 
All performance measures were collected at the team level. Subjective mental 

workload (NASA-TLX) was collected for each individual using the weighting method 
described in Hart and Staveland (1988), then averaged to create a team mental 
workload score. 

Human-automation system accuracy was the same as operator accuracy when 
the classification automation was absent (without classification automation 
conditions). When the classification automation was present (with classification 
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automation conditions), human-automation system accuracy consisted of both operator 
accuracy and automation accuracy. 

2.7. Results 
Data from one group was not recorded by the simulator, therefore we conducted 

the analysis with data from 13 teams. For data analysis, 2x2 repeated measures 
ANOVAs were used. 

2.8. Classification Ratio 
Fig. 2 shows the percentage of tracks classified by participants in each condition. 

Overall, participants classified almost all targets when the automation was absent and 
missing about 30 % when the automation was present. This difference was significant, 
F(1, 12) = 27.72, p < .001, η2 = .48. There were no other differences, all p’s > .05. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Percentage of tracks classified by participants 
 
 

2.9. Operator Accuracy 
As shown in Fig. 3, operator accuracy was higher without classification 

automation than with classification automation, F(1, 12) = 14.28, p = .003, η2 = .26. 
No other effects were significant, all p’s > .05. Note that the reduced accuracy with 
classification automation condition takes into account the reduced percentage of tracks 
classified by participants. 

2.10. Operator Accuracy for Classified Tracks  
For tracks that were classified by participants, there was no significant difference 

in accuracy between conditions, all p’s > .05. In other words, when participants 
classified or verified, they performed similarly. The accuracies were 71 %, 70 %, 73 %, 
and 70 % for conditions 1, 2, 3, and 4, respectively (see Table 1 for the conditions). 
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2.11. Human-Automation System Accuracy 
Fig. 4 shows the human-automation system accuracy results. For reference, the 

dotted line represents baseline accuracy of automation (i.e. if automation classifies all 
targets, it would be accurate 63 % of the time). Statistical tests showed no significant 
difference between conditions, all p’s > .05.  
 

 
Figure 3. Operator accuracy 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Percentage of tracks correctly classified by the human-automation system 
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Additional one-sample t-tests were conducted to compare all four conditions to 
baseline automation accuracy. 

2.12. Average Time to Correctly Classify a Track 
Participants were slower to correctly classify tracks with classification 

automation compared to without classification automation, F(1, 12) = 13.83, p = .003, 
η2 = .16. There was also a significant interaction effect, F(1, 12) = 4.92, p = .046,  
η2 = .07. As shown in Fig. 5, participants were faster in warfare-based role allocation 
with classification automation, however opposite effects were observed without 
classification automation. 

 
 

 
Figure 5. Average time participants spent to correctly classify tracks 

 
 

2.13 Mental Workload 
There were no significant differences between conditions. Mean NASA-TLX 

scores were 49.8 (SD = 21.4), 52.6 (SD = 20.7), 53.4 (SD = 19.5), and 51.9 (SD = 
20.1), for conditions 1, 2, 3 and 4, respectively. Average NASA-TLX score was 52 
across conditions, indicating a medium level of mental workload. 

3. Discussion 
Participants in this experiment performed a picture compilation task as teams of 

two with two levels of automation and in two team configurations. Results showed that 
participants classified fewer tracks with classification automation. However, overall 
human-automation system accuracy (human + automation) was similar across 
conditions. When participants were engaged with a track, they performed similarly 
regardless of the automation capability or role allocation. 

3.1 Effects of Role Allocation 
Overall participants were faster in correctly classifying tracks in warfare 

domain-based role allocation with classification automation, and opposite effects were 
observed without classification automation. While these results suggest that alternative 
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team configurations might be worth further investigation, the lack of differences in 
primary performance metrics suggests that role allocation had only minimal effect on 
team performance in this experiment and no effect on subjective mental workload. 

3.2 Effects of Automation Level 
Participants classified fewer tracks when automation support was present. It is 

possible that teams working with classification automation may have become 
complacent, as the tracks were already classified by the automation. Although 
participants were explicitly told to verify the automation, they may have been reluctant 
to reclassify the tracks. 

Another explanation is that perhaps reclassifying automatically classified tracks 
requires more cognitive effort than classifying tracks in the absence of automation’s 
suggestion. The differences in time to correctly classify tracks supports this notion. It 
is also possible that participants were looking for obvious anomalies or automation 
failures, therefore wasting time and overall classifying fewer tracks. Moreover, the 
automation in this experiment had low reliability and this likely negatively impacted 
team performance as team performance increases only if the automation has 
sufficiently high reliability (Hillesheim & Rusnock, 2016). Finally, the simulator did 
not have an action history functionality and participants had to remember which tracks 
need to be verified which might have contributed to the observed results. However, we 
should note that the participants had to monitor the contacts regularly after verifying 
the automation’s decision. Therefore, a user interface element that draws attention to 
unverified contacts might have forced participants to ignore the contacts that were 
verified. 

These findings require further research, as classifying fewer tracks would be a 
concern in a real-world situation, and the software used in this study was a 
representative industry product. One of the most important jobs of operators in an OPS 
room environment is to have a “clean” picture as fast as possible for a successful 
mission. Therefore, classifying fewer tracks, even though the accuracy is acceptable, is 
a concern. These findings indicate that automation should be carefully designed to 
avoid complacency effects such as the one observed in this study. 

Finally, participants reported similar levels of mental workload across 
conditions. Working with automation did not reduce the mental workload, as is 
typically shown in the literature (e. g. Kaber & Endsley, 2004). We should note that 
verifying the automation's classification decisions required as much mental effort as 
classifying a track in the absence of a suggestion, if not more. Therefore, in this context, 
no change in mental workload means that reviewing automation's decisions did not 
result in extra mental effort. 

Overall, these results are similar to the results observed in single human – 
automation studies. This work showed that teams are similarly at risk when a higher 
level of automation is introduced. 

4. Conclusion 
In this work, we explored how automation and role allocation affected 

performance of two-person teams in a simulated navy environment. Results revealed 
that role assignments did make minor differences in speed. Although the presence or 
absence of automation resulted in similar human-automation system performance, 
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human performance was worse in the presence of automation. This work supports the 
notion that adoption of automated decision support systems may not always result in 
better human performance, and further research is needed before introducing more 
capable automation into safety-critical environments. 
 
(University of Waterloo Defense Research and Development Canada, First 
Published November 20, 2019).  
URL: https://journals.sagepub.com/doi/abs/10.1177/1071181319631501 
 

Words and word combinations:  
– track [træk] – трек, дорожка;  
– classification [ˌklæsɪfɪˈkeɪʃ(ə)n] – классификация; 
– performance [pəˈfɔːm(ə)ns] – производительность; 
– allocation [æləˈkeɪʃ(ə)n] – распределение; 
– condition [kənˈdɪʃənz] – условие, обстоятельство; 
– picture [ˈpɪktʃə] – изображение;  
– each [iːtʃ] – каждый, всякий; 
– mental [ˈment(ə)l] – психический, умственный; 
– such [sʌtʃ] – такой, таковой; 
– workload [ˈwɜːkləʊd] – рабочая нагрузка; 
– experiment [ɪkˈsperɪmənt] – эксперимент, опыт; 
– friendly [ˈfren(d)lɪ] – дружественный; 
– warfare [ˈwɔːfeə] – столкновение, борьба; 
– significant [sɪɡˈnɪfɪk(ə)nt] – значительный; 
– overall [ˌəʊvərˈɔːl] – общий, полный; 
– scenario [sɪˈnɑːrɪəʊ] – сценарий; 
– capability [keɪpəˈbɪlɪtɪ] – возможность, способность; 
– observe [əbˈzɜːvd] – наблюдать; 
– neutral [ˈnjuːtr(ə)l] – нейтральный 

 
Task 2. Summarize all the ideas of the article and write an essay. 
Task 3. Make a presentation based on the article. 
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ЧАСТЬ IV. БЕСЕДА ПО СПЕЦИАЛЬНОСТИ 
 
 

Summary 
 
 

Task 1. Read the following instructions offered by Virginia Kearney, a 
university expert in writing essays (https://owlcation.com/academia/How-to-Write-a-
Summary-Analysis-and-Response-Essay, 05.2019).  
A summary is telling the main ideas of the article in your own words. 

Steps in Writing 
These are the steps to writing a great summary: 

1. Read the article, one paragraph at a time. 
2. For each paragraph, underline the main idea sentence (topic sentence). If you can't 

underline the book, write that sentence on your computer or a piece of paper. 
3. When you finish the article, read all the underlined sentences. 
4. In your own words, write down one sentence that conveys the main idea. Start the 

sentence using the name of the author and title of the article (see format below). 
5. Continue writing your summary by writing the other underlined sentences in your 

own words. Remember that you need to change both the words of the sentence and 
the word order.  

6. Don't forget to use transition words to link your sentences together. See my list of 
transition words below to help you write your summary more effectively and make 
it more interesting to read. 

7. Make sure you include the name of the author and article and use “author tags” 
(see list below) to let the reader know you are talking about what the author said 
and not your own ideas. 

8. Re-read your piece. Does it flow well? Are there too many details? Not enough? 
Your summary should be as short and concise as possible. 

 
Sample Format 
Author Tag: You need to start your summary by telling the name of the article 

and the author. Here are three examples of how to do that (pay close attention to the 
punctuation): 
1. In “How the Civil War Began,” historian John Jones explains... 
2. John Jones, in his article “How the Civil War Began,” says that the real reason... 
3. “How the Civil War Began,” by historian John Jones, describes.... 

First Sentence: Along with including the article's title and author's name, the 
first sentence should be the main point of the article. It should answer the question: 
What is this essay about? (thesis).  

Example:  
In “How the Civil War Began” by John Jones, the author argues that the real 

reason for the start of the Civil War was not slavery, as many believe, but was instead 
the clash of cultures and greed for cash. 
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Rest of Summary: The rest of your essay is going to give the reasons and 
evidence for that main statement. In other words, what is the main point the writer is 
trying to make and what are the supporting ideas he or she uses to prove it? Does the 
author bring up any opposing ideas, and if so, what does he or she do to refute them?  

Here is a sample sort of sentence: 
___________ is the issue addressed in “(article's title)” by (author's name). The thesis 
of this essay is ___________ . The author’s main claim is ___________ and his/her 
sub claim is ___________ . The author argues ___________ . Other people argue 
___________ . The author refutes these ideas by saying ___________ . His/her 
conclusion is ___________ . 
 
Author Tag List 
Author's 
Name 

Article Words for 
"Said" 

Adverbs to Use 
With "Said" 

James Garcia “whole title” argues carefully 
Garcia “first couple 

of words” 
explains clearly 

the author the article 
(book etc.) 

describes insightfully 

the writer Garcia's 
article 

elucidates respectfully 

the historian (or 
other 
profession) 

the essay complains stingingly 

essayist the report contends shrewdly 
 
Transition Words List 
Contrast Adding Ideas Emphasis 
Although In addition Especially 
However Furthermore Usually 
In contrast Moreover For the most part 
Nevertheless In fact Most importantly 
On the contrary Consequently Unquestionably 
Still Again Obviously 

 
Response 
Response answers: What do you think? Does this article persuade you? 
How to Write 
Generally, your response will be the end of your essay, but you may include your 

response throughout the paper as you select what to summarize and analyze. Your 
response will also be evident to the reader by the tone that you use and the words you 
select to talk about the article and writer. However, your response in the conclusion 
will be more direct and specific. It will use the information you have already provided 
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in your summary and analysis to explain how you feel about this article. Most of the 
time, your response will fall into one of the following categories: 

– You will agree with the author and back your agreement up with logic or 
personal experience. 

– You will disagree with the author because of your experience or knowledge 
(although you may have sympathy with the author's position). 

– You will agree with part of the author's points and disagree with others. 
– You will agree or disagree with the author but feel that there is a more important 

or different point which needs to be discussed in addition to what is in the article. 
How will this article fit into your own paper? How will you be able to use it? 
Here are some questions you can answer to help you think about your 

response: 
1. What is your personal reaction to the essay? 
2. What common ground do you have with the author? How are your experiences the 

same or different from the author's and how has your experience influenced your 
view? 

3. What in the essay is new to you? Do you know of any information the article left 
out that is relevant to the topic? 

4. What in this essay made you re-think your own view? 
5. What does this essay make you think about? What other writing, life experience, 

or information would help you think about this article? 
6. What do you like or dislike about the essay and/or the ideas in the essay? 
7. How much of your response is related to your personal experience? How much is 

related to your own worldview? How is this feeling related to the information you 
know? 

8. How will this information be useful for you in writing your own essay? What 
position does this essay support? Or where might you use this article in your essay? 

 
Sample Format 
You can use your answers to the questions above to help you formulate your 

response. Here is a sample of how you can put this together into your own essay: 
Before reading this article, my understanding of this topic was ___________. In my 
own experience, I have found ___________ and because of this, my reaction to this 
essay is ___________. Interestingly, I have ___________ as common ground with 
the author/audience. What was new to me is ___________. This essay makes me think 
___________. I like/dislike ___________ in the essay. I will use this article in my 
research essay for ___________. 
 
Vocabulary 
article – статья;  
summary – краткое изложение, конспект;  
rendering – реферирование;  
uncommon – редкий;  
finding – находка, открытие, полученные данные; 
to pay attention – уделять/обращать внимание;  



70 

conclusion – умозаключение, вывод; 
to highlight – выделять;  
to comprehend – понимать, осмысливать;  
rough draft – эскиз, набросок;  
firm grasp – четкое понимание;  
assignment – предписание, инструкция, задание;  
to explain – объяснять;  
in plain language – простым языком;  
referring to – ссылаясь на;  
meaning – значение, смысл;  
to convey – выражать, передавать (идею, смысл);  
appropriate – подходящий, соответствующий;  
to feature in – принимать участие;  
concisely – кратко, сжато, лаконично, выразительно;  
cut and paste – «вырезать и вставлять» (объемно цитировать без ссылки на 
источник, компилировать);   
jumble – куча; беспорядочно сваленные в кучу вещи;  
borders on – граничить grade – оценка, отметка;  
option – вариант, альтернатива; опция.  
  

Task 2. Read and translate the text. Use its main ideas for rendering scientific 
articles:  

How to write a Summary of a scientific article 
Summarizing or rendering of a scientific article demonstrates your 

understanding of the material and presents this information to an audience that may not 
have a science background. It is not uncommon for a scientific article to describe an 
experiment and discuss its findings. To write an effective summary, you must be able 
to focus on the main ideas of the article. This also helps to understand scientific 
research better.   

Instructions: 
1. Read the entire article. Pay attention to the experiment methods and the 

conclusions presented. Read the article more than once, if necessary.  
2. Look up any words or methods you do not understand.  
3. Go through the article, and highlight its main ideas. Make sure you understand 

the main points in each para graph. Take notes so you have a starting point for 
your summary.  

4. Test your understanding of the artic le by asking yourself questions about it. Try 
explaining the concept of the article to a friend or family member in non-
scientific language. Determine if you can clearly explain the article in a way that 
is easy to comprehend.  

5. Start a rough draft of your summary, using the notes you've written. Review the 
article to ensure you have a firm grasp of the conclusion. Summarize the article's 
conclusion. Offer your own interpretation of the conclusion along with your 
opinion of the article's content.   
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Task 3. Look through the “George Mason University Recommendations” on the 
writing of a summary of a scientific article. Be ready to answer the questions:  

This assignment is generally intended to help you learn to synthesize scientific 
materials and communicate the main points effectively, using plain language.     
 

Start by making sure you understand the central points of what you read.  Explain 
the article in plain language to someone else and answer questions without referring 
back to the article, to make sure you have grasped the essence of what you read. Dr. 
James Lawrey in the Biology Department uses this assignment to teach students to pick 
out the meaning of an article and convey the main points. The appropriate writing style 
for a summary of a scientific article is to use simple sentences that express one or two 
ideas. An example might be a story featured in the mainstream media that explains a 
recent scientific finding, bringing out the important aspects concisely and without too 
much scientific jargon. Do not “cut and paste” from the article. When students do not 
really understand what they read, their writing is a jumble of statements nearly straight 
from the article, with no interpretation or synthesis of the article's findings. This 
strategy is common among students who wait until the last minute to complete 
assignments. Besides the fact that this practice borders on or actually is plagiarism, it 
shows that students do not understand what they are writing about, and their grades 
reflect this.  
  

Task 4. Answer the questions:  
1. Who is James Lawrey? 2. What should you do at first while writing a 

summary? 3. Does the author limit the number of times his students should read the 
scientific article they are to summarize? 4. When do students use “cut and paste” 
function while writing a summary? 5. How do you understand the term “plagiarism”?    
 

Task 5. Retell the Instructions on writing a Summary of a scientific article. 
 
Task 6. Read the definition of summarizing/rendering in Russian. Try to 

remember as many set phrases as possible. Use them in the rendering of scientific 
articles.  
 

Реферирование научных статей на английском языке – важный навык, 
необходимый любому современному инженеру. Суть реферирования можно 
свести к анализу прочитанной англоязычной работы с выделением ее главной 
идеи, описанием перечисленных автором фактов и доводов и подведением 
итогов. С этой целью можно использовать ряд вводных языковых конструкций. 

 
1. Название статьи, автор, стиль.  The article I’m going to give a review of 

is taken from… – Статья, которую я сейчас хочу проанализировать из… The 
headline of the article is – Заголовок статьи… The author of the article is… – Автор 
статьи… It is written by – Она написана (кем)… The headline foreshadows… – 
Заголовок приоткрывает…  
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2. Тема. Логические части. The topic of the article is… – Тема статьи это… 
The key issue of the article is… – Ключевым вопросом в статье является… The 
article under discussion is devoted to the problem… – Обсуждаемая статья 
посвящена проблеме… The author in the article touches upon the problem of… – В 
статье автор затрагивает проблему…. I’d like to make some remarks concerning… 
– Я бы хотел(а) сделать несколько замечаний по поводу… I’d like to mention 
briefly that… – Хотелось бы кратко отметить, что… I’d like to comment on the 
problem of… – Я бы хотел(а) прокомментировать проблему… The article under 
discussion may be divided into several logically connected parts which are… – Статья 
может быть разделена на несколько логически взаимосвязанных частей, таких 
как…  

 
3. Краткое содержание. At the beginning of the article its author… – В начале 

статьи автор… …describes –  описывает …depicts – изображает …touches upon – 
затрагивает …explains – объясняет …introduces – знакомит …mentions – 
упоминает …makes a few critical remarks on – делает несколько критических 
замечаний о The article begins (opens) with a (the)… – Статья начинается… 
…description of – описанием …statement – заявлением …introduction of – 
представлением …the mention of – упоминанием …the analysis of / a summary of 
– кратким анализом …the characterization of – характеристикой …(author’s) 
opinion of – мнением автора …the enumeration of – перечнем In conclusion the 
author – в заключение автор …dwells on – останавливается на …points out – 
указывает на то …generalizes – обобщает …reveals – показывает …exposes – 
показывает …accuses / blames – обвиняет …gives a summary of – дает обзор…  

 
4. Отношение автора к отдельным моментам. The author gives full 

coverage to… – Автор полностью охватывает… The author outlines… – Автор 
описывает… The article contains the following facts…/ describes in details… – 
Статья содержит следующие факты …. / подробно описывает… The author starts 
with the statement of the problem and then logically passes over to its possible 
solutions. – Автор начинает с постановки задачи, а затем логически переходит к 
ее возможным решениям. The author asserts that… – Автор утверждает, что … The 
author resorts to … to underline… – Автор прибегает к …, чтобы подчеркнуть… 
Let me give an example… – Позвольте мне привести пример…  

 
5. Вывод автора. In conclusion the author says / makes it clear that…/ gives a 

warning that… –   В заключение автор говорит / проясняет, что… / 
предупреждает, что… At the end of the article author sums it all up by saying … – В 
конце статьи автор подводит итог всего этого, говоря… The author concludes by 
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saying that… / draws a conclusion that… / comes to the conclusion that…  – В 
заключение автор говорит, что... / делает вывод, что… / приходит к выводу, 
что…  

 
6. Выразительные средства, используемые в статье. To emphasize … the 

author uses… – Чтобы акцентировать внимание … автор использует… To 
underline … the author uses… – Чтобы подчеркнуть … автор использует To 
stress… – Чтобы усилить/подчеркнуть… Balancing… – Балансируя…  

 
7. Ваш вывод. Taking into consideration the fact that – Принимая во 

внимание тот факт, что The message of the article is that… /The main idea of the 
article is… – Основная идея статьи (послание автора)…  In addition… / 
Furthermore… – Кроме того…  

On the one hand…, but on the other hand… – С одной стороны …, но с другой 
стороны…  Back to our main topic… – Возвращаясь к нашей основной теме… To 
come back to what I was saying… – Чтобы вернуться к тому, что я говорил(а)… In 
conclusion I’d like to… – В заключение я хотел(а) бы… From my point of view… – 
С моей точки зрения… As far as I am able to judge… – Насколько я могу судить… 
My own attitude to this article is… – Мое личное отношение к этой статье... I fully 
agree with… / I don’t agree with… – Я полностью согласен / не согласен с… It is 
hard to predict the course of events in future, but there is some evidence of the 
improvement of this situation.  – Трудно предсказать ход событий в будущем, но 
есть некоторые свидетельства улучшения ситуации. I have found the article dull /  
important / interesting /of great value  – Я нахожу статью скучной / важной / 
интересной / имеющей большое значение (ценность). 
 

Task 7. Retelling 
Read text of the article several times. Work in pairs or groups. Divide text into 

parts, so that each group will have at least several sentences. Select the key words in 
the texts, type them in Word it Out (https://worditout.com/) and generate a cloud. Retell 
the story with the help of the generated word clouds. If two words need to be together, 
imagine “suffer from”, you only need to insert _ between the two words and they’ll be 
kept together in the cloud. 
 

Пример рассказа о научных интересах магистранта: 
  
1. What is your name? – My name is Ivan Ivanovich Ivanov.  
2. What educational institution did you graduate from? When? – I graduated from 

…in 20…  
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3. What is your speciality? – My speciality is …/ My profession is …  
4. Why did you decide to take a post-graduate course? – I decided to take a post 

graduate-course because I had been interested in science since my 3-d year at the 
University / because scientific approach is very important in my profession.  

5. What is the subject of your future scientific research? – The subject of my 
scientific research is … – My future scientific research is devoted to the problem of … 
– My future scientific research deals with the problem of …  

6. Who is your scientific supervisor? – My scientific supervisor is Ivan Petrovich 
Petrov, Professor, Doctor of technical/ economic sciences, Head of the Chair of … / 
Head of the Department of … – He has got a lot of publications devoted to the problem 
of …  

7. Have you ever participated in any scientific conferences? – Yes, I’ve 
participated in many conferences devoted to the most actual problems of 
economy/physics/geodesy/hydrology etc. – Not yet, but I hope, together with my 
supervisor, I’ll prepare some reports for scientific conferences / I’ll take part in several 
conferences in the near future.  

8. Do you have any publications? – Yes, I’ve got some publications connected 
with my research. – Not yet, but I hope, together with my supervisor, I’ll prepare some 
publications, they will be devoted to my research.  

9.What methods are you going to use in your investigation? – Together with my 
supervisor we are going to apply such methods as theoretical, experimental, practical 
and computational methods because they will help me to complete my research.  

10. What will your scientific research give the world? In what way can your 
investigation/research be useful to … science?  

– I think / I hope / I dare say that the problem of our scientific research is very 
urgent and our scientific research will be very useful for … / it will help people in the 
field of …  
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СПИСОК СОКРАЩЕНИЙ 
 
 
сокращение читается/означает  перевод 
 
%  percent (per cent) [pə'sent]  процент 
° C  degrees Centigrade   градус (Цельсия) 
° F  degrees Fahrenheit    градус (Фаренгейта) 
etc.  [et'set(ə)rə]     и так далее 
e. g.  for example     например 
i. e.  that is      то есть 
 
 

Температура читается: 
25° C – twenty-five degrees Centigrade ['sentɪgreɪd] (по шкале Цельсия); 
34° F – thirty-four degrees Fahrenheit ['færənhaɪt] (по шкале Фаренгейта). 
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