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HPEANCJ/IOBHUE

JlanHoe yueOHOe mocoOue pa3paboTaHO [Jisi CTYACHTOB MAarucTpaTypbl
NHcTtuTyTa »HEPreTMKM M aBTOMATU3allMM, OOYy4YaloIIMXCA [0 HAMpaBJICHUIO
MMOATOTOBKM «ABTOMATH3alMsl TEXHOJIOTMYECKUX IMPOLIECCOB U MPOU3BOJCTB», IS
U3YYECHUS aKaJIEMUYECKOI0 acleKTa aHTJIMIUCKOrO s3bIKa.

OcHoBHOM 3amaueil kypca «MHOCTpaHHBIM SA3bIK. AHIIIMUCKUN  S3BIK.
Automation Engineering» siBisieTcsi 00ydeHHE MPAKTHYCCKOMY BIIAJICHHIO HAYYHOM
peunto B chepe mpodeccruoHanbHON KOMMYHUKAIIHH.

OcCHOBOI TOCTPOCHHSI TPOTPaMMbl OOYUCHHS SIBJISETCS HANpPaBJICHHUE, WU
acTekT, «SI3bIK s cnenuanbHbIX 1enei» (Language for Specific Purposes — LSP).
JlaHHBIN acmeKT MpeArnojiaracT pa3BUTHE HABBIKOB, HEOOXOIUMBIX I OCBOCHHS
COOTBETCTBYIOILIETO PEFUCTPA PEUH.

Lenpro TaHHOTO Kypca SBIAETCS MOJATOTOBKA BBICOKOKJIACCHOIO CHEIHAINCTA
MEXIYHAPOJAHOTO YPOBHS, OJTHOM M3 COCTABIISIIONIMX B OyyIiei npodeccuoHaabHOM
JEATEIIBHOCTH KOTOPOTO CTaHET SI3bIKOBAasi TPAMOTHOCTh U KYJbTypa peud. 3ajiauu,
CTOSIIIIUE TIepe]] CTYJICHTOM: 3aKpEIJICHUE HAaBBIKOB IMPABWJIBHOTO aHTJIMHCKOTrO
npousnomienus (Oxford English); 3nanume ocoOeHHOCTEH NOCTPOCHHUS HAy4YHO-
TEXHUYECKUX TEKCTOB U3 OPUTHHAJILHBIX HICTOUHUKOB 1 OBJIAJCHUE TEXHUKOU pabOThI
C HUMU; CAaMOCTOSTEJIbHBIM TOUCK U M3BJIeYeHNE UH(GOPMAIIUU HA MHOCTPAHHOM SI3bIKE
U ee JajbHeiIee mpuMeHeHrne B npodeccuoHaabHoi cepe; yMeHue mojaaepxarh u
BeCTU Oecey C 3apyO0eKHBIMH CIIEIMATIMCTAMU HA TEMbI IIIUPOKOTO CIIEKTPa C YIETOM
Pa3JIMYHBIX JEJIOBBIX KYJIBTYP.

B acnekre «SI3bIK WIS cnienualibHBIX LEJNEW» OCYIIECTBISIETCA: Pa3BUTHE
HABBIKOB YTEHUS CIHEIUAIBHOM JUTEPATyphl C NENbI0 TOJYy4YeHHS HHGPOPMAIINH;
3HAKOMCTBO C OCHOBaMU TIEPEBO/IA JIUTEPATYPHI MO CrieluanbHOCTH. O0ydeHHE SA3BIKY
CIIEMAIBHOCTH BEJIETCA Ha MaTepuase MPOU3BEACHUN peun Ha npodeccuoHaibHbIC
TEMBL.

OcBoenue yvanmuMucs (POHETHUKH (11 MPaBWIHLHOTO UYTECHHS YYallUMUCS
TEXHUYECKUX  TEPMHUHOB U  abOpeBuaryp),  TIpaMMATHKH,  CHHTAaKCHCa,
CJIOBOOOpA30BaHMs, COYETAEMOCTH CJIOB, a TAKXE AaKTUBHOE YCBOEHHE HauOoiiee
YIOTPEOUTENHHOU JIEKCUKU M (Pa3eoIOTHH aHTIUHCKOTO sI3bIKAa MPOWCXOAWT HE B
BH/JIC 3ayYMBaHUs CBOJIA MPABUJI, a B Ipolecce paboThl Ha/l CBSI3HBIMU, 3aKOHYEHHBIMU
B CMBICJIOBOM OTHOIIEHUU TEKCTAMH.

OOyuenne mpemycmaTpuBaeT: a) (GopMupoBaHue (POHEMATHUECKOTO CIyXa
MOCPEJICTBOM ayaupoBaHus; 0) GopMHUpOBaHHE MPAKTHUECKUX HABBIKOB M YMEHHIA
YTeHUS ¥ TIEPEeBOJIa; B) Pa3BUTHE YCTHOM peuu; ') OoTpabOTKy TI'paMMaTHYECKOTO
Marepuansa C  MOCIAEAYIOIIMM  HMCIOJb30BAaHMEM B  Pa3rOBOPHOM  pedw;
1) popMupoBaHNE HABBIKOB CAMOCTOSTEIbHON paOOTHI.

B mnporpamMmy camocToATEeNnbHON pabOThl CTYIEHTOB BXOJST OCBOEHHUE
TEOPETUYECKOTO W  MPAKTUYECKOTO MaTephalia, pa3oOpaHHOTO BMECTE C
MpEerno/ilaBaTesieM Ha 3aHSATHSAX, MOJArOTOBKA K MPAKTUYECKUM 3aHATUSIM B (opme
CJIOBapHO# pabOTHI CO CTaThel, 3alTIOMUHAHUE MPOW3HOIICHHUS W HAMMCAHUS HOBBIX
CJIOB Y BBIPKEHUM, TIOCTPOCHUE W Pa3ydrBaHUE ITUAJIOTOB MO0 y4eOHOH MporpaMmme,
dbopMHUpoBaHHE YMEHHII CBOOOJHO BBIpAXaTh MBICIM Ha HM3y4aeMOM S3bIKE,
COCTABJISITh 3CCE U JENIAaTh MPE3EHTALMIO 110 3aaHHOU TEME.
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YUreHnue okoHUaHHS -S (-€5)

-S qUTaCTCA [Z] IIOCJIC I'IaCHBIX U 3BOHKHX COTJIACHBIX:
lives, mills, stands, forms, stays, tries, trees, goes, studies, cars;

[s] mocne riayxux cornacHbIX:
likes, parents, flats, stops, asks, maps;

[1Z] mocne mUmsImuX U CBUCTAIIMX 3BYKOB [S, Z, [, 1, 3, d3]:
sizes, boxes, watches, bridges, colleges, washes, wishes, gases,
a'ddresses, pages, uses, branches, classes.

HpuMettaHue: IIOMHUTEC, YTO OKOHYAaHHC -S OBIBacT Y CYIICCTBUTCIIbHBIX W I'JIaroJIOB.

He cnenyer nyrars:
— Y CYIIECTBUTENHHBIX OKOHYAHHE -S — IPU3HAK MHONCECMBEHHO20 YUCTA: PAPErs
(0ymaru, mokymenTs), books, students, forms (dbopwmer), lights (oramn);
— Y CYIIECTBUTENBHBIX OKOHYAHME -'S — MPU3HAK APUMANCAMENbHO20 TIaJexKa
(oTBeyaeT Ha Borpoc 4ei?). CpaBHUTE:

my friend MO JpyT

my friends MOM JIPY3bsI

my friend's work paboTa mMoero japyra
my friends' work paboTa Moux apy3ei

— y [JIarojioB OKOHYAHHUE -S — MPHU3HAK TPETHETO JIHIA eOUHCMBEHH020 YUCIIA BO
Bpemenu Present Simple: he (she) reads — on (ona) unraer, he (she) knows — on
(ona) 3naer, he (she) goes — ou (ona) uuert, he (she, it) lights — on (oHa, oHO)
ocBermaeT, It SNOWS — uaet cHer, he (she, it) influences — on (oHa, 0HO) BiHSIET.

3ananue 1. [Ipourure cienyromue ciioBa:
advises, matches, prizes, sheets, thinks, works, photos, stories, shows, throws, pulps,
cooks, rises, 'services, causes, forces, cities, maps, pages, judges, passes, sciences, tries,
answers, presses, places, praises, stops, asks, wishes, takes, papers, fibers, chemicals,
inches, roots, de'velops, 'surfaces, pro'duces, makes, wastes, ‘furnaces, 'purposes,
woods, 'processes, 'influences, bags, 'methods, 'differences, 'differs, 'offers, su'ggests,
pro'poses, studies, reaches, runs, scientists.



Yrenue okOHYaAHUSA -d

-ed uywuraercs [d] mociie 3BOHKMX COIIACHBIX U TJIACHBIX:
formed, dried, tried, closed, played, studied, changed, functioned,
contained, used, planned, employed;

[t] mocite Tyxux coryacHbIX:
worked, watched, stopped, helped, liked, stressed, forced,
walked, cooked, pulped;

[1d] mocie cornmacubIx t u d:
waited, invited, wanted, decided, visited, de'manded, com'pleted,
su'pported, acted, di'rected, consisted, ‘limited, tested, resulted.

3ananue 2. [Ipouture cienyromue ciioBa:
washed, di'vided, de'veloped, burned, im'proved, ab'sorbed, pro'duced, helped, learned,
'regulated, mixed, 'generated, 'operated, pro'vided, liked, in‘tended, turned, ex'tracted,
com'bined, suited, bleached, 'separated, 'processed, trained, con'verted, solved, missed,
di'ssolved, re'mained, in'cluded, heated, produced, po'lluted, ‘influenced,
manu'factured, con'taminated, changed, looked, littered, a'ttracted, dropped, e'quipped,
printed, planted, warmed, lasted.



YACTB II. TPAMMATHKA

IlepeBoa NBYYWIEHHBIX  MHOTOYWIEHHBIX AaTPUOYTUBHBIX CJIOBOCOYETAHNM,
BBIPa’KEHHBIX CYIIECTBHTEIbHBIMY (<HEMOYKH» CYIIECTBUTEIbHBIX)

Uncmpyxkyuss 1. JIBydneHHbIE WM MHOTOYICHHBICE  aTpUOYTHBHBIC
CIIOBOCOYETAHMS, WU «IIETIOYKW» CYIIECTBUTEIBHBIX, — 3TO CJIOBOCOYETAHMUSI,
COCTOSIIIINE U3 CYIIECTBUTEIBHOIO U OMPEIEICHHIM, PACTIONOKEHHBIX CJIEBA OT HETO.

B kauecTBe €BOr0O omnpenesaeHust MOryT ObITh cyujecmseumenvusie (0T ABYX 10
natu uiu 1mect). CylecTBUTENFHBIM MOTYT TPEAINIeCTBOBATH: MpUJaraTelibHOE,
MpUYACTHE, MECTOMMEHHUE WJIM YUCIUTENbHOE, a TaK)Ke COYETaHUs W3 ITUX CJIOB,
COeIMHEHHBIE e(hUCOM.

Heo0Oxoaumo o0paTuTh BHUMAaHUE HA TO, YTO BHYTPU TaKOTO COYCTAHUS ClIOBA
He omoejleHbl Opy2 om Opyea HU APMUKIAMU, HU NPeOSlo2amu, HU 3aNSAmblLMU.

strong acid pump;

white water treatment equipment;

high consistency oxygen bleaching system.

Jlyis mepeBoia «IEMOYKU» CYIIECTBUTENBHBIX BaXXHO HAWTH B HEW OCHOBHOE
cioBo. [lomHHTE, YTO OCHOBHBLIM cl060M TIOOOW «IIETIOUYKU» CYIIECTBUTEIbHBIX
ABIISIETCSL NOCNIe0Hee CywecmeumenbHoe, ¢ Komopoz2o u ciedyem HA4uHamob aHauu3
TaKoOW «IIenouku». Bce CylecTBUTENbHBIC U IPYTHUE YaCTH PEYH, CTOSIIUE CJIeBa OT
OCHOBHOTO CJIOBA, SIBJISIFOTCSL onpedeneHusimu K HeMy (OTBEYarOT Ha BOIIPOC KKAKOU?»,
«kakue?»). CrpaBa OT OCHOBHOI'O CJOBa, YyKas3blBasi Ha TO, 4YTO <IEMNOYKa»
3aKOHYMJIACh, MOJXKET CTOATh HOBBIA  aAPTHKJIb, MPENIOT, MECTOMMEHHE,
npuarateIbHoe, MPUYACTHE WM TIAroj-cCKazyeMoe ¢ MPeIIIeCTBYIONUM HapeurneM
uim 06e3 Hero.

I. Ilepesoo osyunennvix cnoeocouemanuit (KuenouKu» coCmosam u3 08yx
cyuiecmeumesibHbix)

Hnempyxkyus 2. llepeBoj JBYWICHHBIX CIIOBOCOUYETAHUW HAuYUHAEM C
nocieoHe20 CywecmsumenbHo20, a CyleCTBUTEIbHOE, CTOSILIEE CIIEBA, TEPEBOAUTCS
CYUIecmeumenbHbiM 6 pOOUmenbHoM naoedice.

Oopaszer: 1) pulp quality - KQ4eCTBO LIEJLI0JI03bI
2) water level - YPOBEHB BOJIbI
3) wood consumption - pacxo IPEeBECHHBI
4) cooking time - IPOJOJIKUTEIILHOCTD BAPKH

stock (BomokuucTast macca) preparation; stock temperature; stock production; sheet
properties; sheet formation (¢hbopmoBanue).



Hucmpykyus 3. B «uenoyke», COCTOSIIENH U3 IBYX CYIIECTBUTENBHbBIX, IEPBOE
NEPEBOUTCS NPUIALAMENbHBLM.

Oopaszer: 1) wood fiber - IPEBECHOE BOJOKHO
2) gas bleaching - razoBas otOeska
3) cooking acid - BapoYHas KHUCJI0Ta
4) paper stock - OyMakHas Macca

wood chips; acid digester; wood species (mopoma); sulphite digestion; oxygen
bleaching; stock pump; laboratory tests; spruce chips; bleaching plant (orzexn); hand
operation; pine chips; water vapor; cooking process; bag paper.

Hnempykyus 4. llepeBox «UEnodykW» CyIIECTBUTEIBHBIX HAYMHAEM C
MIOCJIETHETO CYLIECTBUTEIBHOIO, a IEPBOE NEPEBOJIUM CYUECMBUMENTbHBIM C
npeonocom (8, u3, Ha, O1s u op.).

Oopaszer: 1) hardwood pulp — nemron03a 13 TMCTBEHHOM IPEBECHHBI
2) drying costs — 3aTpathl na CYIIKY (3aTpaThl, CBI3aHHBIC
C CYIIIKO#N)

3) pollution control — 6oprba ¢ 3arps3HeHnEM

digester pressure; softwood pulp; acid (kucnas cpema) hydrolysis; linen (apHsIHOE
Tpsanbe) paper; board products; evaporator (ucmapurens) gases; hardwood sulphite

pulp.

1. Ilepesoo MHO20U1€HHbIX cl1060couemanuil («uenouxu»
CYULeCmEUmMeIbHbIX COCIOAM U3 mpex u 00jiee CyulecmeumenbHovlx u Opyzux
yacmeii peuu)

Hnempykyus 5. lpyu nepeBoie MHOTOUYJICHHBIX CJIOBOCOYETAHUN PEKOMEHIYEM:
1) mepeBecTH MOCIEIHEE CYNIECTBUTEIBHOE KIICTIOYKI;
2) pa30uTh OCTAJILHYIO YACTh CIIOBOCOUCTAHUS HA CMBICIOGbLE 2PYNNbL Y TIEPEBECTH
uX (BHYTPH CMBICIIOBOM IpYIIbl aHAIN3 IPOBOJUTCS CJIeBa HANPABO);
3) mepeBecTH BCe CI0BOCOUYETaHME (BCIO KIICTIOUKY»), CIACAYS CIpaBa HaJCBO.

Oopaszer: 1) stock mixing| system — cuctemMa /1l CMEIIMBAHUS MacChl,
2) wood fiber| products — n3emnus u3 IpeBECHOTO BOJIOKHA;
3) water quality| results — pe3yibpTaThl 0 Ka4ECTBY BOJIBL;
4) stock preparation| machine operation — pabota MaIuHbI 110
IPUTOTOBICHHIO MACCHI.
B 1aHHBIX CIIOBOCOYETAHMSIX — IO JBE CMBICIOBBIC rpymmbl. OCHOBHOE CIIOBO
BBIJICIIEHO KYPCHBOM.

[IepeBenure, cneays HUHCTPYKIIUU J.
a)
chip packing (ymotaenue) device;
strong acid pump;



stock preparation machine;

paper machine operation;

fiber suspension flow;

b)

paper formation (¢popmoBanue) time;
chlorine dioxide generation (o6pa3oBanue);
pulp preparation operation (mmporiecc);
steam flow rate;

headbox (mamopssrii smmk) control (perynmposanwme) system;
c)

chain (mers) length distribution (pacnpenenenue);
fiber length distribution;

chemicals recovery system;

heat transfer (mepenaua) coefficient;

water conservation costs (3arpatsl);

d)

fiber wall thickness;

cooking liquor circulation;

gas diffusion constant;

quality control method;

paperboard test (anamm3s) result;

e)

plant design changes;

cooking liquor pressure;

stock preparation equipment;

air pollution (3arpsi3aenue) problem;

air pollution abatement (ymensIienue);
water purity level (creneus).

Oopazer:  sodium base| sulfite pulping
Sulfite pulping — cynbdurHas Bapka,;
Sodium base — natpueBoe ocHoBaHME;
= cynb(UTHAs BapKa Ha HATPHEBOM OCHOBAHHUH.

[lepeBequte, ncnomb3yst oOpasert;
various cooking liquor composition;
high yield sulfite pulp;
constant vapor phase region;
ammonia base sulfite pulping;
caustic soda recovery (pereneparnus) system;
white water (o6opoTHast Boaa) treating equipment;
paper mill steam supply (o6ecnieuenue);
particle size distribution determination;
calcium base cooking liquor.
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Unempyrkyuss 6. Ecmm  «uenodyka»  CyIIECTBUTENBHBIX — HAYUHAEMCS  C
npuiazamesbHo2o, He00X0IMMO OOpaTUTh BHUMAHHE HAa TO, K KAKOM) ClO8Y OHO
OMHOCUMCAL.

Oopaszer: 1) high yield pulp — nenmon03a ¢ BHICOKUM BBIXOIOM;
2) new sheet structure — HoBast CTPYKTypa JIUCTA;
3) maximum cooking temperature — makcumalbHast
TeMIIepaTypa BapKH.

Unempykyuss 7. B cOCTaB  «IEMOYKW» CYLIECTBUTEIIBHBIX B KA4€CTBE
ONpENENICHUs] MOTYT  BXOJUTh  YHUCIWUTENbHbIC, MECTOMMEHHS, MPHUYACTHS,
CYILIECTBUTEIIbHBIC B IPUTSKATEIILHOM Majiexke U T. 4. OOpaTtute BHUMAHUE, K KAKOMY
c08y amu onpeodenenus omuocsames. IIoMHUTE, YTO ocHOBHOE €080 Cc1080COYEMAaHUs
— nocneoHee cyuwecmsumebHoe.

Oopaszer: 1) this high pressure steam — 3ToT map BBICOKOT'0 JIaBJICHHS,
2) rate determining factor — ¢akrop, onpeaensonuii CKOPOCTb.

Hnempyxkyuss 8. VMHOrma OJHO W3 CIIOB  IENOYKH» CYHIECTBUTEIIBHBIX
HEO0OXOIUMO TIEPEBECTH NOACHAIOUWUMU CLOBAMU (2PYNNOLL CIOB).

Oopaszer: 1) paperboard machine — mammna 01 evipabomru kapmona,
2) chipping operation — npeanpustue, ocyuecmsisioujee
3a20MOBKY Wenvl,
3) bark products — npoayktel nepepabomku xopeoi.

CrpaaaTtebHbII 32J10T IJ1aroJioB
(The Passive Voice)

Hnempykyus 1. CTpaiaTellbHBIN 3aJI0T TJ1arojia yrnoTpeoseTcss B TOM ciiydae,
€CJIM CaMO nooaedxcaujee He oeticmayem, NEUCTBUE COBEPIIACTCS HAO HUM.

['maron-cka3zyeMoe B CTpaAaTeIbHOM 3aJ0r€ MOKHO HAWTH B MPEIIIOKEHHUH T10
BCIIOMOTATEJILHOMY TJiaroiry ''to be' B cooTBeTcTByIOIIEM BpeMEHHU, JIUIE U YHCIIE U
Past Participle (mpu4actuto npomeanero BpeMeH:H CMBICIOBOTO TJIaroJa).

Ilpumeuanue 1

Past Participle (Participle I1) o6pa3yercst myrem npubaBneHust OkOHUaHHS -€d K
MPaBUJIBLHBIM TJarojam. Eciii riaron HempaBWIbHBIN, yOTpeOseTcs ero 3-12 gpopma
(built, taken, written...). PekomeHayemM HOBTOPUTH 3 GOPMBI HEITPABUIIBHBIX IJ1aroJioB.

Ilpumeuanue 2

OOparute BHMMaHuMe Ha To, 4to Past Participle mpaBwibHBIX TJ1aroJyioB
coBmaaeT 1o gopme co BpemeneM Past Simple (produced, achieved). Onpeaenuts ux
MOkHO TOJbKO B KoOHTekcTe. (IlogpoOnee o Past Participle cm. B pasnerne,
HOCBSIIICHHOM MPUYACTHSIM).
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Tabmuma 1 — CrpamarensHbiid (TaccuBHBIN) 3astor. O0pasyercs: riaaroin to be (B cooTBeTcTByIomem Bpemenn) + Participle I

[IpaBuna u cnocoObl mepeBoaa

[Ipumep

ITepeBon

1. CTpagaTenbHbIil 3a710T MOKA3bIBAET, UTO
JEHCTBUE TJ1aroJia-Cka3yeMoro HarpaBJeHO Ha
JIUIO WK TIPEAMET, BHIPAXKECHHBIN MOIJIEKAIIM.
B psine ciyyaeB noasiexariee nepeBouTcs
MPSIMBIM WJIM KOCBEHHBIM JIOMIOJIHEHUEM U
CTaBUTCS, COOTBETCTBEHHO, B (popme
BUHUTEIBHOTO WK JATEIBLHOIO MaIekKa.

He was given a task.

Emy nanu 3ananue.

We were informed that a new

idea had been advanced recently.

Hac undopmupoBainu, 4To HOBast UAEs
ObLy1a BBIIBUHYTA HEAABHO.

2. Ecnu mocite rnarosia B ITacCUBE €CTh
JOTIOJTHEHUE ¢ mpeioroM by mmm with, To oHO
YKa3bIBAET, KEM HJIM YeM ITPOU3BOTUTCS
aeiicrue. [Ipenoru nepeBoasTCS «IIyTeM,
«IIPH TIOMOIIIN», KIIOCPEIACTBOMY JTHOO
COOTBETCTBYIOT TBOPHTEILHOMY MAJCKy U HE
HIEPEBOISATCS.

The calculation is done
computer programs.

by

[Toncuers! nemarorcs
KOMIILIOTEPHBIMU MPOrPaMMaMHu
(mpu mMOMOIIM KOMITEIOTEPHBIX
IPOTpaMM).

The production line is supplied
with raw material.

[IpousBoacTBEeHHAs JIMHUS CHAOKAETCs
ChbIpbeM.
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IIpooonocenue maoa.

[IpaBuna u cnocoObI mepeBoa [Tpumep ITepeBon
3. CoueTaHueM riaroyia «ObITb» C KpaTKUM The mill is built by the workers. dabpuka mocTpoeHa pabounMHu.
CTpaaTeIbHBIM MPUYACTHEM C Cy(hPuKcamu are built MOCTPOEHBI
-H- WK -T-. [ 1aro «OBITh» B HACTOSIIEM was built Obl1a MOCTpOCHA
BPEMEHU OTTyCKaeTCsl. were built OBLITM TIOCTPOCHBI

has been built
have been built
shall/will be built

ObLJIa TOCTPOCHA
OBLITN TTOCTPOCHBI
OyJeT mocTpoeHa

will be built OyAyT IOCTPOCHBI
4. I'maroyiom Ha -¢sl B COOTBETCTBYIOIIEM The goods are being sold with OTH TOBaphl MPOAAKTCS C
BPEMEHHU, JINIIC U YUCIIE. profit. MPUOBLIBIO.
were being sold NMpoAaBaJIUCh

5. I'marosiiomM nefCTBUTEIHLHOIO 3aJI0Ta B 3-M
JIMIIE MHO>KECTBEHHOI'O UMCJIa, B
HEOIPEICIICHHO-JIMYHOM TPEIJIOKEHHH.

The company’s account is checked.

was checked
will be checked

OT4eT KOMIIaHUY MPOBEPSIOT.
IPOBEPHIIN
OyIyT IpOBEPATH
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Oxonuanue maon. 1

[IpaBuna u cnocoObl nepeBoa

[Tpumep

ITepeBon

6. I'marospl ¢ OTHOCSIIMMCS K HUM IIPEAJIOrOM, KOTOPbIE
MEPEBOAATCS TAKXKE TIJIArOJAMHU C IPEIJIOTOM:

to depend on — 3aBuceTh OT

to insist on — HacTauBaTh Ha

to look at — cmoTpeTs Ha

to rely on — onupatscst Ha

to speak of (about) — roBoputs 0

to refer to — ccblaThbes Ha, HA3BIBATh

to deal with — mmets nemo ¢ u ap.
MIEPEBOJISITCS TIArojaMu B HEOTIpEIeTICHHO-TUIHON (popme,
IIPUYEM COOTBETCTBYIOIIUN PYCCKHAN MPEIIIOT CTABUTCA IEPE
AHTJIMACKHAM TTOJIEKALIHAM.

The new plant is much spoken

about.

This article was often referred to.

O HOBOM 3aB0OJI€ MHOTO
TOBOPAIT.

Ha 51y crarbsro yacTo
CCBUIAJIUCH.

7. I'narosiel 0€3 MpeasIoroB, KOTOPbIE IEPEBOASTCS I1arojiaMu
C MPEIOTOM:

to affect — BnusTe Ha

to answer — orBe4aTh Ha

to influence — BiusTh Ha

to follow — ciienoBats 3a u fap.
MEPEBOIATCS TJIaroJlaMy B aKTUBHOM 3aJ10T¢ HIIH
HEOIpeAeICHHO-TUYHOM GopMe, MPUUIEeM COOTBETCTBYOIINM

PYCCKHI MPEAJIOT CTaBUTCS MEPEl aHTTTUHCKUM TMOICKAIIIM.

The conditions of work are
greatly affected by the

government.

Ha ycnoBus paboTsl
CUJIBHO BJIUSIET
IPaBUTEIBCTBO.
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Hesanuynblie ¢popMmbl riiaroJia
Nuduantus (Infinitive)

NHpuHUTHB — OcHOBHAs (hopMa riiarojia, OT KOTOPOil 00pa3yroTCs BCE JIMYHBIE
dbopMbI riarosa BO BCeX TIpYIIax BPEeMEH B JCHCTBUTEILHOM M CTPaJaTeIbHOM
3ajmorax. MHQUHUTHB, WM HeompeneleHHas Qopma TIJaroja, coyeTaer B cebe
CBOICTBA IJ1aroJia ¥ CyIeCTBUTEIBHOTO.

[Ipu3nakom nHpUHUTHBA gBIseTcs yacTuia 't0". OHa MHOT 1A OIyCKaeTcs:

— IOCJIe MOJAIBHBIX W BCIIOMOIaTeIbHBIX IJ1arojioB; must (can) produce; do not

produce; Did the mill produce? Will produce u T. .

— moclie riarojioB (usudeckoro Bocmpustus: See, hear, feel, watch, notice B
00BEKTHBIX THPUHUTHUBHBIX 000POTAaX U HEKOTOPBIX APYTUX CIydasx.

Unempyrkyus 1

[ToBTOpHUTE hOpMBI MHPUHUTHBA:
Bpems Active Voice Passive Voice
Indefinite — BeipakaeT nelicTBue, to produce to be produced
OJHOBPEMEHHOE C JICICTBUEM,

BBIPAKCHHBIM TI'JIaIr0JIOM-CKa3yCMbIM

Perfect — BeipaxkaeT aeiicTBuE, to have | to have been
IpEe/IIeCTBOBABIICE ICHCTBUIO, produced produced
BBIPOKCHHOMY TJIar0JIOM-CKa3yeMbIM

Continuous — mTenbHBIN XapakTep neicteus | to be producing
Perfect Continuous — nelictBue Havaioch B |t0 have been
MIPOIIIOM M BCE €IIIe MPOJI0JDKASTCS producing
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DOyHKIUU MTHPUHUTUBA

HUnempyrkyus 2
[ToMHuTE, YTO WHPUHUTUB 6 poau nooieddcawjeco BCErAa CTOUT nepeo
ckazyembim (B Ha4aje MPEAJIOKEHNUS).
IlepeBonurcs:
1) cywecmeumenvhovim,
2) nHeonpedeneHHolU hopMoti enazoa.
Oopaszem: To know English is necessary. — HeoOxoaumo 3rname aHrauickuii. 3uanue
aHTIIUICKOTO HEOOXOAUMO.

Hnempykyus 3
Ungunumue 6 ponu obcmosmenvcmea yeau 0OTBEUaeT HA BONMPOC ST YETO?»,
«c Kakou 1enpto?». Ctout nmubO B Hauaje, mepes] MOMAJeKallnuM, JTUOO B KOHIIC
npeioxeHus. MokeT BBOJAUTHCS coro3amu SO as (t0) — ¢ mem, umoobwi, in order (to) —
0J151 mo20 4mooul.
[TepeBogurcs:
1) neonpeoenennoii Gopmoil enazonra ¢ cow30M «4mooObLy, <O Mo2o,
umoowv»;
2) cywecmsumenvbubim ¢ Npeoocom KOusi».
Oopasem: To know English you should work hard. — Ymo6ws: 3name aHTTHICKWA, BBI
JOJDKHBI MHOTO paboTaTh.
Hnempykyus 4
NHpuHUTUB 6 poau obcmosimenvcmea ciedcmsuss OTBEYaeT Ha BOIPOC IS
4ero?» M CTOUT mocie ciioB 100 — cammkoMm, enough, sufficiently — mocrarouno,
sufficient — gocraTounslii, Very — oueHb. [lepegooumcsi neonpedeieHHou Gopmot
2nazona ¢ cows3om «(0ns moeo) umodwr». CkazyeMoe Mpu IMEpeBOJe YacTO MMEET
OMMEHOK 803MONCHOCTIU.
Oobpazem: 1) | am too tired to go to the exhibition — 5 cauwrom ycrai, aro0s! uaTn
Ha BBICTABKY (YTOOBI 51 Mo2 TIOUTH. .. )
2) He is clever enough to understand it. — Ou docmamouno ymeH, 4To0bI
(OH M02) TOHSATH ATO.

Ilpumeuanue

B aHrimiickoM si3p1ke CJIOBO "enough'" Bcernma CTOUT MOCHE MPUIIaraTelIbHOTO,
HO TMIePEBOJ CIEIyeT Hauwunams umenno ¢ "enough”, a TOTOM TIEPEBOAMTH
npuiarateiabHoe: Strong enough — gocTaTOYHO MPOYHBIA, accurate enough —
JOCTaTOYHO TOYHBIN U T. II.
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Hucempykyus 5
OOpaTtuTe BHUMaHUE Ha uHpuHumus 8 poau onpeoenerus. On ececoa cmoum
nocie onpeoensiemMoz0 CywecmseumenbHo20 W OTBEYAaeT Ha BONPOC «KAKOU?».
WNH(pUHUTUB B posin ONIPEIeTICHUS Yallle BCETO umeem hopmy cmpadamenbHo2o 3a102d
U nepesooumcsi OnpeoerumenbHblM HPUOAMOYHbIM NPeodaodtCceHueM, BBOIUMBIM
COIO3HBIM CIIOBOM «xomopuwiti». (CKazyemMoe pPYCCKOTO MpPEIIOKEHHUS BBIpaXKaeT
oondcencmeosanue, byoyujee 8pems Ui 03MOHNCHOCb.
Oopaszer: 1) The method to be used — memoo, komopwuii nyscno (moorcno,
0y0ym) ucnoib3o6ameo.
2) A beater roll breaks up the material to be pulped. — bapabau posia
U3METIbYAET CBhIPbE, KOMOpoe HYJHCHO TPEBPATUTh B MaccCy
(komopoe 6yoem npespawero 6 maccy).

Unempyrkyus 6
Hngunumuse — uyacmo crxazyemoco. VIHOUHUTUB MOXKET OBITH YaCThIO: Q)
ITPOCTOI0 CKa3yeMoro, 6) COCTaBHOT'O MMEHHOI'O HJIN B) COCTAaBHOI'O MOJAJIbHOI'O
CKazyemoro (=COCTaBHOFO TJ1aroJIbHOT'O CKaBYCMOFO) JIMIIb B TOM Cliydac, €CJIn eEMy
npeauecTByoT raaroisl to be, to have, modansuuiii uru ecnomoecamenvhwiii enacon.
Oopaszer: 1) The purpose of the system is to maximize production. — Ilens 3o
CUCTCMbI — MAKCUMAJILHO ITOBBICUTH ITPOU3BOAUTCIIBHOCTD. ]_[eJ'H:.
CUCTEMBI cocmoum 6 mom, yTOOBI MAaKCHMAJILHO. .. HGJIBIO
CHUCTEMBEI seJisiemcsi MaKCUMAJIbHOC ITOBBIIIICHUC. . .
2) The system is (has) to maximize production = The system must
(should) maximize production. — Drta cucreMa 0JDKHA
MaKCHUMAaJIbHO ITOBBICUTH IIPOU3BOJUTCIbHOCTD.
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Tabmuua 2 — [Ipuuactue

Bun npuuactus

OyHKIMS B IPEIOKEHUU U IEPEBO

4aCTb CKa3zyeMoIo

OIIpCACIICHUC

00CTOATENHCTBO

being written

([mst o6pa3oBanus rpymnibl
Bpemen Continuous
MACCUBHOTO 3aJI0TA.
CamocTosTenbHO HE
MIEPEBOIUTCSA ).

IIpoaaBaemMble TOBaphl ObLITU
IIPOU3BE/CHBI 3a TPAHULIEH.

(ITpuuyactue Ha -eMblid, ~-UMBIi).

1. Participle | He is selling his goods. The merchant selling his goods paysa | (When, while) selling his goods,
Active voice OH mpoaaeT CBOU TOBapBhI. profits tax. the merchant pays a profits tax.
selling Toprosertl, mpoaarwuuii ceou ToBapel, | IlpogaBasi cBou ToBapHI,
writing (Jdnst oOpazoBanus BpeMeH IJIATUT HAJIOT C TPUOBLUIH. TOProOBELl INIATUT HAJIOT C
rpynmnsl Continuous. MPUOBLIN.
CaMOCTOSATEIBHO HE The seller examined the letter
TICPEBOJIUTCS). containing an interesting offer. (deempuuactue Ha -a, -51).
[Iponasen n3y4ui1 MUCbHMO,
coaepikaBIce NMHTCPECHOC
MPEIOKEHHUE.
(ITpuuactue Ha -1IKMA, -BIIUI).
2. Participle I | The goods are being sold. The goods being sold were foreign (While) being moved the goods
Passive voice made. are insured against all risks.
being sold ToBaps! mpoaaroTcs. Koraa ux nepeBo3sit (Bo Bpemsi

NnepeBO3KM) TOBAPhl CTPAXYIOTCS
MIPOTHUB BCEX PHUCKOB.
(ITpunarounoe
00CTOSITETHCTBEHHOE
MIPEIIOKEHHUE; CYIIECTBUTEILHOE
C TIPEJIOTOM).
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Oxonyanue maon. 2

Bun npuuactus

OyHKIMSA B MPEJIOKEHUN U TIEPEBOJT

4YacCTb CKa3zycMoro

OIIpe/IeIICHUE

00CTOATEILCTBO

3. Participle Il | 1) He has sold his goods. The goods sold gave substantial If sold, the goods will give substantial
Passive voice | OH ipojaJt CBOM TOBapHI. profit. profit.
sold (st oOpazoBanusi BpeMeH IIpoganHbIe TOBApHI IPUHECIIH Ecau ux npoaartb, TOBapsl IPUHECYT
written Perfect. CamocrosiTenbHO HE CYILIECTBEHHYIO NMPUOBLIIb. CYILIECTBEHHYIO MPUOBLIIb.
TICPEBOIUTCS). The problem discussed yesterday
2) The goods are sold. IS very important. (OOCTOATENLCTBEHHOE MTPHUIATOUHOEC
ToBapsl poOJaHBL. [IpobGiema, odcyxxaaBIIASICA MIPEJVIOKEHHUE).
(st 0Opa3oBaHus MTACCUBHOTO | BUEPa, OYCHD BaXKHA.
3anora. CaMmoCTOSITeJIbHO HE (ITpuyacTtue Ha -1UiACS, -MBIH,
TIEPEBOTUTCS). -HbIW, -ThIH, -BIIUNCS).
4. Perfect - - Having sold his goods he got
Participle substantial profits.
active voice IIpoaaB cBOM TOBApPHI, OH IMOIYYUIT
having sold CYUIECTBEHHYIO MTPUObLIb.
having written (deenpuyactue Ha -HB, -aB).
5. Perfect - - Having been sold, the goods gave
Participle substantial profit.
Passive voice ITocJie TOro Kak ToBapbl ObLIN
hal\é'ng been NMPOJAAHBI, OHU IIPUHECITH CYIIECTBEH-
%%Ving been Hyto puobLIh. (IIprnaTounoe obcto-
written ATEILCTBEHHOE MPEAJIOKEHUE).
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Tabnuma 3 — 'epynauit

OyHKIMS B IPEJIOKESHUH

[Tpumepsr

ITepeBon

1. Ilognexaiee

Chartering of ships is very important
for shipments of goods.

®paxToBanue Kopabdieli (ppaxroBaTh
KOpa0IM) OYeHb BaXKHO JIJIsI IEPEBO3KH
TOBAapOB.

(MuduHUTHB, CYIIIECTBUTEIBHOE).

2. YacTb cKa3zyemoro

The main task is keeping customer’s
accounts.

['maBHas 3a7a4a — XpaHeHHe CUCTOB
KJIMEHTOB (XPAHUTb CUETa KIIMEHTOR).
(CymiectButenbHoe, HHOUHUTHUB).

3. IIpsimoe noroaHeHue

The situation requires controlling the
supply.

Cutyanus TpeOyeT ynpaBJisiTh
(ynmpaBJieHus) TOCTaBKaMHU.
(MuduHUTHB, CYIIIECTBUTEIBHOE).

4. Onpenenenue (0OOBIYHO C MPETIOTOM
of, for mocJe cyiecTBUTEIHLHOTO)

The ability of influencing the commerce
Is studied attentively.

CriocoOHOCTH BJIMATH (BJIUSIHASA) HA
TOPTOBITIO U3Y9YaeTCsi BHUMATEIIHHO.
(CymiectButenbHOe, HHOUHUTHUB).

5. O0CTOSATENHCTBO

(0OBIYHO € MpeIoTamMHu:

IN — mpu, B TO BpeMsl KaK,

on (upon) — o, moc.ie,

after — moc.e,

before — mepen,

by — TBOPHUT. MageK,

instead of — BMecTO TOrO YTOONI,
for—gasaur. 1.

He is able to discuss the terms of an
order without receiving our special
authorization.

OH MOXeT 00Cy>KIaTh YCIOBUS 3aKa3a
0e3 moJiyyeHusi (He MoJIy4asi) HaIero
CIEIUAJIBLHOTO pa3pelIeHUs Ha 3TO.
(Cy1ecTBUTENBHOE € IPEAJIOTOM,
JIEETIPUYACTHE C OTPUILIAHUEM).
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YACTD III. YTEHUE HAYYHBIX CTATEN

Article 1

Task 1. Read the text below.

Near-perfect automation: investigating performance, trust, and visual attention
allocation
(Cyrus K. Forugi, Shannon Devlin, Richard Pack, Noel L. Brown, Ciara Sibley,
Joseph T. Coyne)

Abstract

Over the past decade, the number of deployed automated technologies has
sharply increased. We are quickly moving to a new phase of human-automation
interaction where humans may be monitoring near-perfect automated systems. In many
cases, these systems will be 99.9 % reliable or higher (e. g., United States Department
of Defense, 2017). However, humans are still likely to be tasked to intervene when it
does fail, and those failures are projected to be costlier than before (Onnasch et al.,
2014). Although there is an immediate, real-world need to understand how humans
inter- act with these near-perfect automated systems, there is a dearth of research. Here,
our goal was to holistically assess performance, trust, and visual attention during the
monitoring of a near-perfect automated system that fails 1 % of the time.

1. Human performance and automation

Introducing automation to offset a human’s limitations in attention and reduce
manpower hours seems primarily advantageous. However, research has clearly shown
that trade-offs exist when introducing automation such as the loss of situation
awareness (Endsley & Kiris, 1995), manual skill (Bainbridge, 1983), and overall
system trust (Hoff & Bashir, 2015). Researchers have used many terms to describe
these trade-offs: for example, “automation conundrum” (Endsley, 2017) and “irony of
automation” (Bainbridge, 1983). Endsley (2017) describes the problem well: “The
more automation is added to a system, and the more reliable and robust that automation
Is, the less likely that human operators overseeing the automation will be aware of
critical information and able to take over manual control when needed.”

Automated systems of the future will likely have near-perfect reliability (e. g.,
99.9 %), and it is unlikely that humans will be able to reliably detect these rare-event
failures and, even less likely, be able to then step in to correct said failures. Very little
research has evaluated how well humans can detect rare-event automation failures in
these near-perfect automated systems. A bulk of the previous research has evaluated
how well humans detect failures with automation ranging from 60 % to 90 % reliability
(e. g., Chancey et al., 2017; Dixon & Wickens, 2006; Dixon et al., 2007; Foroughi et
al., 2019; Rovira et al., 2007). Some researchers have found human performance
Increases as automation reliability increases (e. g., Chancey et al., 2017), while others
have found that human performance improves when interacting with a varied reliability
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automated system as opposed to a consistently reliable system (Parasuraman et al.,
1993). Recently, our group showed that although the combined human-automation
accuracy increased as automation reliability increased, the contribution from the
human’s detecting of automation failures (specifically, when it missed a target)
remained relatively stable as the automation reliability increased. That is, the
contribution from the human remained mostly consistent as the reliability of the auto-
mated system increased (Foroughi et al., 2019).

We do not expect humans to perform well in a task where automation failures
are extremely rare (e. g., vigilance task; see Parasuraman, 1986; Warm et al., 2008).
However, establishing a specific point estimate that can be considered *“poor”
performance at the onset of the experiment is challenging. In realistic terms, unless
humans are able to detect these rare-event failures at a high rate, their role as an
automation monitor may not be worthwhile. With that being said, including additional
measures such as subjective trust ratings and attention allocation as a function of
whether someone detected the automation failures helps in holistically understanding
the human’s role when monitoring these systems. Including these analyses could
inform how to achieve a more effective human-automation interaction and
subsequently improve technology design or training practices. For example, studying
a human’s trust calibration process of automation has led to an increased understanding
of human—automation interactions as they happen in real time.

2. Trust in Automation

Trust is a human’s attitude that another entity (e. g., human, machine, system)
will help achieve one’s goals in the face of uncertainty and vulnerability (Lee & See,
2004). A human’s behavior with a system can be dramatically affected by their level
of trust (Muir, 1994; Muir & Moray, 1996). For example, very high trust in an
automated system can lead to a person over-relying (not enough monitoring) or over-
complying (blind acceptance), even if it is unreliable, a state known as complacency
(Parasuraman & Riley, 1997). On the other hand, under-trust leads to humans shunning
automation and suffering the negative effects of manual performance in intensive
situations (e.g., experiencing mental overload or catastrophic performance outcomes).
This relationship between reliability and trust is sometimes referred to as “trust
calibration” (Lewandowsky et al., 2000; Parasuraman & Riley, 1997). Calibration is a
continuous process as it updates and evolves with the present situation.

Because of the important role that trust plays in human-automation performance
(Lee & Moray, 1994), a great deal of research has sought to examine what affects trust
and how it affects performance (Hoff & Bashir, 2015; Lee & See, 2004). One of the
most well studied factors is the reliability, or perceived reliability of the system. In an
early investigation of how trust is influenced by system characteristics, Lee and Moray
(1994) found that human trust in a system could simply be predicted by, among other
things, the level of reliability of the system itself. However, research has found that
trust is lost faster than it is regained (Wiegmann et al., 2001). Additionally, humans
have been found to narrow their attentional resources on the area of automation where
it did fail, leading to decreased surveillance of the rest of the system (Dixon & Wickens,
2006; Thomas & Wickens, 2004). While the coupling of human However, with regard
to near-perfect automation, there are two related remaining questions regarding
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performance and the dynamics of trust. First, consistent with prior research, we expect
humans to have high levels of trust with exposure to more reliable systems. Does this
high level of trust result in complacent behaviors, such as marked, quantitative decrease
in attentional narrowing, and contribute to reduced performance in detecting extremely
rare failures? The second question is in regard to the dynamics of trust: how is trust
affected by extremely rare failures? It could be argued that extremely rare failures are
more memorable and could result in more extreme trust dynamics than with moderate
reliability automation. However, trust may be able to be adequately rebuilt due to the
system’s overwhelming reliability the majority of the time, which has been a challenge
with moderately reliable systems. These questions can be accessed via measuring trust
levels over several different time points, and can be especially informative when they
come after a rare-event automation failure. However, another potential way to quantify
and further understand the impact that these extremely rare failures have on the
operator is by studying their real-time attention allocation.

3. Attention allocation and automation

Previous research studying human—automation interaction has relied on a variety
of different eye-tracking metrics (Bagheri & Jamieson, 2004; Dehais et al., 2015; Sarter
et al.,, 2007; Thomas & W.ickens, 2004). Recently, research has specifically
investigated how eye tracking can be used as an objective measure of operator’s trust
of an automated system (Glaholt, 2014; Hergeth et al., 2016; Parasuraman & Manzey,
2010; Victor et al., 2018). Research generally supports monitoring frequency to be
inversely related to human trust-meaning the more the human trusts the automation,
the less frequently it will be monitored (Bagheri & Jamieson, 2004; Brown & Noy,
2004; Hergeth et al., 2016; Moray & Inagaki, 1999). Hergeth et al. (2016) found this
to be evident, but investigated if it was primarily due to a decrease in monitoring in
general. They compared the total amount of time monitoring the automated tasks to the
total amount of time monitoring all the other non-automated tasks. This ratio measure
was positively correlated, meaning changes in monitoring the automation was not
solely due to changes in monitoring in general. Hergeth et al. (2016) suggest future
research should continue to study monitoring ratios when humans have more
“decisional freedom,” for example, when they are not explicitly instructed on how to
attend to tasks and to investigate if other eye-tracking metrics can be sensitive and
reliable measures of trust. When research expands to additional eye-tracking metrics,
it usually captures the static and aggregate patterns of visual attention, and sometimes
only in reference to a specific area of interest (AOI). For example, Victor et al. (2018)
found that in a simulated autonomous vehicle environment, the percentage of glances
on the road was not able to predict a human’s ability to intervene in a timely that the
overarching goal of the present work was to observe any differences in visual attention
allocation patterns between participants who did and did not detect each automation
failure, both types of metrics and analyses were included. Finally, eye-tracking metrics
that are found to be consistently different between performance groups will be analyzed
in the same method as the trust ratings (i. e., by detection rate and over time) in order
to make comparisons between the two results.
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4. Current study motivation and goals

The current study was motivated by the immediate need to understand how
humans interact with near-perfect automated systems by assessing three information
streams essential to successfully monitoring and detecting rare- event automation
failures: performance, trust, and visual attention allocation. To do this, we deployed
the Supervisory Control Operations User Testbed (SCOUT), an automated supervisory
control environment (Fig. 1) that was designed to simulate the current and future
demands of unmanned aerial vehicle (UAV) pilots (Sibley et al., 2016).

......

feugueeg

Figure 1. The supervisory control user testbed (SCOUT)

The reliability of this environment was 99.9 %, meaning participants
encountered only two automation failures while completing the experiment. Subjective
trust questions were asked throughout the experiment, and eye-tracking data were
collected as a real-time index of visual attention allocation. Our goals were to (1)
determine how well participants could detect the rare-event automation failures, (2)
determine how subjective trust changes as a function of detection rates, and (3)
determine the relation between visual attention allocation and detection type.

5. Method

This research complied with the American Psychological Association Code of
Ethics and was approved by the Institutional Review Boards at both the U.S. Naval
Research Laboratory and George Mason University. Informed consent was obtained
from each participant.

5.1. Participants

Seventy-three students with normal or corrected-to-normal vision (M age = 20.5
years, SD age = 4.2 years, 51 females) from George Mason University participated in
this research for course credit.
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5.2. Tasks

The Supervisory Control Operations User Testbed (SCOUT) is a simulated
supervisory control environment (Fig. 1) designed by scientists at the U.S. Naval
Research Laboratory (Sibley et al., 2016) to simulate the current and future demands
of UAV pilots. This testbed requires individuals to plan a search mission using three
UAVs, then monitor those UAVs while completing secondary tasks. Some of these
tasks include responding to chat updates from command (e. g., confirming flight status
or relaying intelligence) and updating UAV information (e. g., updating flight speed or
altitude). SCOUT includes many self-report probes including trust, fatigue, and
workload.

Importantly, when a UAV reaches its target, the sensor search feed for that UAV
becomes active, and the user must monitor the search feed to identify possible targets.
The search feed is automated such that the system will help the user identify targets by
highlighting possible targets with a gold box (Fig. 2). This automation is immediately
displayed with no delay. Each sensor search feed had a different target shape—either
a triangle, circle, or square (see Target ID in Fig. 2), meaning all other shapes for that
feed were defined as distractors. All objects would enter at the top of the feed and then
vertically scroll down it for 14 s. In that time, the automation was tasked to high- light
each target with a gold box. For example, if a sensor search feed’s target was a triangle,
the participant would need to ensure that all of the triangles (i. e., potential targets) that
scrolled across the screen were highlighted, and none of the circles or squares (i. e.,
distractor targets) were not highlighted. The state of any object (i. e., highlighted or not
highlighted) could be changed by clicking on that object. Each search feed had a
different target resulting in participants searching for triangles in one feed, circles in
another feed, and squares in the third feed.

Semanr Video Feed | Sermon Ouertation Tack Senaar Video Feed | Sensor Oneritaton Tack | Seneo Video Feed | Senace ientation Tack

Figure 2. An example of the sensor search feeds from SCOUT

There is an icon below each sensor search feed indicating the target of interest:
square, triangle, and circle from left to right respectively, as noted by the red arrows.
The automated system automatically highlights targets by placing a gold box around
them. Participants were tasked to ensure that the automated system accurately identifies
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the correct targets. If the automated system misses a correct target (miss) or incorrectly
highlights the wrong target (false alarm), participants must click on the object to fix
the error. In this specific example, we have shown all four possible outcomes of what
the automated system could do. The red labels are added for this figure and are not in
the experiment. To correct the automation failure (i.e., miss or false alarm), participants
would need to click on the shape to either select or deselect it appropriately.

5.3. Equipment

A 24-inch Dell P2415Q monitor set at 2560 x 1440 resolution was used for this
experiment. The participants used a standard mouse and QWERTY keyboard to
complete the task. For the eye-tracking data collection, a Gazepoint GP3 eye tracker
with a sampling rate of 60 Hz and 0.5-1 degree of visual accuracy was used and placed
right below the monitor. Participants sat approximately 65 cm (25.6 in) from the
monitor. The eye tracker was calibrated for each participant using a 9-point calibration
program built by Gazepoint. The GP3 provides left and right eye point of gaze in pixels
and assigns a binary quality measure to each point to indicate whether the system
believes the data is valid or not. Based on these three values, each data point was
marked as either valid or invalid for analysis. A valid data point was one where its
quality measure was maximized and both the left and right point of gaze was a positive
coordinate value. Only valid data points were used for eye-tracking metric calculations.

5.4. Procedure

After signing an informed consent form, participants were instructed to be
comfortably seated in the desk chair where the experiment would take place. First, the
participant calibrated to the eye tracker using the Gazepoint GP3 software. Next,
participants completed a fixation test as an additional calibration tool. Participants then
completed a luminance change task and the shortened automated operation span. These
tasks were not analyzed for this manuscript, as both are part of a larger individual
differences project that is not yet complete.

Participants then completed a SCOUT training session to learn how to properly
complete the task. During training, participants were informed that the automation may
not be perfect and that they would need to ensure that all targets were correctly
identified. After completion, participants were given a short comprehension test about
SCOUT to ensure that they understood all of the features of the task. Participants were
shown a static screenshot of SCOUT and asked to answer questions about features
within the task (e.g., Can you tell me the current speed of VVader 11? How many targets
are in Vader 11’s sensor feed?”). Participants were required to answer every question
correctly to continue. All participants answered all the comprehension questions
correctly on their first attempt.

Participants then completed a 40-min experimental scenario within SCOUT. For
this experiment, all three UAVs had preset targets and no participants deviated the
UAVs from their targets. All three search feeds activated within 1 s of each other
ensuring near equal display time. Participants had 14 s to decide if any object was
incorrectly highlighted or not highlighted, and to correct the object accordingly.
Objects appeared at a rate of 1 every 5s, on average for each sensor search feed. Objects
could be on multiple search feeds at once. Chat queries (e. g., What percentage of fuel
Is remaining for Eagle 83?) occurred every 60 s on the lower right side of SCOUT.
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These events did not coincide with the manually injected automation errors (mentioned
below) to avoid split attention.

For this experiment, with the exception of the two manually injected automation
failures, the automation reliability was set to 100 %. These manually injected
automation failures (namely, one automation miss and one automation false alarm)
occurred at approximately 19:05 and 39:05 in the center sensor feed (for concerns
about the impact of center-bias, see Supplemental Material). Participants were not
given specifics on which sensor feed an automation failure could occur. The types of
failures (i.e., miss and false alarm) were counterbalanced. These two automation
failures made the overall automation reliability of the system 99.9 % across the entire
experiment. Additionally, participants were prompted with a trust question at four time
points: approximately 10:15, 19:25, 30:15, and 39:25. They were specifically asked
“To what extent do you trust (i. e., believe in the accuracy of) the automation aid in
this scenario?” and were able to respond using a sliding scale from “Not at all” to
“Completely.” After completing the SCOUT scenario, participants completed a short
demographics survey.

6. Results

All analyses were screened for outliers and violations in normality. Outliers were
considered to be anything beyond 1.5x of the interquartile range (IQR). If outliers were
detected, they were removed from the dataset and if normality was not met,
corresponding nonparametric tests (e. g., Mann-Whitney) were used. The selected
significance level was o = .05. For omnibus tests, partial eta squared (n, ?) is reported
for effect size, where the values of .01, .06, .14 are interpreted as small, medium, and
large effect size, respectively (Cohen, 1988). For tests of means, effect size is reported
by using Cohen’s d and values of 0.2, 0.5, 0.8, which indicate a small, medium, and
large effect size, respectively (Cohen, 1988).

6.1. Performance

Overall, 34 % (25 of 73) of the participants correctly identified the automation
miss and 67 % (49 of 73) correctly identified the automation false alarms. As for the
distribution of participants detecting failures in general, 18 did not detect any failure,
36 detected one failure (i. e., the first or second failure), and 19 detected both failures.
To summarize how automation failure type and timing impacted performance, when
the first failure was an automation miss (37 of 73 participants), 15 participants detected
no failure across the entire experiment, nine participants detected both failures, four
participants detected only the first failure (miss), and nine participants detected only
the second failure (false alarm). When the first failure was an automation false alarm
(36 of 73 participants), three participants detected no failure across the entire
experiment, ten participants detected both failures, 21 participants detected only the
first failure (false alarm), and two participants detected only the second failure (miss).
To summarize, the data show that the main driver of performance was the type of
automation failure (i.e., miss or false alarm) as opposed to the timing of the failure.
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6.2. Trust

Fig. 3 presents the changes of subjective trust ratings as a function of time and
detection performance. Using the Ime4 package within R (Bates et al., 2014), we ran a
mixed-effects model with time and detection rate as predictors (fixed effects), and
subjective trust rating as the outcome variable. Time is a within-subject factor with
four levels: Time 1 (before a failure occurred), Time 2 (after one failure occurred),
Time 3 (10 min after the first failure occurred), and Time 4 (after the second failure
occurred). Detection rate is a between-subject factor with four levels: None (did not
detect either failure), First (detected the first failure only), Second (detected the second
failure only), and Both (detected both failures). We found a significant main effect of
time (F(3,69) = 8.5, p < .001), a significant main effect of detection (F(3,207) = 4.1,
p =.007), and a significant interaction (F(9,207) = 18.6, p <.001). We were interested
in determining whether subjective trust ratings changed following the detection of a
failure. This resulted in running different analyses by detection group. Consistent with
the first failure effect (Wickens & Xu, 2002), for the group that detected the first
failure, a paired contrast between T1 and T2 revealed a significant decrease between
subjective trust scores (MDIFF = —6.72, SE = 2.01, p = .001, d = .50). For the group
that detected the second failure, a paired contrast between T3 and T4 revealed a
significant decrease between subjective trust scores (MDIFF = —11.64, SE = 3.04,
p <.001, d = 2.19). To further explore the simple main effect of time, we ran a one-
way repeated-measures ANOVA for the group that did not detect any failure and one
for the group that detected both failures. For the group that detected no failures, a one-
way repeated measures ANOVA revealed an effect of Time (F(3,51) =12.41, p <.001,
np 2 = .422) such that subjective trust rating increased over time. For the group that
detected both failures, a one-way repeated-measures ANOVA revealed an effect of
Time (F(3,54) = 14.46, p <.001, np 2 = .446) such that subjective trust rating decreased
over time.

90 - & ~J :
_$9 Detection

None
®- First

®- Second

Trust Rating (0-100)

Both

T1 T2 T3 Ta
Time

Figure 3. Mean subjective trust ratings (£SE) as a function of time and detection
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The vertical blue lines provide an approximate visual representation of when the
automation failures occurred. Time is a within-subject factor with four levels: T1
(before a failure occurred), T2 (after one failure occurred), T3 (10 min after the first
failure occurred), and T4 (after the second failure occurred). Detection is a between-
subject factor with four levels: None (did not detect either failure), First (detected the
first failure only), Second (detected the second failure only), and Both (detected both
failures).

6.3. Eye Tracking

6.3.1. Overall eye-tracking analysis

Mean time between fixations (MTBF) was not significantly different for those
who did or did not detect the miss or for those who did and did not detect the false
alarm (all p > .05). This result suggests the speed of visual attention allocation was not
significantly different between performance groups. Normalized gaze transition (GTE)
and stationary gaze entropy (SGE) were not significantly different between those who
did and did not detect the miss or between those who did and did not detect the false
alarm (all p > .05).

The local metrics, that is, the ones focused on the center sensor feed as that was
the specific AOI associated with the automation failure, were then calculated. For total
dwell ratio of the center sensor feed, those who detected the miss had significantly
higher total dwell ratio (M = .31, SD = .09) than those who missed the miss (M = .19,
SD = .08; (t(33.027) = —4.3532, p < .001, d = 1.442). Those who detected the false
alarm (M = .263, SD = .09) had a significantly higher total dwell ratio than those who
missed the false alarm (M =.183, SD =.09; t(15.371) =—2.3698, p = .031, d = .8965).
This suggests that those who detected the miss and false alarm had a significantly
higher proportion of time in the center sensor feed than those who did not detect the
miss and false alarm. For the number of transitions to the center sensor feed, those who
detected the miss had significantly more transitions, to this feed (M = 2185,
SD =722.3) than those who did not detect the miss (M =1413.8, SD =629.1; t(35.719)
= —3.548, p = .001, d = 1.141). Similarly, those who detected the false alarm had
significantly more transitions to the center sensor feed, (M =1938.8, SD = 738.2) than
those who did not detect the false alarm (M = 13564, SD = 739.83;
t(15.647) = —2.148, p = .047, d = .7881). This suggests that those who detected the
miss and false alarm transitioned to the center sensor feed more frequently than those
who did not detect the miss and false alarm.

6.3.2. Two-minute window centered around each automation failure

For MTBF, there was no significant difference between those who did and did
not detect the miss or false alarm (p > .05). There was no significant difference in
normalized GTE for those who did and did not detect the miss (p > .05). However,
there was a significant difference between those who did (M = .41, SD =.064) and did
not detect the false alarm (M = .35, SD = .049; t(13.634) = —2.366, p = .0334,
d = .9815), suggesting the 2-min scan sequence of those who detected the false alarm
was more complex than those who did not detect the false alarm. There was no
significant difference in normalized SGE for those who did and did not detect the miss
or false alarm (p > .05).
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As for metrics focused specifically on the center sensor feed, that is, the one
experiencing the automation failure, those who detected the miss had significantly
higher total dwell ratio (M = .37, SD = .09) than those who missed the miss (M = .21,
SD =.07; U =10, p<.001, d=1.906). Those who detected the false alarm (M = .38,
SD =.15) also had a significantly higher total dwell ratio than those who did not detect
the false alarm (M = .14, SD = .07, t(18.247) = —5.2144, p < .001, d = 2.096). So for
the minute before and after the automation failure, those who detected the miss and
false alarm spent a significantly higher proportion of time in the center senor feed
(relative to all other AOIs), than those who did not detect the miss and false alarm. For
the number of transitions to the center sensor feed it was found, again, that those who
detected the miss had significantly more transitions, to the center sensor feed
(M = 1149, SD = 31.1) than those who did not detect the miss (M = 67.33,
SD=23.7,U=17,p<.001, d = 1.733). Similarly, those who detected the false alarm
had significantly more transitions to the center sensor feed, (M = 107.9, SD = 42.1)
than those who did not detect the false alarm (M = 43.8, SD = 4.65,
1(20.67) = —6.647, p < .001, d = 2.741). This suggests that for the minute before and
after the automation failure, those who detected the miss and false alarm transitioned
to the center sensor feed significantly more frequently than those who missed the miss
and false alarm.

6.3.3. Over time analysis for the local eye-tracking metrics as a function of
detection

In an attempt to robustly address our third research goal (i. e., examine the
relation between visual attention allocation and detection type), we also analyzed the
local eye-tracking metrics in the same format as the trust ratings (as a function of
detection rate and over time). We limited this analysis to the local eye-tracking metrics
only given the consistent significant differences found with these metrics between
those who do and do not detect each type of automation failure. A two-way mixed
ANOVA where the between-subject effect was the four performance groups (no
detection, only first failure detected, only second failure detected, detected both
failures) and within-subject effect was time period (i.e., the durations of T1-T4) was
used for both local eye-tracking metrics. For dwell ratio, there was a main effect of
performance group (F(3,35) = 6.87, p <.001) but not time (F(3,105) = 2.355, p =.076)
nor their interaction (F(9,105) = 1.889, p = .061). For number of transitions, there was
a main effect of performance group (F(3,33) = 4.708, p = .08) and time
(F(3,99) = 225.904, p <.001) but no significant interaction (F(9,99) = 1.810, p =.076).
Therefore, individuals may not update their visual attention strategies even when they
detect errors in near-perfect automation which is in stark contrast to the trends found
with the trust ratings.

7. Discussion

The goal for this research was to improve our understanding of how humans
interact with near-perfect automated systems by assessing three important human-
automation interaction features: performance, trust, and attention allocation. Overall,
34 % of the participants correctly identified the automation miss, and 67 % correctly
identified the automation false alarm. Consistent with prior research (e. g., BIiss,
2003; Chancey et al., 2015), participants detected significantly more false alarms than
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misses. Unfortunately, misses are often costlier than false alarms (e.g., bomb
detection), and although false alarms are often considered annoying and can lead to
“cry wolf” syndrome (Parasuraman & Riley, 1997), some evidence suggests that
domain experts are more accepting of false alarms than misses (Masalonis &
Parasuraman, 1999). Regardless, in general, the results found that the number of
participants who detected both automation failures and the number who detected
neither was practically equal, whereas the number of participants that detected one of
the failures was approximately twice as many as either group. In summary, the
performance results from this research show that that humans are only marginally
reliable (34 % and 67 %) at intervening to correct rare-event automation failures. One
could argue that any intervening detection from a human could be worthwhile, even if
the improvement is marginal. The key assumption to this argument is that the additional
cost of that improvement is minimal. It is possible that training or expertise could
Improve these detection trends, but previous research in supervisory control suggests
it is unlikely training alone will lead to acceptable performance levels (e. g., Victor et
al., 2018) and training would come at some cost (e. g., money, time, etc.). In summary,
If near-perfect automation systems are going to include human monitoring as a layer
of overall system reliability, research needs to study the human’s monitoring process
in these environments and design for them accordingly. Part of this process is the
person’s trust calibration process.

The trust ratings from participants trended as expected: trust decreased when
participants detected the automation failure(s) and increased when they did not.
However, the rate at which trust was lost and rebuilt was unexpected. One interesting
finding from this analysis is that those who detected the first automation failure, but
not the second, reported that their trust levels recovered to a level that was similar to
the first trust reading, (i. e., the first 10 min of the simulation where no automation
failures occurred) and similar to those who detected no automation failures. However,
trust decreased rapidly from start to end for those who detected both automation
failures. For context, the automation was 99.9 % reliable, even with the two failures,
but trust dropped to ~60 % for those who detected both failures. This further supports
that the trust calibration process is not directly proportional to automation reliability
and is highly variable as the human detects failures. Future studies should precisely
examine the relationship between the number of automation failures and the dynamics
of trust recovery. The eye-tracking analysis helps to clarify the discrepancy between
automation reliability and trust.

There were no significant differences between the two performance groups
(those who did and did not detect the automation failures) when comparing global
visual attention patterns over the entire experimental session, which is inconsistent with
some previous work (Bagheri & Jamieson, 2004). This may be due to the length of the
scenario being 40 min and possibly “washing out” any general visual attention
allocation trends. Given that operators in the field may be tasked to this role for much
longer amounts of time, this emphasizes the need for eye-tracking analyses to be
analyzed on a more “real-time” basis in order to accurately capture the current state of
the operator. This is somewhat supported in the present work, given that gaze transition
entropy was significantly different between those who did and did not detect the false
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alarm for the 2-min analysis only, meaning the more complex scan patterns for those
who detected the false alarm was only evident during the 2 min centered around the
automation failure. This finding suggests global eye-tracking metrics should be
analyzed on a more granular basis if they are to be informative of performance
differences with near-perfect automation. Future research should further corroborate
these findings with the exploration of different types of metrics and time intervals.
Alternatively, the local eye-tracking metrics (i. e., the ones associated with the
specific sensor search feed where the automation failures happened) were significantly
different between performance groups (i. e., those who did and did not detect each type
of automation failure) and for all analyses (i. e., the entire experimental session, the 2
min centered around the automation failure, and overall detection rates). Overall,
participants who detected the automation failures spent the most time monitoring the
center sensor feed for an average of 21 %-24 % of all monitoring time. They also
visited this feed 1.2-1.8 times more than any other search feed (i.e., the left and right
sensor feeds) and 1.3-9.2 times more than any other AOI. These results directly
quantify how participants narrow their attention when near-perfect automation failed,
which is consistent to previous work (Dixon & Wickens, 2006; Thomas & Wickens,
2004). These results also begin to make direct comparisons on how visual attention
patterns differ between the trust levels of those who detected none and both automation
failures. Interestingly, the trust ratings changed dramatically over time depending on
detection rates, but the local eye-tracking metrics did not. There are two potential
explanations for this: the first being a characteristic of the system and the second being
a characteristic of the human. The first potential explanation of these diverging trends
Is due to a positive feedback loop (Smith & Smith, 1987): if you detect automation
failures, you believe you are sufficiently monitoring the automation, so you do not
change your monitoring approach. If you do not detect errors, you are unaware that
automation needs to be monitored at all, so you do not change your monitoring
approach. Second is the monitoring rates of automation are trait and not state based,
that is, monitoring rates are more dependent on the characteristics of the person than
the characteristics of the environment. Future studies could directly address these
competing theories, but regardless, both will need to eventually inform how to provide
active, real-time assistance to the operator. This is clearly warranted because regardless
of some operators monitoring the automation “sufficiently” (whatever is defined as
sufficient for the environment/automation at hand) and some not, the current evidence
suggests those monitoring rates are relatively stagnant over time even as failures are
detected, suggesting that failure detection is not sufficient feedback to impact changes
in visual attention allocation patterns. Furthermore, the analysis of the local eye-
tracking metrics highlights that the level of sufficiency may come at a high and
unrealistic visual attention cost to the operator (e. g., spending ~21 % of time
monitoring one sensor feed of the whole display). Even more concerning is this cost
may not lead to a reciprocal benefit of substantially improved system reliability as
participants were not overwhelmingly reliable in correcting automation failures. As a
sanity check, all eye-tracking data were screened to ensure participants were not
attending to a secondary task when the automation failed. Given that no participants
were attending to a secondary task, this suggests that participants either (1) missed the
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failure even when their point of gaze was in the center sensor feed that is, inattentional
blindness or (2) they were allocating their attention elsewhere without being prompted
to do so. To investigate if there were instances of in attentional blindness, the eye-
tracking data were used to determine if at least one fixation was present in the center
sensor feed at some point during an automation failure (i. e., the 14 s it was in the center
sensor feed) yet it was still not detected. Of the 59 instances where an automation
failure was not detected (across both automation failure types), 42 had at least one
fixation in the center sensor feed during the automation failure (i. e., 71.2 % of all
instances). This alarming percentage of in attentional blindness seems to further
indicate that the current cost of humans monitoring near-perfect systems outweighs any
benefit. In total, the eye-tracking analysis shows the need to study eye-tracking metrics
in more granular units of time to detect potential performance decrements, to include
local eye-tracking metrics (i.e., ones that contextually relate to the task’s goals) and to
determine optimal visual attention allocation patterns. Future work should thoroughly
validate all of these aspects before delivering final design guidance for near-perfect
automated systems.

This work is not without limitations. The generalizability of the work needs to
be limited as this was a lab-based experiment. This experiment was only 40-min long,
and it is likely that real-world operators will be interacting with near-perfect automated
systems for much longer periods of time. However, this could suggest that our
performance findings are understating the negative effects (e. g., vigilance decrement).
Relatedly, the participants may not be representative of the person who would be tasked
to this kind of monitoring, making it even more important to tease out state- and trait-
based effects in monitoring. Finally, the monitoring task itself was (purposefully)
simple, in order to have participants reach task proficiency in a relatively short amount
of time. Realistically, monitoring tasks will be more contextually relevant to a specific
aspect in a given field and will most likely be done by an expert, which may make the
task more engaging and better prioritized. Future research should incorporate these
elements, as well as the suggestions made above, when investigating human
performance, trust, and visual attention allocation in near-perfect automated
environments.

8. Conclusion

Taken together, the performance, trust, and eye-tracking data show that humans
are not well suited for monitoring near-perfect automated systems. Performance is
inadequate and calls into question whether humans should ever be in these roles.
Additionally, inadequate performance is problematic as it dictates the trust calibration
process, coming at a large cost to the human’s attentional resources. From a human
factors standpoint, improving the human—computer interface design of the system may
be an appropriate first step. For example, uncertainty communication has been found
to increase automation transparency and assist in correcting operator’s mental models
of the automation, which informs the trust calibration process (Beller et al., 2013;
Endsley, 2017; Victor et al., 2018). Incorporating eye-tracking to aid the operator’s
overt visual attention allocation may improve performance, but as evidenced by data
from this experiment, it is not a certainty (i. e., 71.2 % of in attentional blindness
instances). More generally, trying to understand the traits and current state of the
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operator may be more informative on their ability to successfully complete these tasks.
Eye tracking may be able to aid in that understanding (e. g., apply the method used in
Mracek et al., 2014 to parse out the trait and state levels of eye-tracking metrics that
have found to differ on both of these levels, for example, de Haas et al., 2019;
Tsukahara et al., 2016), but more work in this domain is needed. In conclusion, this
research shows that humans are not well suited in the monitoring of near-perfect
automated systems. Should humans be pushed into these roles, far more research is
needed to understand how to best design for them.

(41487 U.S. Naval Research Laboratory, Washington, DC, USA, University of
Virginia, Charlottesville, USA, 2545 Clemson University, South Carolina, USA First
Published August 4, 2021).
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Article 2

Task 1. Read the text below.

Progress and prospects for accelerating materials science with automated and
autonomous workflows
(by Helge S. Stein, John M. Gregoire)

Abstract

Accelerating materials research by integrating automation with artificial
intelligence is increasingly recognized as a grand scientific challenge to discover and
develop materials for emerging and future technologies. While the solid state materials
science community has demonstrated a broad range of high throughput methods and
effectively leveraged computational techniques to accelerate individual research tasks,
revolutionary acceleration of materials discovery has yet to be fully realized. This
perspective review presents a framework and ontology to outline a materials
experiment lifecycle and visualize materials discovery workflows, providing a context
for mapping the realized levels of automation and the next generation of autonomous
loops in terms of scientific and automation complexity. Expanding autonomous loops
to encompass larger portions of complex workflows will require integration of a range
of experimental techniques as well as automation of expert decisions, including subtle
reasoning about data quality, responses to unexpected data, and model design. Recent
demonstrations of workflows that integrate multiple techniques and include
autonomous loops, combined with emerging advancements in artificial intelligence
and high throughput experimentation, signal the imminence of a revolution in materials
discovery.

1. Introduction

Grand missions, such as combating climate change through proliferation of
renewable energy technologies, necessitate technological advancements for which
discovery of functional materials is often a prerequisite. Historically, transformative
materials discoveries have been the result of serendipity from experimenting in a
related area and/or decades of systematic materials development. Early examples of
automated synthesis and screening techniques were implemented to accelerate both
processes, for example in the identification of a hysteresis-free shape memory
alloy. Continued automation of materials experiments is motivated by potential
benefits including lowering per-experiment costs and eliminating human error, and to
enable active learning-driven experiments that identify and explore the most promising
regions of materials parameter space. In solid state materials science, advancements in
automation have largely been driven by the combinatorial materials science
community, where comprehensive exploration of a high dimensional materials
parameter space requires a substantial number of synthesis and screening experiments.
While these efforts have provided automation of individual research tasks for a wide
variety of materials and functional properties, manual execution of several experiment
steps, as well as manual design of experiments and data interpretation, result in
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partially-automated workflows. The emerging vision of autonomous materials
discovery requires a higher level of automation. Establishment of an autonomous
workflow is referred to as “closing the loop” since complete task-to-task integration is
required to allow computer-controlled iteration. Initial and ongoing progress towards
realizing such closed-loop systems can be tracked by the level of process automation
and integration in a workflow.

Sanchez-Lengeling and Aspuru-Guzik recently described the advent of closed-
loop experimentation as a paradigm shift in materials and molecular discovery. The
illustration of Fig. 1 provides the high level template of a closed-loop workflow, and
in the present work we critically review the progress towards this vision in solid
materials experiments. The integration of sequential automated processes is
challenging due to the need for mutually compatible parameters and planning, with
requirements spanning from a commensurate sample format, to a protocol for decision-
making based on results from the prior experiment, and to the identification of
measurement failure. To facilitate the analysis of where process integration has been
successfully implemented as well as the remaining challenges, we present a framework
and ontology for the automation of the materials experiment lifecycle.
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Figure 1. High level comparison of paradigms for materials/molecular sciences. Left:
current paradigm exemplified with redox flow batteries. Right: closed-loop discovery
utilizing inverse design and a tightly integrated workflow to enable faster
identification, scale-up and manufacturing. Figure reproduced from Science,
361, 6400, 360-365 with permission from The American Association for the
Advancement of Science

The exploration of vast materials spaces (i. e. composition, structure, processing,
morphology) via combinatorial materials science has yielded a wide variety of
discoveries and advancements in fundamental knowledge and has additionally
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produced experiment databases with unprecedented breadth of materials and measured
properties, as exemplified by the recent publication of the High Throughput
Experimental Materials database (HTEM) based on photovoltaics materials and the
Materials Experiments and Analysis Database (MEAD) based on solar fuels materials.
These compilations of raw and analyzed data from individual combinatorial materials
science laboratories complement the suite of computational materials databases as well
as a rapidly growing number of materials data repositories including the Citrination
platform, the Materials Data Facility (MDF), and text mining of the literature. For the
purposes of the present analysis of automating materials science workflows, these
databases serve as successful examples of experiment automation and as resources that
can be used to accelerate experiment planning, for example by training machine
learning models to identify promising materials. In such planning, it is important to
note complementary search goals of optimizing a given material property and
establishing relationships that represent fundamental materials knowledge. Mapping
composition-structure—processing—function relationships is a tenet of combinatorial
materials research, which contrasts with direct implementation of active learning to
optimize one or a few properties without requiring acquisition of data to elucidate the
underpinnings of the materials optimization. Indeed the experiment workflow and its
operation must be designed to meet the specific research goals, although workflow
automation is important for accelerating many different modes of discovery.

We discuss the lifecycle of materials science experiments and the three primary
stages of workflow acceleration, (i) the integration of new techniques into traditional
research tasks to accelerate process throughput, (ii) the integration of research tasks
into a cohesive workflow to mitigate bottlenecks, and (iii) integration of tasks with
automated analysis and decisions to close experiment loops and enable autonomous
iteration thereof. We find that the solid state materials science community has
demonstrated tremendous progress in the first stage, substantial progress in the second
stage including high throughput workflows, and seminal demonstrations in the third
stage with relatively simple workflows, making concurrent advancement of both the
level of autonomy and extent of the workflow a priority research direction.

2. The experimental materials science research lifecycle

At a high level, the experiment lifecyclet for functional materials discovery
consists of a set of core research tasks: synthesis, processing, characterization and
performance evaluation. This set transcends the specific techniques used to perform
each task, and their generality is evident in their consistent discussion in reviews,
laboratory workflow descriptions, and database designs for high throughput materials
science. Often unmentioned, though virtually always performed, are the additional core
research tasks of planning, data management, data interpretation, and quality control.
Individual and sequences of experiments require these tasks, with the extent and style
varying with research strategy. In a traditional materials experiment, the 4 experiment
tasks are performed manually, as are the complementary 4 tasks, for example planning
via a stated hypothesis and data management via lab notebooks. The corresponding
workflow can be represented as shown in Fig. 2a and represents the foundation on
which more advanced and accelerated workflows are built. As noted above, the first
stage of workflow acceleration involves implementation of techniques we refer to as
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“accelerators” into one or more of the workflow tasks. Classifying all possible
accelerators is more subjective than the above classification of workflow tasks, and for
the present work we find the 6 accelerators noted in Fig. 2b enable effective annotation
of experimental workflows from the literature. Some accelerator-task combinations are
readily achievable, for example parallelization of processing by annealing multiple
materials in a furnace. Other combinations may not be meaningful, such as active
learning of data management. Of the many combinations that are both meaningful and
impactful, some have been effectively realized while others are opportunities for
further experiment acceleration, as summarized below for each accelerator.

a) Traditional materials experiment workflow
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Figure 2. (a) Overview of core research tasks with arrows indicating the cyclic
execution of a traditional materials science experimental workflow. (b) Acceleration
of each task in a workflow can be obtained by incorporating acceleration
technique(s), as represented by these 6 types of accelerators

3. Automation and parallelization

Automated execution of a serial experiment typically involves incorporation of
robotics into a traditional experiment. Parallelization typically involves development
of custom instrumentation to perform many experiments simultaneously. Both
approaches are commonly used in combinatorial materials science where accelerated
synthesis  techniques include co-sputtering,  co-evaporation, ink-jet
printing, combinatorial ball-milling, high-throughput hydrothermal synthesis, and bulk
ceramic hot-pressing. Similarly, the acceleration of the characterization of materials
properties and evaluation of performance for a target functionality have been the focus
of extensive methods development in the past two decades, with notable
demonstrations including electrochemical testing, X-ray diffraction, processing,
optical spectroscopy, electric properties, shape memory, and phase dynamics. These
advancements in experiment automation have undoubtedly led to discoveries that
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would not have been made in the same time frame using traditional techniques.
Automation and parallelization-based removal of synthesis and characterization
bottlenecks introduces new challenges for further acceleration of materials discovery,
which are generally being addressed with data and data science-related accelerators.

4. Data repositories

As noted above, the emergence of experiment databases from high throughput
experimentation offer opportunities for data-based accelerations. The established uses
of data repositories for accelerating research tasks include the data interpretation for
crystallography by matching X-ray diffraction patterns to those from a
database, planning synthesis based on phase diagrams, and planning catalyst
performance evaluation using computational databases of Pourbaix stability. Data-
driven discoveries are typically enabled by a data repository produced via careful data
management. While guidelines such as FAIR exist, these general guidelines focus on
data dissemination and do not express the data management requirements for
establishing autonomous loops, which require fully automated data ingestion and
seamless communication between experimental tasks.

5. Machine learning

Acceleration by Machine Learning (ML) models encompasses a broad range of
applications of computer science algorithms to perform regression, classification or
embedding tasks. The recent literature abounds with discussions of the existing and
potential impact of ML in materials research. Given recent reviews covering this
topic, the present discussion focuses on its role in experiment workflows. ML-based
acceleration of research tasks typically involves either research planning or data
interpretation through evaluation of ML models trained on prior data. Representative
examples include selection of composition spaces for exploring metallic glasses based
on ML predictions of glass forming ability and identification of ultra-incompressible
materials. ML methods have also been developed to accelerate data interpretation in
areas including phase mapping from XRD patterns, microscopy data, signal
identification in spectroscopy data, annotation of microstructure images, and
visualization of complex compositions. ML methods can also be developed into active
learning and reasoning techniques, although due to their different roles with respect to
experiments, those techniques are discussed separately, as detailed below.

6. Active learning

Active learning involves the choice of the next experiment based on an
acquisition function that typically requires a prediction for a figure of merit and the
uncertainty thereof. ML models are used for the prediction and uncertainty estimation,
with a distinguishing feature of active learning being the need to update the model in
real time during execution of the experimental workflow. Active learning is a key
component of closed-loop workflows that can ultimately yield self-driving
laboratories. Algorithms such as Phoenics have been specifically developed for
chemistry experiments and integrated into workflow management software such as
ChemOS. The carbon nanotube (CNT) autonomous research system (ARES)
project, which is discussed further below, is an example of a closed-loop system of a
workflow where tasks such as data interpretation are readily automated. There have
been additional implementations of active learning in materials science to accelerate

39



individual tasks, for example by acquiring only the necessary X-ray diffraction patterns
for phase diagram characterization. Sophisticated examples of active learning in related
fields including functional genomics, separations optimization, and multi objective
molecular optimization for small molecule drug discovery. While many optimization-
oriented searches are amenable to acceleration via active learning, its utility for
materials discovery has yet to be sufficiently explored and demonstrated, making the
above examples a springboard for assessing the ability of active learning to accelerate
complex experimental workflows and the generation of fundamental understanding in
materials science.

7. Automated reasoning

For complex measurement workflows where competing interpretations of the
data need to be considered or a model needs to be reinterpreted given the most recent
measurements, the data interpretation, quality control, and planning tasks are not
readily automated with existing algorithms, motivating the development of automated
reasoning to accelerate these tasks with Al methods that mimic and/or supersede
human execution of these tasks (i. e. “superhuman performance”). Examples of
automated incorporation of physics and chemistry-based models into such tasks
include tuning the morphology of a thin film based on a structure zone diagram and
fine-tuning the composition to obtain a desired doping type in semiconducting metal
oxides based on spinel doping rules. The opportunity for Al development in this area
Is the topic of a recent perspective, and among the promising research directions is the
establishment of generative models that expand the purview of active learning to design
materials based on desired properties. While inverse design has been successfully
demonstrated for discovery of functional materials, integration into automated
workflows remains a challenge for solid state materials research. The corresponding
high level challenge for closed-loop experimentation of solid state materials is that the
scope of a given automated synthesis tool is often quite limited compared to the scope
of materials that may be predicted by an active learning or inverse design algorithm. In
organic synthesis, for example, there has been more success in developing workflows
that encompass the entirety of the synthesis scope of interest, enabling deeper
integration of automated reasoning.

8. Integration of tasks into a workflow

The most common type of accelerated discovery workflow consists of an
automation-accelerated synthesis and an automation-accelerated characterization or
performance evaluation, followed by extensive manual analysis, interpretation, and
planning of both additional characterization experiments and future iterations of the
workflow. Most commonly the highly automated instruments require manual
interfacing (e.g. alignment, measurement parameter setup, supervision for quality
control), where an increased human involvement corresponds to a lower degree of
integration. To simplify the present discussion, we consider two classes of task
integration with the distinguishing feature being whether expert involvement is
required, which designates the integration as “expert mediated” and indicates the
integration is incomplete. This level of integration is prone to creating bottlenecks due
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to the scarcity of experts. Technique integration by robotics is not distinguished from
integration by trained technicians in the present work because the resulting impact on
workflow throughput requires more in-depth evaluation of the specific workflow.

To further illustrate how accelerated materials experiments have been integrated,
we inspect four reported projects and construct the corresponding workflows in Fig. 3.
Each workflow exhibits unique aspects that collectively frame the state of the art in
accelerated materials discovery and illustrate the intricacies of workflow acceleration.
The scope of each workflow schematic is the sequence of tasks described in the
respective publications, and the largest demonstrated equivalent of traditional
experimentation is provided for each workflow. The primary example of closed-loop
discovery in solid state materials science is the ARES project for carbon nanotube
synthesis. Nikolaev et al.14 demonstrated optimization of carbon nanotube growth
with a workflow that mitigates expert-mediated integration and features acceleration
by automation and active learning. Automated control of growth temperature, pressure,
and atmospheric conditions enables a unique growth condition in each experiment,
with a series of experiments performed by spatially addressing an array of seeds on a
substrate. Processing and characterization are intertwined as laser illumination
provides both heating and excitation for Raman spectroscopy, producing spectrograms
that are analyzed to determine the nanotube growth rate. 14,65 With this materials
characterization also providing the figure of merit, the workflow contains no further
performance evaluation. The automated data management and interpretation enables
closed-loop operation for up to approximately 100 growth experiments planned by
active learning-based selection of growth conditions. Expert intervention in this closed
loop occurs occasionally (estimated to be 1-3 %) to assess the quality of the active
learning and adjust the objective as necessary. Upon exhaustion of the array of CNT
growth seeds, manual intervention is required to change samples and restart the
workflow.
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Figure 3. Workflow diagrams of accelerated materials experimentation spanning

a range of techniques, strategies and research goals. Based on (a) Nikolaev et al.,14 (b)
Yan et al.,20 (c) Kusne et al., 66 and (d) Li et al., 29 each workflow involves
accelerated tasks with various levels of automation and task-to-task integration. The

productivity for a single pass through the workflow is noted, corresponding to the
number of equivalent traditional experiments for (a)—(c) and duration of traditional
experiments for (d). Feedback loops are each labelled with the approximate number
of iterations per workflow execution (bold), and in (a) and (c) the percentage of
iterations involving expert mediation is also approximated (italics)

The photo anode discovery pipeline in Fig. 2b represents the tiered screening by
Yan et al. that includes both theory and experiment-based down-selection of candidate
metal oxides. With respect to the experiments, the computational screening is an
accelerant and represented as such in the planning task. The Materials Project database
serves as the primary repository, with additional calculations specific to photo anode
screening, and while these calculations are critical to the success of the work, they are
not fully integrated into the experimental workflow. Synthesis, processing,
characterization, and performance evaluation are accelerated using automation, with
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tens to thousands of materials being synthesized or measured automatically. While this
sequence of tasks is in principle amenable to more autonomous operation, setup and
selection on meaningful experimental conditions are chosen by an expert, resulting in
expert mediated linkages in the workflow. The heavy use of parallelization and
automation is supported by automatic data management and quality control, with data
interpretation requiring expert mediation. A key attribute of this workflow is the
establishment of automated techniques for a large breadth of experimental tasks, from
synthesis to performance evaluation that can operate on libraries with up to ca. 2000
unique materials. The research strategy involves collection of combinatorial materials
datasets that facilitate data interpretation and scientific discovery, as well as evaluation
of every prediction from the computational screening to assess its efficacy. These
aspects of the research limit the value of further task-to-task integration and application
of active learning, with the broader message being that the impact of the closed-loop
concept varies with research strategy and goals.

The workflow of Fig. 3c describes a different implementation of combinatorial
materials science for studying functional materials where synthesis, processing and
performance evaluation are accelerated by parallelization and automation with expert-
mediated integration similar to that of Fig. 3b. The unique aspect of this work is the
use of an active learning loop in the middle of the workflow to accelerate the mapping
of phase boundaries in a composition library, demonstrating the use of active learning
in a sub-workflow to accelerate a bottleneck experiment (and save valuable beamline
time). The synchrotron X-ray diffraction (XRD) characterization described by Kusne
et al. includes on-the-fly data interpretation and automated selection of the next
composition for XRD measurements, with occasional expert supervision of the
clustering-based identification of pure-phase patterns.

The atomic-scale phase evolution workflow by Li et al. illustrated in Fig. 3d uses
a specialized nanometer sized reactor to assess phase stability with ca. 1 hour of
experiment time yielding the same data as over 500 days of annealing in traditional
bulk experiments. Using data repositories of phase diagrams and stability ranges of
multicomponent complex metal alloys to plan synthesis, an array of 36 reactors is
deposited, for example with equiatomic mixtures of the Cantor alloy Cr-Mn—Fe—Co-
Ni. The loop in this workflow is based on the step-wise annealing of the reactor array
with subsequent atom probe tomography (APT) characterization after each processing
step. Each APT characterization involves destruction of one of the reactors, and the
number of reactors is made to be several times larger than the number of processing
steps due to routine failure of the APT measurement. The critical advancement enabled
by a small autonomous loop is the real-time monitoring of APT data acquisition with
well-integrated quality control. Data interpretation is performed by comparison to
external data and visualization is done through a machine learning model. The richness
of the APT data coupled with significant annealing time reduction yields high
throughput knowledge generation even though the workflow contains mostly expert-
mediated integration of tasks. Increased autonomy in the workflow would only be
warranted after substantial advances in automated data interpretation.

For each of these workflows, the nominal time to execute the entire workflow is
on the order of 1 day. The equivalent number of passes through a traditional workflow,
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or the number of days of traditional experimentation to produce the equivalent data,
provides the nominal acceleration factor of the workflow, which is only equal to the
acceleration factor of knowledge discovery if the selection of experiments and quality
of the resulting data is equivalent to those of traditional experiments. Assessment of
such data value is beyond the scope of the present discussion but remains a critical
consideration for quantifying workflow acceleration, particularly in settings where the
research goals involve understanding the underlying materials science as opposed to
performance optimization.

9. Conclusions and outlook

The urgent need for better materials demands faster turnaround cycles from basic
research, such that better, more efficient, eco-friendlier, and more economically viable
materials can enter the market sooner than the traditionally observed 40
years. Accelerated materials experiment workflows have been demonstrated to
increase throughput by up to a few orders of magnitude compared to traditional
methods. Surveying the reported workflows reveals two primary areas for workflow
sophistication, the integration of sequential tasks without requiring expert involvement
and the expansion of feedback loops to incorporate a larger fraction of the workflow
tasks. The ARES workflow achieves both of these goals with a relatively small
workflow compared to the functional materials discovery research where the variety of
characterization and performance evaluation experiments increases the number of
workflow tasks as well as the demands on data management, data interpretation, and
quality control.

To visualize progress to date and the expected advances from ongoing
research, Fig. 4 illustrates the continuum of materials workflows in terms of the
scientific complexity and workflow automation complexity. To elucidate our intended
meaning of scientific complexity, representative tasks spanning minimal complexity to
very complex are listed. Arguably the most important aspect of a successful science
program is the ability to identify interesting problems and ask the important questions
that guide research activities. These tasks are beyond the purview of present
autonomous research and will be for the foreseeable future. Advances in natural
language processing for materials science may automate aspects of scientific
communication, but critical analysis of the literature and communication of the insights
provided by a given experiment will continue to rely on human intellect for the
foreseeable future.
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Figure 4. Visualization of the landscape of materials experiment workflow in terms
of the scientific complexity of automated tasks and the workflow automation
complexity, which is based on the number, variety, speed, and difficulty of
experimental steps in the workflow

The advancements in combinatorial materials science and high throughput
experimentation have been largely along this latter axis, and initial demonstrations of
autonomous loops have made progress on the former axis with automation of more
intellectually challenging research tasks. The nominal location of the 4 workflows
from Fig. 3 are noted by stars. While research will push the frontier of automated
experiments along both axes the most complex scientific tasks will remain the
responsibility of human experts for the foreseeable future.

Determining the most effective advancements in a materials experiment
workflow requires critical evaluation of bottlenecks for progress against the research
goals. Even when expert mediation is required between tasks, workflow throughput is
often limited by the manual steps at the front and back ends of automated experiments.
These peripheral activities, which fall under the intermediate “complicated” level of
scientific complexity in Fig. 4, can be difficult (or currently impossible) to fully
automate due to the routine use of expert knowledge, for example in judgement of data
quality based on extensive previous experience with related data. Advances in artificial
intelligence (Al) for materials encompasses a wide variety of strategies for addressing
these challenges, which will be critical for expanding the scope of autonomous loops.
This approach to pushing the frontier of materials workflows is illustrated by the
“Materials Al” arrow in Fig. 4 and will ideally accompany the expansion of
autonomous loops to include more complex and a larger variety of experimental tasks.
This complementary approach to pushing the frontier of materials workflows is
illustrated by the “Build on HTE” arrow due to the demonstrated successes in
experiment automation from the high throughput experimentation community. The
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ability to leverage this existing work makes autonomous workflows more readily
extendable into complex automation as compared to the extremes of complex scientific
reasoning.

An outstanding question with regard to the next generation of experimental
workflows is how to best combat human biases that can severely limit
innovation. Advanced autonomous experimentation may remove biases within a given
search space through computationally designed experiments. However, the scope of
the search space is limited by both instrument capabilities and active learning strategy,
whose designs originate with human identification of the materials space of interest.
To the extent that human biases disseminate from the “complex” scientific tasks of Fig.
4, bias removal within an autonomous workflow must be complemented by
sociological solutions for removing bias in decisions beyond the experiment workflow.

We are aware of several research groups that are building autonomous
experiments in the “next generation” regime of Fig. 4, including emerging reports from
perovskite synthesis and molecular materials for of organic photovoltaics and organic
hole transport materials. Continuation of these concerted efforts to increase automation
and develop tailored Al algorithms will enable the materials science community to
realize a paradigm shift in scientific discovery where expert scientists can dedicate a
substantially larger fraction of their time to performing the critical tasks of identifying
important problems and communicating critical insights.

(Joint Center for Artificial Photosynthesis, California Institute of Technoloagy,
Pasadena, CA 91125, USA, Division of Engineering and Applied Science, California
Institute of Technoloqy, Pasadena, CA 91125, USA, First published 20 Sep 2019).
URL.: https://pubs.rsc.org/en/content/articlelanding/2019/SC/C9SC03766G
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Article 3

Task 1. Read the text below.

Towards a model of automation adoption
(by lan McCandliss, Kevin Zish, J. Malcolm McCurry, J. Gregory Trafton
George Mason University, Peraton Inc., U.S. Naval Research Labs)

Abstract

This study examines the impact of prior experience on the adoption of
automation in a supervisory control task. Automation is typically implemented as a
means of reducing a person’s effort or involvement in a task. When automation is first
introduced in a new product, the experience on the yet-to-be automated task is variable.
Some users have experience with the task prior to the automation while others have
little to no prior experience. Automation adoption between levels of experience was
investigated in a mixed design study. One group was trained to use a manual version
of a task before learning of an automated version. A second group was only trained to
use the automated version of the task. The results of this study indicate that both
training and experience are needed before users can make robust predictions about
future automation adoption.

1. Background

Automation can be considered the reduction of human intervention through the
use of automatic control systems. Through the implementation of automation, human
oversight may be shifted or removed entirely as a part of a system (Parasuraman,
Sheridan & Wickens, 2000). By shifting attention away from previously necessary
tasks, cognitive and material resources become freed to be put to new use. Consider
telephone operation which previously required many humans to manually connect and
disconnect lines but which has now been supplanted by an almost completely
autonomous process. Or consider how the seed-drill automated the process of digging
out a hole, planting a seed and packing soil into place, allowedfarmers to plant crops
faster and over a much larger acreage (Sayre, 2010).

While these automated systems have been widelyadopted, not all attempts at
automation succeed, at least not immediately. For example, most new cars sold in the
United States are automatic transmissions, with manual transmissions being in sharp
decline (Duffer, 2018). In spite of the clear ease of use with which automatic
transmissions provide (Schoner, 2004), there yet remain people who prefer the more
reliable “old” way of doing things, as this is primarily what they have grown
accustomed to using (Akple, Turkson, Biscoff, Borlu & Apreko, 2013).

When an automated system is introduced, there are some who will gravitate
towards it and view it as providing additional utility and perceiving it as easier to use
(Zhang, Zhu & Liu, 2012). Conversely there are others who will view the old way of
doing things as more reliable (Akple et al., 2013) and refuse to adopt the new
automation. However, as the automation becomes more widespread and even accepted
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there will also bepeople who have had no prior experience with the older technology
or the way things used to be done.

Is it possible to then model automation adoption? One way to examine the use
and adoption of automation may be the Technology Acceptance Model (TAM)
(Venkatish & Davis, 2000). This model is helpful in many ways as it ascribes the actual
use of the technology onto several latent variables whichcan be measured via surveys.
These latent variables vary from study to study but most often include the Perceived
Ease of Use (PEOU) and the Perceived Usefulness (PU) of the technology by the user.
These measures of the user’s perception of the product are then loaded onto the users
reported Behavioral Intention (Bl) to use the product. That is, it is a prospective
measure of how much, or to what extent, the user will utilize the given technology.
While there are a number of other versions and successors to the TAM, almost all of
them containat least some elements of the initial model (Sanchez & Hueros,2010).

While previous studies have assumed a strong relationship between Behavioral
Intention and Actual Use (AU)of the product, this relationship may be overstated (Lee,
Kozar& Larsen, 2003). Many studies assume that the relationship is so strong that they
do not even examine it, halting their examination after obtaining information about the
Bl (Battacherjee & Premkumar, 2004; Helia, Asri, Kusrini, & Miranda, 2018; Leong,
Ibrahim, Dalvi-Esfahani, Shabazi & Nilashi, 2018; Razmak & Belanger, 2018). A
potential reason for this disconnect is that measuring actual use is time- consuming and
difficult and that such findings may be considered settled (Turner, Kitchenham,
Brereton, Charters & Budgen, 2010). However, there is a danger in following this
assumption, as the relationship may be altered from previous studies if AU is measured
using objective or subjective measures (Turner et al., 2010). Given that a core principle
of automation is to free the user from a task, obtaining measures of actual use of the
automated technology may be more difficultto acquire than traditional technology.
Furthermore, the TAM in its most basic form does not account for the impact of prior
exposure to a technology, or the way a person was first introduced to it.

This issue could potentially be addressed by utilizing a more complex model
dubbed the TAM-2 (Venkatish & Davies, 2000) as it does include factors which
represent experience. However, in this model experience is noted as only acting as a
moderating variable for perceived social pressure to utilize a new technology. While
the validity of this conclusion is not in dispute, it does not necessarily capture the way
automated technology is introduced both to those who have had years of experience
without it, and those who have always had it as the norm. It also does not differentiate
this from exposure to the technology over time. Furthermore, it still has the same
vulnerability as the TAM as BI still fully mediates the relationship between all other
latent variables and actual use. Consider the impact that simply presenting a new tool
or objecthas on a person, especially in an experimental setting. The person may
incorrectly assume that because it was presented this way that they should provide it
with a positive rating to align with the experimenters assumed expectations (Lee, Kozar
& Larsen, 2003; Mummalo & Peterson, 2018). While this could have a strong impact
on their Perceived Usefulness of an object(as is the case described in the TAM2) it may
not necessarily have an impact on their actual use of the tool. This in turn wouldrequire
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an examination of the tools actual use, which as stated previously may be difficult
given that a major part of automation is disengaging the user.

Given that variables which may be of crucial interest for modeling automation
are either unexamined or under examinedin present TAM literature, it may be more
prudent to develop anew model which is specifically intended to handle automated
technologies. In order to develop this model, we start with the most basic variables of
the TAM, Behavioral Intention to Use and Actual Use of the automation. In order to
measure these keyvariables, a task must be developed that meets certain criteria. First
it must allow the researcher to examine both the participants’ stated Behavioral
Intention, as well as an objective measure of how frequently or to what degree they
utilized it.

Secondly, as the model is intended to measure the adoption of automation and
automation is meant to supplant a previously manual operation, it follows that the task
must haveboth manual and automated functionality. By providing both ofthese systems
to participants, they will be able to utilize or abandon automated and manual controls
as they consider appropriate for the task.

Thirdly, as the user population lacks uniformity in their experience with either
automated or manual controls, the task must be controlled to simulate these user groups.
The task mustallow some participants to utilize only manual options at first and later
provide access to automated options (as a person whohas worked in a task for a long
time would encounter), while allowing other participants full access to all of the tools
from the beginning (as a neophyte to a task would encounter).

Lastly, while the latent variables of the TAM may only load onto the participants
Intention to Use, it would be foolhardy to discount them outright. As such the core
variablesof Perceived Usefulness and Perceived Ease of Use should alsobe considered
in the model.

Formally stated, the goal of this study is to develop a model of Automation
Adoption and to examine the impact of exposure to automation on actual use of an
automated system.

2. Method

2.1. Participants

A total of 68 participants (23 males) with ages ranging from 18 to 37 all enrolled
in undergraduate psychology coursesat George Mason University. Thirty two were in
the full automation condition while thirty one were in the partial automation condition.
Five participants were excluded from analysis due to technical failures which resulted
in their data being lost. All participants received course credit for their participation.
Previous research has indicated that student samples may serve as stand-ins for more
expert populations, butnot for general populations (King and He, 2006). This was
desirable in this study given the high skill-floor of the task utilized to develop the
model.

2.2. Materials

A computer loaded with the Research Environment for Supervisory Control of
Heterogeneous Unmanned Vehicles (RESCHU) was used.
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3. Procedure

This study involved the use of RESCHU, a complex taskcreated as part of a
Naval Research Labs project (Boussemart & Cummings, 2008). The task is a
computerized simulation inwhich participants must control multiple unmanned aerial
vehicles (UAV’s) in a dynamic environment to both avoid hazards and send planes to
designated targets. In this version of RESCHU two UAV’s were required to travel to
each target. The RESCHU task contains an automation feature that providesadditional
utility over manual controls methods which the participants may also utilize. This
automated feature is an easyto manipulate component in establishing the conditions for
thisautomated feature is an easyto manipulate component in establishing the conditions
for thisstudy. The layout for the task is displayed below in Fig 1. The first UAV to
arrive scanned the target for danger; thesecond UAV to arrive took a photograph of the
target. There were four control mechanisms for guiding the planes to different targets,
two manual methods and two that utilized automation. Regardless of the control
mechanism used, once aplane was assigned to a target a visible straight-line would
appear between the UAV and the target, denoting its flight path. The plane would then
fly along the flight-path until it reached the target, unless the participant right clicked
on a plane while in flight, selected the “add waypoint” button and clicked somewhere
on the map. In this case planes would begin flying to the waypoint prior to heading to
the target. This allowed theplanes to maneuver around the hazards, denoted in yellow
circles which would appear and disappear in different portionsof the map throughout
the experiment.
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Figure 1. This displays a view of the overall task arrangement. Planes are numbered
one through five in blue and are set on the aircraft carrier on the leftside of the
screen. The targets are green diamonds labeled A through E. The yellow circles are
Hazards which must be avoided
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The first of the manual controls consisted of right clickinga plane on its starting
position, clicking the subsequent button that popped up and then clicking on a target.
The second of themanual controls consisted of clicking and dragging the dot at the
end of a planes flightpath while it was enroute to a target. The first of the automated
controls was accessed by right clicking and interfacing with the target. Upon doing so,
the twonearest planes which were not already enroute to a target wouldbegin flying to
that target. The second of the controls which used automation was the “Run Play”
button, displayed in the bottom left corner of the screen. Whenever this button was
clicked, the nearest unassigned plane would begin flying to thenearest available target.

Regardless of which control mechanism was used, when the first plane arrived
at a target, the target would change from green to yellow and the plane would
automatically begin flyingback to the spot it initially took off from. Participants were
informed that they should avoid having their planes return to the take-off position and
should instead redirect them in flight. When using the manual controls, the second UAV
would stop at the target and begin flashing red. Participants would then need to right
click on the plane and select the pop-up button, which would allow them to begin the
visual search task as described below. No such visual search task was required if the
plane was sent via automated controls.

The visual search task consisted of a photographic imagedisplayed in the upper
left corner of the screen with a target located somewhere within it. A written description
for this target was given in a small box immediately below the picture taking are.
Participants were informed that they would need to read the text in order to identify the
target in the visual search. Participants were provided with immediate feedback on
whether or not they were successful in the visual search task viathe textbox where they
received the targets descriptor.

Participants were informed that they should attempt to score as many points as
they could within the time allotted. Points could only be scored using the manual
controls if the user successfully completed the visual search task. In addition to a
simplified control mechanism, the automated tools also removed the requirement of a
visual search task on the part of the participant. This allowed them to score points with
fewer steps.

4. Design

Two conditions were used for this experiment. The continuous automation
condition received access to the automation at the beginning of the experiment. A
graphical display of the order of events for each condition is shown in Fig. 2. The
partial automation condition received access to the automated tools only after
completing a full session with only access to manual controls. While both conditions
were given an overview of the task, the partial automation conditionwere not instructed
in and unable to use the automated tools until later in the experiment.

After the initial overview, the partial automation condition engaged in a training
exercise using only the manual control mechanisms. The partial automation group then
engaged in an experimental trial with only the manual controls. Following this, the
partial automation group was given a secondary overview and training, now including
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the automaticcontrols. This was then followed by two experimental trials in which they
had full access to all of the tools.
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Figure 2. A display of the order of tasks participants engaged in for each condition

During the initial overview, the continuous automation group was fully informed
of all the tools available to them and underwent a training session with all tools
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available. After this,the participants engaged in three other sessions with all tools
available.

After the participants were introduced to the automated controls, they were given
a survey meant to measure their intention to use the automated controls. This survey
was also intended to assess both the users perceived utility and perceivedease of use of
the automated controls. Subsequent surveys weregiven out after each session so as to
assess how these variables changed with experience. At the end of all treatments,
participants were asked an open ended question about what they thought of the
automation and their responses recorded by the experimenter.

5. Results and discussion

We first examined how frequently participants used automation: If a majority of
participants eschewed automation (or, conversely, used it exclusively), a model of
automation usage would be useless, since there would be nothing to predict.

As Fig. 3 suggests, however, participants varied widely in their automation
usage.

10.0-
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Count of Participants
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0.0~
0 10 20 30 40 50 60 70 80 90 100
Percentage of Trials Automation was Used (%)

Figure 3. The figure shows the frequency of people who utilized the automationwhen
automation was available. The extreme ranges represent people who did not use
automation at all, and those who utilized only automation respectively. The
intervening columns represent those who utilized some combination of manual and
automated controls

To demonstrate the relationship between Behavioral Intention to Use and Actual
Use, only surveys that preceded a session were analyzed. Multiple regressions were
used to determine the impact of Perceived Usefulness and Perceived Ease of Use on
Intention to use for each condition and survey. For the First survey of the Partial
Automation Condition (F(2,28) = 25.01, p<.01, R?=.61) both Perceived Usefulness (B
= .43, p<.01) and Perceived Ease of Use (p = .52, p<.01) were statistically significant.
Similar results were found for the Second survey ( F(2,28) =, p<.01, R?=.68) as both
Perceived Usefulness (B = .42, p<.05) and Perceived Ease of use (p = .47,p<.01) were
both significant.
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While the first survey of the continuous automationcondition (F(2,28) = 8.81,
p<.01, R?=.34,) did show a significantimpact of Perceived Usefulness on intention
to use (B = .51,p<.01) Perceived Ease of Use did not demonstrate a significantimpact
(B = .24, p > .05). The second survey of the continuous automation condition
(F(2,29) = 32.4, p<.01, R?=.67) also showed significance for both Perceived
Usefulness (B = .51,p <.01) and Perceived Ease of Use (B = .30, p<.05). The third
survey of the Continuous Automation condition(F(2,29) = 45.15, p<.01, R?=.74) was
similar to the Continuous Automation condition as it also showed a significant impact
ofPerceived Usefulness (B = .79, p < .01) but did not demonstratea significant impact
of Perceived Ease of Use (B = .09, p > .05).

Multiple regression analysis was also used to determine the impact of the
participants Behavioral Intention to Use on Actual Use of the automatic tool. The
partial automation condition’s first survey showed a significant impact of intentionto
use on the actual use of the automated tool (F(1,29) = 8.28, p < .05, R?=0.20). The
partial automation condition’s second survey also showed a significant impact of
Behavioral Intentionto Use on Actual Use (F(1,29) = 14.26, p < .05, R?2=.31). These
results indicate that for the partial automation condition Behavioral Intention was
always a consistent predictor of actualuse.

In contrast, the continuous automation condition’s first survey did not
demonstrate a significant impact of Behavioral Intention to Use on Actual Use.
However, the continuous automation condition’s second survey did show a significant
impact of Behavioral Intention to Use on Actual Use(F(1,30) =7 .75, p < .05, R?=.18).
The continuous automation condition’s third survey also showed a continuation of this
relationship (F(1,30)=20.75, p<.05, R?=.39). The continuous automation condition’s
relationship between Behavioral Intention to Use and Actual Use, was initially not
predictive of actual use, but became predictive as the participants gained greater
exposure to the task. A graphical depiction of the relationship between the latent
variables (Perceived Usefulness,Perceived Ease of use and Intention to Use) and their
impact onthe participants Actual use is displayed below in Fig. 4.
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Figure 4. The relationship of the latent variables Perceived Usefulness and Perceived
ease of Use on Intention to Use by Survey and Condition. It also shows the Impact of
Intention to use on Actual Use, though this was part of a separate analysis

Initial findings support the idea that the treatment of eithercontinuous exposure
automation or partial automation lead to the key differences in initial behavioral
outcomes. Participantswho were exposed to only automatic controls were initially
unable to make an accurate prospective judgement on how theywould actually use the
tools. Conversely, those who wereexposed first to the manual controls and only later
had exposureto the automatic controls, were able to make accurate judgements from
the first time they took the survey.

However, it is unlikely that the order of introduction of the tools was the full
reason for this effect, though this may beexplored further in future studies. While both
conditions had exposure to a guided training period prior to taking the first survey, the
partial automation condition still had more exposureto the task due to the experimental
design. As the partialautomation condition had exposure to nearly a full experimental
session than the continuous automation condition prior to the first survey, their greater
experience allowed them to make a more accurate judgement on their behaviors than
the continuousautomation condition did. However, as time went on and the continuous
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automation condition gained experience equivalentto the partial automation condition,
their assessment accuracy rose to match that of the other treatment.

It may then be possible to attribute the earlier overly inflated assessment of
Intention to use to experimenter effects. Given the situation, and the way the questions
were phrased, participants inflated their estimates of how much they would use the
automation initially as a means of satisfying what they believed were the experimenters
expectations. However, after gaining experience with the task in a more realistic way,
participants in the continuous automation condition were able to provide an accurate
description of how much they would useautomation (Behavioral Intentions).

This finding has broad reaching effects especially for future automation.
Generally, the results indicate that if a personhas training, but no tangible understanding
of the environmentthey will be working in, then their intention to use automation does
not predict their actual use of it. However, if a person has prior experience with the
environment, even if they only have asmall amount of training with the automation,
then their Bl mayin fact be a very strong indicator of how they will utilize the
automation.

This provides valuable insight when constructing future studies when model
building for Automation Adoption. In orderto create appropriate comparisons, future
studies will need to establish a certain level of baseline experience before a full analysis
can be undertaken. In the meantime, it does provide uswith insight about being able to
predict the actual usage of automation from people who are already familiar with their
task. How long it takes to reach this state is a matter that futurestudies may look at.

Qualitative data was also collected at the end of the experiment with the
experimenter asking open ended questionsabout what they thought of the automation.
While this data requires further analysis, there were consistent patterns of participants
who chose not to use it of the automation taking them out of the loop. Some
acknowledged that using the automation would be easier, but that doing so would result
in them losing control. One of the participants in the partialautomation condition stated
that while using the automation didmake things easier, it was also more boring. These
statements suggest how the model may be refined in the future. The level of
controllability of the automation could be examined as well as whether or not the
participants consider the lack of interaction a value adding or value subtracting
experience.

In conclusion, these results provide support to the idea that if a person has
experience in a domain that they can make accurate statement about how they would
choose to use or disuse a corresponding automated system. This may be helpfulwhen
an organization seeks to introduce an optional automatedtool to a previously non-
automated task and they wish to determine if experienced operators will utilize it or
not. Futurestudies may examine how much exposure to a given domain isrequired
before this judgement may be accurately made.

(George Mason University , Peraton Inc.2 , US Naval Research Laboratories, First

Published November 20, 2019).
URL.: https://journals.sagepub.com/doi/abs/10.1177/1071181319631254
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Words and word combinations:
— prior ['prars] — npexKHU;
— adoption [o'dppf(o)n] — npunsTHE;
— intervention [inta'ven[(a)n] — BMeIIaTENbCTBO;
— adopt [2'dopt] — npuHUMATS;
— widespread [ 'wardspred] — mmpoko pacnpocTpaHeHHBIH;
— examine [1g'z&emin] — uccnenoBarh,
— utilize ['ju:tilaiz] — ucnonp3oBaTh;
— assume [o'sju:m] — npeanoaaraTh,
— especially [1'spef(a)li] — ocobenHo;
— supplant [so'pla:nt] — BeITeCHSATS;
— relationship [rr'lerf(a)nfip] — B3auMOCBS3b, B3aUMOOTHOIICHHUS,
— significant [sig nifik(a)nt] — 3HaUMTENBHBIN, CyIIECTBEHHBIH;
— initial [1'n1f(9)l] — HavanbHLIH;
— be engaged [in'gerd3d] — 3anumarbcs;
— exercise ['eksasaiz] — ynpakHeHue, oCyIIeCTBICHHUE;
— including [in'klu:dm] — BxIt09asi, B TOM 4uCIIE;
— access ['&kses] — moctyn, npoxox;
— trial ['traralz] — ucneiTanue;
— participant [pa: tisipants] — y4acTHUK;
— suggest [sa'd3ests] — mpeamonaraTs,
— available [o'verlob(a)l] — nocTymHbI.

Task 2. Summarize all the ideas of the article and write an essay.
Task 3. Make a presentation based on the article.
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Article 4

Task 1. Read the text below.

The effects of automation and role allocation on team performance
(by Murat Dikmen, Yeti Li, Philip Farrell, Geoffrey Ho, Shi Cao, Catherine
Burns)

Abstract

An experiment was conducted to investigate the effects of automation and role
allocation on performance in a simulated picture compilation task with fourteen two-
person student teams. In the absence of automation support, the system integrated
sensor information. In the presence of automation support, the system both integrated
sensor information and identified contacts. Roles were assigned either based on warfare
domain or geographical sectors. Results showed that human-automation system
performance was similar in two automation conditions, but participants were slower in
classifying tracks and overall classified fewer tracks when the automation was present.
We conclude that working with automation may lead to degraded team performance
due to complacency and additional task complexity.

1. Introduction

The effect of automation on individual performance has been relatively well
studied. However, there is little research on automation in teams, especially in the
maritime domain (Qin et al., 2019). Compared to a single operator working with the
automation, a team of multiple operators working with the automation creates new
challenges that need to be addressed, such as determining appropriate crew size in the
human automation teams and how crews need to modify task strategies in order to
adapt to the increased automation capabilities (e.g. allocating tasks between crew
members and the automation). On behalf of the Royal Canadian Navy, Defence
Research and Development Canada is exploring how multisensor data fusion (MSDF)
for constructing the battlespace picture impacts crewing and human-automation ‘team’
performance. This work presents an investigation into the effects of increased
automation capability on team performance in a simulated naval environment

1.1. Background

The operations (OPS) room onboard a warship typically is in charge of
integrating all of the ship’s sensor information. One of the main tasks involves a team
of operators responsible for building the tactical picture of the ship’s operating
environment which includes a comprehensive understanding of all the sea surface and
air traffic in the area. This task is called picture compilation. Picture compilation
typically involves detecting contacts (i. e. a ship or a plane) with sensors, tracking the
contacts, evaluating them, and gathering all relevant identification data for the contacts
(Canadian Forces Naval Operations School, 2007). To do this, operators must integrate
signals from various sensors such as radars, electronic warfare sensors, and passive
sensors to build a track that represents the path of a ship or a plane. Tracks must also

58



be classified and identified. For example, a ship might be classified as friendly, neutral
or hostile. This task is performed by the operators using a variety of information
sources to assess the contact’s identity such as receiving information from
transponders, intelligence, and also information from the contacts such as its
movement, vehicle type, and other key identifiers. Over time, ideally the tracks and
their identities form an accurate and coherent tactical picture for commanders.
Automation can support operators performing the picture compilation task. For
example, data fusion automation could merge the data from various sensors, leaving
the operators to focus on identifying and assessing the contact. In the future,
automation can also support human operators in classifying and identifying contacts,
which is explored in this study. From a human factors perspective, it is important to
understand how allocating tasks to automation affects crew performance and whether
any changes to crew size can be realized as a result. While automation can support
contact classification, the OPS room operators would still be responsible for validating
the automation. Previous work on the impact of automation on team performance
showed that automation can lead to reduced mental workload (Jentsch & Bowers,
1996), however not in all cases (Van Dijk, 2010). Moreover, team performance is only
improved if the automation is highly reliable (Hillesheim & Rusnock, 2016; Wright &
Kaber, 2005). At the same time, interaction with higher intelligent agents will likely
produce some residual error in the agents’ goal achievement (Farrell, 2003), which can
lead to degraded human-automation team performance. Previous studies have
investigated teamwork and automation failures (Mosier et al., 1998), adding
automation as a team member, (Miescher, Spitz, Anastosi, & Lind, 2001), and crew
composition (Chow, Lamb, Charest, & Labbé, 2016). However, there is little research
on role allocation in human-automation teams. Traditionally, naval operators separate
the picture compilation task by warfare domains (i.e., air, surface, and subsurface) such
that one person is primarily responsible for one warfare domain. However, with
automation supporting contact classification, it might be more advantageous to
separate the picture compilation task using other strategies to divide the task load. One
such method is to split up roles by geographical sectors. This allows for a better
distribution of task load since operators could divide up the work depending on the
density of traffic in various sectors to distribute the workload.

1.2. Overview of the Study

In the present study, we investigated the impact of automation for track
classification and operator role allocation on team performance. Two-person teams
were presented with a picture compilation task in a simulated navy environment. We
varied the automation capability, as well as the role allocation.

2. Method

2.1. Design

The experiment was a 2 x 2 repeated measures design. Independent variables
were automation capability and role allocation. Automation capability had two levels:
(1) system without classification automation support (without classification condition)
and (2) system with classification automation support (with classification condition).
These levels were considered as lower and higher level of automation in this study,
respectively. Role allocation had two levels: (1) role allocation based on geographical
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division (i. e. west, east) and (2) role allocation based on warfare domain (i. e. surface,
air).

2.2. Participants

Fourteen teams of two university students participated in the study. Team
members were familiar with each other and had completed at least one course project
together. The mean age was 21.4, and there were both same-gender and mix gender
teams in the study.

2.3. Apparatus

ISR360 — a multi-sensor multi-tracking software suite by Trackgen Solutions —
was modified to create a simulated environment for the study that retained realistic data
fusion and target identification capabilities. The two-person team shared a map that
displayed their own ship, other ships and aircraft (Fig. 1). Tracks in the own ship’s
operating environment were produced by simulated sensors (radar and automated
identification system, AlS). Each track was represented by a symbol which indicated
that it was a plane or a ship. The color of the symbol indicated whether the identity was
unknown (yellow), friendly (blue), neutral (green) or hostile (red). The actions of one
team member were visible on the other member's screen.
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Figure 1. Simulator screen. A: Friendly contact (blue). B: Ownship (black). C: Hostile
contact (red). D: Unknown contact (yellow)

Team members could click on tracks to see its attributes such as speed and
heading and could classify them using a contextual menu. When a track was classified,
its symbol changed accordingly to friendly, neutral, or hostile. The simulator also had
controls to de-clutter the display by turning on or off the shipping lane / flight routes.
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2.4. Task

Participants performed a picture compilation task where each team member had
the shared map on their own workstation. The experiment was divided into four
scenarios, each corresponding to one condition. In each scenario, participants had to
classify tracks based on criteria such as speed and heading of the target, altitude (for
air tracks), and whether the target follows commercial routes. Each property could be
an indication of a friendly or hostile characteristic. For example, heading towards the
participants’ own ship was as a hostile characteristic whereas heading away from the
shipwas a friendly characteristic. There were five such characteristics for ships and
four for planes. Participants had to classify tracks as friendly if it did not have any
hostile characteristics, neutral if it had some, and hostile if it had more than three hostile
characteristics. Additionally, participants had to consider any suspicious behavior such
as sudden turns. These rules were provided during the training.

In conditions without classification automation, tracks appeared on the screen
and were classified as unknown tracks. In conditions with classification automation, all
tracks were pre-classified by automation. The classification automation labeled the
tracks only as neutral or hostile and it was not able to integrate all criteria for
classification, and this resulted in anaverage automation accuracy of 63 %. When the
classification automation was present, participants had to “verify” the automation'’s
decision by reclassifying the tracks. This was considered overriding the automation's
decision, in which casethe automation did not further classify that track.

In geographic sector-based role allocation conditions, one team member was
responsible for classifying tracks to thewest of their own ship, and the other team
member to the east. In warfare domain-based role allocation conditions, one team
member was responsible for classifying ships and the other team member planes. In
each scenario, whether a track was anair or surface target was known as their symbols
were different.

2.5. Procedure

The experiment consisted of a training session, followed by four main scenarios.
The order of the scenarios was randomized. During the training, participants
familiarized themselves with the task by completing several training missions. Before
each scenario, participants were briefed on the automation capability and role
allocation. Each scenario started with most of the targets appearing on the screen in the
first few seconds. Participants had to work as a team (but also within their
responsibility area) to classify as many tracks as possible. Each scenario was 10-
minutes long. At the end of each scenario, participants completed a NASA-TLX (Hart
and Staveland, 1988) questionnaire.

2.6. Measures

All performance measures were collected at the team level. Subjective mental
workload (NASA-TLX) was collected for each individual using the weighting method
described in Hart and Staveland (1988), then averaged to create a team mental
workload score.

Human-automation system accuracy was the same as operator accuracy when
the classification automation was absent (without classification automation
conditions). When the classification automation was present (with classification
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automation conditions), human-automation system accuracy consisted of both operator
accuracy and automation accuracy.

2.7. Results

Data from one group was not recorded by the simulator, therefore we conducted
the analysis with data from 13 teams. For data analysis, 2x2 repeated measures
ANOVAs were used.

2.8. Classification Ratio

Fig. 2 shows the percentage of tracks classified by participants in each condition.
Overall, participants classified almost all targets when the automation was absent and
missingabout 30 % when the automation was present. This difference was significant,
F(1, 12) = 27.72, p <.001, n% = .48. Therewere no other differences, all p’s > .05.
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Figure 2. Percentage of tracks classified by participants

2.9. Operator Accuracy

As shown in Fig. 3, operator accuracy was higher without classification
automation than with classification automation, F(1, 12) = 14.28, p = .003, n? = .26.
No other effects were significant, all p’s > .05. Note that the reduced accuracy with
classification automation condition takes intoaccount the reduced percentage of tracks
classified by participants.

2.10. Operator Accuracy for Classified Tracks

For tracks that were classified by participants, there wasno significant difference
In accuracy between conditions, all p’s > .05. In other words, when participants
classified or verified, they performed similarly. The accuracies were 71 %, 70 %, 73 %,
and 70 % for conditions 1, 2, 3, and 4, respectively(see Table 1 for the conditions).
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2.11. Human-Automation System Accuracy

Fig. 4 shows the human-automation system accuracy results. For reference, the
dotted line represents baseline accuracy of automation (i.e. if automation classifies all
targets, it would be accurate 63 % of the time). Statistical tests showedno significant
difference between conditions, all p’s > .05.
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Figure 3. Operator accuracy
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Figure 4. Percentage of tracks correctly classified by the human-automation system
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Additional one-sample t-tests were conducted to compare all four conditions to
baseline automation accuracy.

2.12. Average Time to Correctly Classify a Track

Participants were slower to correctly classify tracks with classification
automation compared to without classification automation, F(1, 12) = 13.83, p = .003,
n? = .16. There was also a significant interaction effect, F(1, 12) = 4.92, p = .046,
n? = .07. As shown in Fig. 5, participants were faster in warfare-based role allocation
with classification automation, however opposite effects were observed without
classificationautomation.

Time (unit:sec)

90 Sm————— - Without Classification

- With Classification
80 79.2

74.2

- o*—1O
60 > 4

_ ’,—"’66.1
50 -~
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Figure 5. Average time participants spent to correctly classify tracks

2.13 Mental Workload

There were no significant differences between conditions. Mean NASA-TLX
scores were 49.8 (SD = 21.4), 52.6 (SD = 20.7), 53.4 (SD = 19.5), and 51.9 (SD =
20.1), for conditions 1, 2, 3 and 4, respectively. Average NASA-TLX score was 52
across conditions, indicating a medium level of mental workload.

3. Discussion

Participants in this experiment performed a picture compilation task as teams of
two with two levels of automation and in two team configurations. Results showed that
participants classified fewer tracks with classification automation. However, overall
human-automation system accuracy (human + automation) was similar across
conditions. When participants were engaged with a track, they performed similarly
regardless of the automation capability or role allocation.

3.1 Effects of Role Allocation

Overall participants were faster in correctly classifying tracks in warfare
domain-based role allocation with classification automation, and opposite effects were
observed without classification automation. While these results suggest that alternative
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team configurations might be worth further investigation, the lack of differences in
primary performance metrics suggests that role allocation had only minimal effect on
team performance in this experiment and no effect on subjective mental workload.

3.2 Effects of Automation Level

Participants classified fewer tracks when automation support was present. It is
possible that teams working with classification automation may have become
complacent, as the tracks were already classified by the automation. Although
participants were explicitly told to verify the automation, they may have been reluctant
to reclassify the tracks.

Another explanation is that perhaps reclassifying automatically classified tracks
requires more cognitive effort than classifying tracks in the absence of automation’s
suggestion. The differences in time to correctly classify trackssupports this notion. It
is also possible that participants were looking for obvious anomalies or automation
failures, therefore wasting time and overall classifying fewer tracks. Moreover, the
automation in this experiment had low reliability and this likely negatively impacted
team performance as team performance increases only if the automation has
sufficiently high reliability (Hillesheim & Rusnock, 2016). Finally, the simulator did
not have an action history functionality and participants had to remember which tracks
need to be verified which might have contributed to theobserved results. However, we
should note that the participants had to monitor the contacts regularly after verifying
the automation’s decision. Therefore, a user interface element that draws attention to
unverified contacts might have forced participants to ignore the contacts that were
verified.

These findings require further research, as classifying fewer tracks would be a
concern in a real-world situation, and the software used in this study was a
representative industry product. One of the most important jobs of operators in an OPS
room environment is to have a “clean” picture as fast as possible for a successful
mission. Therefore, classifying fewertracks, even though the accuracy is acceptable, is
a concern. These findings indicate that automation should be carefully designed to
avoid complacency effects such as the one observed in this study.

Finally, participants reported similar levels of mental workload across
conditions. Working with automation did not reduce the mental workload, as is
typically shown in the literature (e. g. Kaber & Endsley, 2004). We should note that
verifying the automation's classification decisions required asmuch mental effort as
classifying a track in the absence of a suggestion, if not more. Therefore, in this context,
no change in mental workload means that reviewing automation's decisions did not
result in extra mental effort.

Overall, these results are similar to the results observed in single human -
automation studies. This work showed that teams are similarly at risk when a higher
level of automation isintroduced.

4. Conclusion

In this work, we explored how automation and role allocation affected
performance of two-person teams in a simulated navy environment. Results revealed
that role assignments did make minor differences in speed. Although the presence or
absence of automation resulted in similar human-automation system performance,
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human performancewas worse in the presence of automation. This work supportsthe
notion that adoption of automated decision support systems may not always result in
better human performance, and further research is needed before introducing more
capable automation into safety-critical environments.

(University of Waterloo Defense Research and Development Canada, First
Published November 20, 2019).
URL.: https://journals.sagepub.com/doi/abs/10.1177/1071181319631501

Words and word combinations:
— track [trek] — Tpek, nopoxka;
— classification [ Kklaesifi kerf(a)n] — kimaccudukanms;
— performance [pa'fo:m(a)NS] — mpon3BoOAUTEIHHOCTS;
— allocation [e&la'ke1f(a)n] — pacnpenencuue;
— condition [Ken'difonz] — ycrnoBue, 00CTOSATENLCTBO;
— picture ['piktfa] — u3obpaxenue;
— each [i:tf] — kakablii, BCAKHI;
— mental ['ment(o)l] — mcuxuveckuii, yMCTBECHHBIN;
— such [sat[] — Takoii, TakOBOii;
— workload ['ws:klovd] — pabouas Harpyska;
— experiment [1k'sperimant] — sKCriepUMEHT, OIIBIT;
— friendly ['fren(d)l] — npy>xecTBeHHBII;
— warfare ['wo:fes] — cTonmkHOBeHUE, OOpHOa;
— significant [sig nifik(a)nt] — 3HaUNTETBHEIN;
— overall [ avVvar'o:1] — 001z, TOJIHBIN;
— scenario [S1'na:rou] — crieHapwui;
— capability [keipa'bilitr] — Bo3MOXKHOCTB, CLTIOCOOHOCTD;
— observe [ab'z3:vd] — HaGmrOATH,
— neutral ['nju:tr(a)l] — veiiTpanbHBIT

Task 2. Summarize all the ideas of the article and write an essay.
Task 3. Make a presentation based on the article.
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YACTB IV. BECEJIA 1O CIIEHUAJIBHOCTHU

Summary

Task 1. Read the following instructions offered by Virginia Kearney, a
university expert in writing essays (https://owlcation.com/academia/How-to-Write-a-
Summary-Analysis-and-Response-Essay, 05.2019).

A summary is telling the main ideas of the article in your own words.

Steps in Writing
These are the steps to writing a great summary:

Read the article, one paragraph at a time.

2. For each paragraph, underline the main idea sentence (topic sentence). If you can't

underline the book, write that sentence on your computer or a piece of paper.

When you finish the article, read all the underlined sentences.

4. Inyour own words, write down one sentence that conveys the main idea. Start the
sentence using the name of the author and title of the article (see format below).

5. Continue writing your summary by writing the other underlined sentences in your
own words. Remember that you need to change both the words of the sentence and
the word order.

6. Don't forget to use transition words to link your sentences together. See my list of
transition words below to help you write your summary more effectively and make
it more interesting to read.

7. Make sure you include the name of the author and article and use “author tags”
(see list below) to let the reader know you are talking about what the author said
and not your own ideas.

8. Re-read your piece. Does it flow well? Are there too many details? Not enough?
Your summary should be as short and concise as possible.

=

w

Sample Format

Author Tag: You need to start your summary by telling the name of the article
and the author. Here are three examples of how to do that (pay close attention to the
punctuation):

1. In “*How the Civil War Began,” historian John Jones explains...
2. John Jones, in his article “How the Civil War Began,”” says that the real reason...
3. “How the Civil War Began,” by historian John Jones, describes....

First Sentence: Along with including the article's title and author's name, the
first sentence should be the main point of the article. It should answer the question:
What is this essay about? (thesis).

Example:

In “How the Civil War Began” by John Jones, the author argues that the real
reason for the start of the Civil War was not slavery, as many believe, but was instead
the clash of cultures and greed for cash.
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Rest of Summary: The rest of your essay is going to give the reasons and
evidence for that main statement. In other words, what is the main point the writer is
trying to make and what are the supporting ideas he or she uses to prove it? Does the
author bring up any opposing ideas, and if so, what does he or she do to refute them?

Here is a sample sort of sentence:

IS the issue addressed in “(article’s title)”” by (author's name). The thesis

of this essay is . The author’s main claim is and his/her
sub claim is . The author argues . Other people argue

. The author refutes these ideas by saying . His/her
conclusion is

Author Tag List

Author's Article Words for | Adverbs to Use
Name ""Said"" With "'Said""
James Garcia | “whole title” | argues carefully
Garcia “first couple | explains clearly
of words”
the author the article | describes insightfully
(book etc.)
the writer Garcia's elucidates respectfully
article
the historian (or | the essay complains stingingly
other
profession)
essayist the report contends shrewdly

Transition Words List

Contrast Adding ldeas Emphasis

Although In addition Especially

However Furthermore Usually

In contrast Moreover For the most part

Nevertheless In fact Most importantly

On the contrary Consequently Unguestionably

Still Again Obviously
Response
Response answers: What do you think? Does this article persuade you?
How to Write

Generally, your response will be the end of your essay, but you may include your
response throughout the paper as you select what to summarize and analyze. Your
response will also be evident to the reader by the tone that you use and the words you
select to talk about the article and writer. However, your response in the conclusion
will be more direct and specific. It will use the information you have already provided
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in your summary and analysis to explain how you feel about this article. Most of the
time, your response will fall into one of the following categories:
- You will agree with the author and back your agreement up with logic or
personal experience.
- You will disagree with the author because of your experience or knowledge
(although you may have sympathy with the author's position).
- You will agree with part of the author's points and disagree with others.
- You will agree or disagree with the author but feel that there is a more important
or different point which needs to be discussed in addition to what is in the article.
How will this article fit into your own paper? How will you be able to use it?
Here are some questions you can answer to help you think about your
response:

1. What is your personal reaction to the essay?

2. What common ground do you have with the author? How are your experiences the
same or different from the author's and how has your experience influenced your
view?

3. What in the essay is new to you? Do you know of any information the article left
out that is relevant to the topic?

4. What in this essay made you re-think your own view?

5. What does this essay make you think about? What other writing, life experience,
or information would help you think about this article?

6. What do you like or dislike about the essay and/or the ideas in the essay?

7. How much of your response is related to your personal experience? How much is
related to your own worldview? How is this feeling related to the information you
know?

8. How will this information be useful for you in writing your own essay? What
position does this essay support? Or where might you use this article in your essay?

Sample Format
You can use your answers to the questions above to help you formulate your
response. Here is a sample of how you can put this together into your own essay:
Before reading this article, my understanding of this topic was . In my
own experience, | have found and because of this, my reaction to this
essay is . Interestingly, | have as common ground with
the author/audience. What was new to me is . This essay makes me think
. | like/dislike in the essay. | will use this article in my
research essay for

Vocabulary

article — crarbs;

summary — KpaTkoe M3JI0)KEHUE, KOHCIICKT;
rendering — pedepupoBanue;

uNncoMmMmMON — peaKuii;

finding — Haxo/Ka, OTKPHITHE, TOJIYYCHHBIC JaHHBIC
to pay attention — yiensats/o0painath BHUMaHUE;
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conclusion — ymo3akiroueHHe, BBIBO/T;

to highlight — BeressITH;

to comprehend — monumaTh, OCMBICITUBATE;

rough draft — scku3, HabpoCoK;

firm grasp — 4yeTkoe MOHMMAaHHE;

assignment — npeanucanue, UHCTPYKIKS, 3aaHNUC;

to explain — 0OBICHATS;

in plain language — mpocThIM A3BIKOM;

referring to — cceinasch Ha;

meaning — 3HaYCHUE, CMBICIT;

to convey — BeIpaxkath, epeiaBaTh (UL, CMbICH);
appropriate — moaxoaAIINi, COOTBETCTBYIOIIHIA;

to feature in — npuHKUMATH ydacTue;

concisely — kpaTko, C:kaTo, JIJAKOHUYHO, BBIPA3UTEIILHO;
cut and paste — «BbIpe3aTh M BCTaBIATH» (0OBEMHO IMTHPOBATH 0€3 CCHUIKM Ha
UCTOYHHK, KOMITHJIHPOBATH);

jumble — xyua; GecropsI0YHO CBaJICHHBIC B Ky4y BEIIIH;
borders on — rpanuunTk grade — oreHka, OTMETKa,
option — BapuaHT, albTEPHATHBA; OIIIIHSL.

Task 2. Read and translate the text. Use its main ideas for rendering scientific
articles:

How to write a Summary of a scientific article

Summarizing or rendering of a scientific article demonstrates your
understanding of the material and presents this information to an audience that may not
have a science background. It is not uncommon for a scientific article to describe an
experiment and discuss its findings. To write an effective summary, you must be able
to focus on the main ideas of the article. This also helps to understand scientific
research better.

Instructions:

1. Read the entire article. Pay attention to the experiment methods and the

conclusions presented. Read the article more than once, if necessary.

Look up any words or methods you do not understand.

3. Go through the article, and highlight its main ideas. Make sure you understand
the main points in each para graph. Take notes so you have a starting point for
your summary.

4. Test your understanding of the artic le by asking yourself questions about it. Try
explaining the concept of the article to a friend or family member in non-
scientific language. Determine if you can clearly explain the article in a way that
IS easy to comprehend.

5. Start a rough draft of your summary, using the notes you've written. Review the
article to ensure you have a firm grasp of the conclusion. Summarize the article's
conclusion. Offer your own interpretation of the conclusion along with your
opinion of the article's content.

N
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Task 3. Look through the “George Mason University Recommendations” on the
writing of a summary of a scientific article. Be ready to answer the questions:

This assignment is generally intended to help you learn to synthesize scientific
materials and communicate the main points effectively, using plain language.

Start by making sure you understand the central points of what you read. Explain
the article in plain language to someone else and answer questions without referring
back to the article, to make sure you have grasped the essence of what you read. Dr.
James Lawrey in the Biology Department uses this assignment to teach students to pick
out the meaning of an article and convey the main points. The appropriate writing style
for a summary of a scientific article is to use simple sentences that express one or two
ideas. An example might be a story featured in the mainstream media that explains a
recent scientific finding, bringing out the important aspects concisely and without too
much scientific jargon. Do not “cut and paste” from the article. When students do not
really understand what they read, their writing is a jumble of statements nearly straight
from the article, with no interpretation or synthesis of the article's findings. This
strategy is common among students who wait until the last minute to complete
assignments. Besides the fact that this practice borders on or actually is plagiarism, it
shows that students do not understand what they are writing about, and their grades
reflect this.

Task 4. Answer the questions:

1. Who is James Lawrey? 2. What should you do at first while writing a
summary? 3. Does the author limit the number of times his students should read the
scientific article they are to summarize? 4. When do students use “cut and paste”
function while writing a summary? 5. How do you understand the term “plagiarism”?

Task 5. Retell the Instructions on writing a Summary of a scientific article.

Task 6. Read the definition of summarizing/rendering in Russian. Try to
remember as many set phrases as possible. Use them in the rendering of scientific
articles.

PedepupoBanue Hay4yHbIX cTaTeil Ha aHTIUHUCKOM SI3bIKE — Ba)KHBIM HAaBBIK,
HEOOXOIUMBINA JTHO0OMY cOoBpeMeHHOMY HHkeHepy. CyTh pedepupoBaHUsS MOKHO
CBECTU K aHAJIM3y MPOYUTAHHOUN aHTIIOSN3BIYHOW pabOTHI C BBIJICJICHUEM €€ TIaBHOM
U7eH, OMHCAHHEM MEPEUUCICHHBIX aBTOPOM (AKTOB W JOBOJOB M TOJIBEIEHUEM
uToroB. C 3TOM 11eJ1bI0 MOYKHO MCTOJB30BATh PsiJl BBOJHBIX SI3bIKOBBIX KOHCTPYKIIHIA.

1. Ha3Banmue craTthbu, aBTOp, cTHJIB. | he article I’m going to give a review of
Is taken from... — CraThs, KOTOpPYIO s ceiidac X04y MPOAHAIM3UPOBATH M3... TNhe
headline of the article is — 3aronoBok crateu... The author of the article is... — ABTop
ctaTthu... It 1s written by — Ona nHanucana (kem)... The headline foreshadows... —
3aroJioBOK IPHUOTKPHIBAET. ..
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2. Tema. Jlormueckue gyactu. The topic of the article is... — Tema cratbu 370. ..
The key issue of the article is... — KiroueBsIM BOIIPOCOM B CTaThe sSBiIseTCA... The
article under discussion is devoted to the problem... — OG6cyxnaemast crarbs
nocssiiieHa nmpobseme. .. The author in the article touches upon the problem of... — B
CTaThe aBTOP 3aTparuBacT npoodiemy.... I’d like to make some remarks concerning...
— 51 OB1 xoTen(a) cuenarh HECKOJIBKO 3amedanuii 1o mosoxdy... I’d like to mention
briefly that... — Xortemocs Ob1 kpaTko oT™MeTHTH, uTO... |’d like to comment on the
problem of... — 5 61 xoTen(a) MpoKOMMEHTHpPOBATEL podiemy... The article under
discussion may be divided into several logically connected parts which are... — Cratbs
MOJKET OBITh pa3jielicHa Ha HECKOJBKO JIOTUUECKH B3aMMOCBS3aHHBIX YACTEH, TaKMX
KakK...

3. Kparkoe conep:xanne. At the beginning of the article its author... — B nauae
CTaTbH aBTOP... ... describes — omuceiBaeT ...depicts — m3o0paxaer ...touches upon —
3aTparuBaer ...explains — o0OBACHsET ...introduces — 3HAKOMHUT ...mentions —
ynomuHaeT ...makes a few critical remarks on — nemaeT HECKOJIbKO KPUTUUYECKUX
3ameuanuii o The article begins (opens) with a (the)... — Crares HaumHaercs...
...description of — omnwmcanuem ...statement — 3asBieHHeM ...introduction of —
npejacTaBieHueM ...the mention of — ymomunanuem ...the analysis of / a summary of
— kpatkuM aHamu3om ...the characterization of — xapakrepuctukoii ...(author’s)
opinion of — MmueHrem aBTOpa ...the enumeration of — mepeunem In conclusion the
author — B 3aksrouenue aBTop ...dwells on — ocraHaBimBaeTcst Ha ...points out —
yKa3bIBaeT Ha TO ...generalizes — o0oOmIaeT ...reveals — MOKa3bIBaET ...€XpOSES —
MOKa3bIBAET ...accuses / blames — oOBuHsET ...gives a summary of — 1aet 0630p...

4. OTHOUIEHHE aBTOpa K OTAeJIbHbIM MoMeHTaM. The author gives full
coverage to... — ABTOp MOJHOCTHIO OXBaThiBaeT... The author outlines... — ABTOp
omuceiBaeT... The article contains the following facts.../ describes in details... —
Cratbst coAepKUT cienyromue GakThl .... / moapoOHO onuckiBaeT... The author starts
with the statement of the problem and then logically passes over to its possible
solutions. — ABTop HaYMHAET C MMOCTAHOBKH 3aJ1a4M, a 3aTeM JIOTHYCCKHU MEPEXOJIUT K
ee Bo3MOxHbIM pemeHusiM. The author asserts that... — ABTop yTBepkaaert, uto ... The
author resorts to ... to underline... — ABrop npuberaer K ..., 4ToObI MOTYCPKHYTh. ..
Let me give an example... — [To3BoJIbTE MHE IPUBECTH MTPUMED. . .

5. BeiBox aBTopa. In conclusion the author says / makes it clear that.../ gives a
warning that... - B 3akmouenue aBrop roBopur / mposicHseT, Yro... [
npeaynpexaaet, uro... At the end of the article author sums it all up by saying ... - B
KOHIIE CTaThW aBTOP IMOJIBOJIUT UTOT BCEro 3Toro, roops... The author concludes by
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saying that... / draws a conclusion that... / comes to the conclusion that... - B
3dKJIIFOUYCHUE aBTOpP I'OBOPUT, 4YTO... / A€JIa€T BBIBOI, 4YTO... / IMpUXOJHUT K BBIBOAY,

9TO. ..

6. Boipa3uTteabHble CpecTBa, HCNOJIb3yeMble B cTaThe. 10 emphasize ... the
author uses... — UTtoObl akKIEHTUPOBATH BHUMAHHUE ... ABTOP MCIOJIB3YET... 10
underline ... the author uses... — UToObl MOAYEPKHYTH ... aBTOP HCIOIB3YyeT 10

stress... — UroObl ycunmuTh/moguepkuyTh. .. Balancing... — bamancupys. ..

7. Bam BeIBoa. Taking into consideration the fact that — Ilpunumas Bo
BHMMaHUE TOT ¢akT, uto The message of the article is that... /The main idea of the
article is... — OcuHoBHas wuaes cratbu (mocianue astopa)... In addition... /
Furthermore... — Kpome Toro...

On the one hand..., but on the other hand... — C ogHoi#i cTopoHBI ..., HO ¢ ApyTOit
croponbl... Back to our main topic... — Bo3Bpaiascs k Haieit OCHOBHOM TeMe... TO
come back to what | was saying... — UtoObl BepHYThCSI K TOMY, 4TO st TOBOpmII(a)... In
conclusion I’d like to... — B 3akmouenue s xoren(a) 6s1... From my point of view... —

C Moetii Touku 3peHus. .. As far as [ am able to judge... — Hackosbko st MOTY CYJUTb. ..
My own attitude to this article is... — Moe nu4HOe OTHOIIEHUE K 3TO# cTaThe... | fully
agree with... / I don’t agree with... — 51 moHOCTBIO cOTyIaceH / HE corjiaceH c... It is

hard to predict the course of events in future, but there is some evidence of the
improvement of this situation. — TpyxaHo npeacKa3aTh X014 COOBITHI B OYIyIeM, HO
€CTh HEKOTOPBIE CBHUICTENILCTBA YiryumeHus cutyanuu. | have found the article dull /
important / interesting /of great value - $I HaxoXy CTaThlO CKy4HOW / Ba)KHOH /
WHTEPECHOMU / UMeIoIel 00bIIoe 3HaueHNe (IIEHHOCTD ).

Task 7. Retelling

Read text of the article several times. Work in pairs or groups. Divide text into
parts, so that each group will have at least several sentences. Select the key words in
the texts, type them in Word it Out (https://worditout.com/) and generate a cloud. Retell
the story with the help of the generated word clouds. If two words need to be together,
Imagine “suffer from”, you only need to insert _ between the two words and they’ll be
kept together in the cloud.

IIpumep paccka3a 0 HAYYHBIX HHTEpPeCaX MArHCTPAHTA:

1. What is your name? — My name is Ivan lvanovich Ivanov.
2. What educational institution did you graduate from? When? — | graduated from
...in 20...
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3. What is your speciality? — My speciality is .../ My profession is ...

4. Why did you decide to take a post-graduate course? — | decided to take a post
graduate-course because | had been interested in science since my 3-d year at the
University / because scientific approach is very important in my profession.

5. What is the subject of your future scientific research? — The subject of my
scientific research is ... — My future scientific research is devoted to the problem of ...
— My future scientific research deals with the problem of ...

6. Who is your scientific supervisor? — My scientific supervisor is Ivan Petrovich
Petrov, Professor, Doctor of technical/ economic sciences, Head of the Chair of ... /
Head of the Department of ... — He has got a lot of publications devoted to the problem
of ...

7. Have you ever participated in any scientific conferences? — Yes, I've
participated in many conferences devoted to the most actual problems of
economy/physics/geodesy/hydrology etc. — Not yet, but | hope, together with my
supervisor, I’ll prepare some reports for scientific conferences / I’ll take part in several
conferences in the near future.

8. Do you have any publications? — Yes, I’ve got some publications connected
with my research. — Not yet, but | hope, together with my supervisor, I’ll prepare some
publications, they will be devoted to my research.

9.What methods are you going to use in your investigation? — Together with my
supervisor we are going to apply such methods as theoretical, experimental, practical
and computational methods because they will help me to complete my research.

10. What will your scientific research give the world? In what way can your
investigation/research be useful to ... science?

— | think / | hope / | dare say that the problem of our scientific research is very
urgent and our scientific research will be very useful for ... / it will help people in the
field of ...
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CIHIACOK COKPAIIIEHUI

CoOKpameHue YHUTAaeTCsA/03HaYaeT InmepeBoa

% percent (per cent) [pa'sent] IPOLICHT

°C degrees Centigrade rpaayc (L{enbcus)
°F degrees Fahrenheit rpanyc (Papenreiita)
etc. [et'set(a)ra] U TaK Jayiee

e.g. for example HanpuMep

I. e. that is TO €CTh

Temneparypa unraercs:
25° C — twenty-five degrees Centigrade ['sentigreid] (mo mkaie I{enbcus);
34° F — thirty-four degrees Fahrenheit ['feeronhart] (o mxane ®apenreiira).
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