Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Санкт-Петербургский государственный университет промышленных технологий и дизайна» Высшая школа технологии и энергетики Кафедра физической и коллоидной химии

ХИМИЧЕСКИЕ ВОЛОКНА

Выполнение лабораторных работ

Методические указания для студентов очной и заочной формы обучения по направлению подготовки 18.04.01 — Химическая технология

Составители:

И. И. Осовская

А. Е. Баранова

Утверждено на заседании кафедры ФиКХ 30.08.2022 г., протокол № 1

Рецензент А. Н. Евдокимов

Методические указания соответствуют рабочей программе и учебным планам дисциплины «Химические волокна» для студентов, обучающихся по направлению подготовки 18.04.01 — Химическая технология Института технологии и содержат описание лабораторных работ по разделам курса, раскрывающие основные физико-химические свойства волокон из природных и синтетических полимеров.

В методических указаниях представлены рекомендации по выполнению и оформлению лабораторных работ.

Утверждено Редакционно-издательским советом ВШТЭ СПбГУПТД в качестве методических указаний

Режим доступа: http://publish.sutd.ru/tp_get_file.php?id=202016, по паролю.
- Загл. с экрана.
Дата подписания к использованию 01.11.2022 Рег. № 5101/22

Высшая школа технологии и энергетики СПб ГУПТД 198095, СПб., ул. Ивана Черных, 4.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1. ОБЩИЕ ПОЛОЖЕНИЯ	
2. ТРЕБОВАНИЯ К СОДЕРЖАНИЮ И ОФОРМЛЕНИЮ ОТЧЕТА ПО	
ЛАБОРАТОРНОЙ РАБОТЕ	6
3. ЛАБОРАТОРНЫЕ РАБОТЫ	
Лабораторная работа № 1. Идентификация волокон растительного	
происхождения	7
Лабораторная работа № 1.1. Идентификация волокон химическим	
методом	7
Лабораторная работа № 1.2. Идентификация волокон методом сгорания	
Лабораторная работа № 1.3. Идентификация волокон с помощью цветных	
Реакций	8
Лабораторная работа № 1.4. Идентификация волокон с помощью	
растворителей 9	
Лабораторная работа № 2. Идентификация волокон животного	
происхождения	10
Лабораторная работа № 2.1. Идентификация волокон химическим	
методом	10
Лабораторная работа № 2.2. Идентификация волокон методом сгорания	11
Лабораторная работа № 2.3. Идентификация волокон с помощью цветных	
реакций	11
Лабораторная работа № 2.4. Идентификация волокон с помощью	
растворителей	12
Лабораторная работа № 3. Идентификация искусственных волокон	13
Лабораторная работа № 3.1. Идентификация волокон химическим	
методом	13
Лабораторная работа № 3.2. Идентификация волокон методом сгорания	14
Лабораторная работа № 3.3. Идентификация волокон с помощью цветных	
реакций	14
Лабораторная работа № 3.4. Идентификация волокон с помощью	
растворителей	
Лабораторная работа № 4. Идентификация синтетических волокон	16
Лабораторная работа № 4.1. Идентификация волокон химическим	
методом	
Лабораторная работа № 4.2. Идентификация волокон методом сгорания	16
Лабораторная работа № 4.3. Идентификация волокон с помощью цветных	
реакций	17
Лабораторная работа № 4.4 Идентификация волокон с помощью	
растворителей	
Лабораторная работа № 5. Зачётная работа	
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	19

ВВЕДЕНИЕ

Основным и главным объектом текстильной промышленности являются волокна, различные по происхождению: природные — растительные и белковые, химические — искусственные и синтетические. Все волокна представляют собой органические высокомолекулярные соединения, каждое из которых обладает своими свойствами: как химическими (отношение к химическим реагентам — кислотам, щелочам, окислителям, восстановителям, органическим растворителям и др.), так и физико-механическими (отношение к различного рода воздействиям полей — УЗ, УФ, СВЧ, магнитным и др., а также физико-механическим нагрузкам — разрывам, трению и т.д.). Все волокна классифицируются по происхождению, строению, свойствам (отношение к воде, температуре).

Совокупность свойств волокон определяет в целом технологические режимы отделки текстильных материалов, начиная с подготовки (удаление примесей, сопутствующих при изготовлении текстильного изделия), колорирования (крашения и печатания) и заканчивая заключительной отделкой (придание тканям специальных свойств, например, устойчивости к смятию, гидро- и олеофобности, огнестойкости, бактерицидности и т.д.).

Таким образом, знание свойств волокнообразующих полимеров позволяет обосновать и разработать новую рациональную технологию с возможной экономией затрат на сырье, химических реактивов, энергии, а также, что немаловажно, обеспечить экологическую безопасность окружающей среды.

Также следует отметить, что существует целая методика определения вида и типа волокна на основании изучения ряда свойств по отношению к химическим реагентам, действию физических полей.

1. ОБЩИЕ ПОЛОЖЕНИЯ

Лабораторная работа — это вид учебной работы студента с элементами самостоятельного научного исследования. Она нацелена на формирование умения искать и осмысливать нужную информацию, выходящую за рамки списка обязательной литературы, а также грамотно и четко излагать полученные результаты. Лабораторная работа выполняется в течение всего семестра. В процессе выполнения лабораторной работы решаются следующие задачи:

- 1. Углубление теоретических знаний по данной дисциплине.
- 2. Приобретение навыков проведения эксперимента, решать проблемы, неизбежно возникающие в процессе выполнения лабораторных работ.

Всё это способствует формированию личности будущего руководителя производства. Подготовка и защита лабораторных работ является одной из форм текущего контроля успеваемости, позволяющей оценить знания, умения и уровень приобретенных компетенций обучающихся.

Лабораторные работы ПО дисциплине «Химические волокна», выполняемые в течение самостоятельная учебная работа семестра, обучающихся, которая способствует приобретению И закреплению студентами следующих профессиональных компетенций:

ПК-2 — способность осуществлять руководство исследованиями качества сырья и готовой продукции.

2.ТРЕБОВАНИЯ К СОДЕРЖАНИЮ И ОФОРМЛЕНИЮ ОТЧЕТА ПО ЛАБОРАТОРНОЙ РАБОТЕ

Перед выполнением лабораторных работ необходимо на вводном лабораторном занятии изучить общие правила поведения и технику безопасности по химии, списоклитературы, рекомендуемой для использования при подготовке к выполнению лабораторных работ, и «Тематический план лабораторных работ», имеющийся в лаборатории.

Порядок подготовки к выполнению лабораторной работы:

- 1. Студент должен являться на лабораторные занятия подготовленным к лабораторной работе, выполнение которой предусмотрено тематическим планом на соответствующую дату.
- 2. Предварительная подготовка к работе включает оформление первой и второй части отчета по соответствующей форме и выполнение задания для самостоятельной подготовки к указанной лабораторной работе с использованием материалов лекций, учебника и данных методических указаний.
- 3. Отчет о предстоящей работе оформляется по следующей форме: дата выполнения работы, № лабораторной работы, название работы, I теоретическая часть, II практическая часть.

Теоретическая часть – в разделе излагаются основные понятия, законы, расчетные формулы, которые необходимо усвоить для сознательного выполнения эксперимента и грамотной обработки результатов. Перечень понятий и законов имеется в методических указаниях к соответствующей лабораторной работе в разделе «Теоретическая база эксперимента», с использованием которых выводятся формулы для расчета определяемой в работе величины. В конце раздела приводятся решения и результаты выполнения заданий для самостоятельной подготовки к соответствующей лабораторной работе.

Порядок выполнения лабораторной работы

На лабораторном занятии студент участвует в индивидуальном собеседовании с преподавателем по содержанию предстоящей работы. Преподаватель делает заключение о готовности студента к работе по содержанию 1 и 2 частей отчета, результатам выполнения задания для самостоятельной подготовки, которые представляются в виде таблиц.

В случае достаточного уровня подготовки студент получает допуск к выполнению эксперимента и под наблюдением лаборанта выполняет работу в соответствии с планом эксперимента, вносит результаты измерений в таблицу, проверяет полученные результаты и правильность их записи у преподавателя. В случае неправильного измерения и записи полученных результатов студент повторяет измерения и корректирует записи результатов, поэтому результаты измерений на первом этапе целесообразно вносить карандашом. При достижении разумных результатов и правильного их внесения в таблицу необходимо привести в порядок рабочее место, сдать методические указания, оборудование дежурному или лаборанту и подписать таблицу экспериментальных данных у преподавателя. В этом случае студенту зачитывается выполнение эксперимента, ему следует приступить к обработке результатов и составлению следующего раздела отчета.

3. ЛАБОРАТОРНЫЕ РАБОТЫ

ЛАБОРАТОРНАЯ РАБОТА № 1 ИДЕНТИФИКАЦИЯ ВОЛОКОН РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ

Лабораторная работа № 1.1 Идентификация волокон химическим методом

Цель работы: определить волокна химическим методом Реактивы:

- 1. Волокна растительного происхождения;
- 2. Серная кислота 3 %-й раствор;
- 3. Едкий натр 3 %-й и 10 %-й раствор;
- 4. Азотная кислота конц.

Оборудование и посуда:

- 1. Электронные весы;
- 2. Химические стаканы;
- 3. Капельница;
- 4. Водяная баня;
- 5. Сушильный шкаф.

Ход работы:

Волокно	Химический	Условия проведения	Наблюдения
	реагент		
	Серная кислота	Пропитать раствором, отжать,	
	H_2SO_4	провести термообработку	
	3 %-й раствор	(102 °С, 20-30 минут в	
		сушильном шкафу)	
Хлопковое	Едкий натр	Залить находящиеся в пробирке	
AJIOIIKOBOC	NaOH	волокна раствором едкого	
	10 %-й раствор	натра, поместить в кипящую	
		водяную баню на 20-30 минут	
		при 20 °C	
		_	
Волокно	Химический	Условия проведения	Наблюдения
	реагент		
	Едкий натр	Залить находящиеся в пробирке	
	NaOH	волокна раствором едкого	
	3 %-й раствор	натра, поместить в кипящую	
Хлопковое		водяную баню на 20-30 минут	
	Азотная кислота	Работать под тягой!	
	HNO ₃	Смочить волокна	
	конц. раствор	концентрированным раствором	
		HNO ₃	

Лабораторная работа № 1.2 Идентификация волокон методом сгорания

Цель работы: определить волокна методом сгорания

Реактивы:

1. Волокна растительного происхождения;

Оборудование и посуда:

- 1. Стеклянные палочки;
- 2. Спиртовая горелка.

Ход работы:

Выполнение анализа. Небольшую пробу полимера помещают на стеклянную лопаточку и вносят в синий конус пламени горелки; при этом отмечают поведение полимера, окраску пламени, запах выделяющихся газообразных продуктов. Полученные наблюдения заносят в таблицу.

	<u> </u>		
Волокно	Поведение волокна	Запах продуктов сгорания	Характер остатка при выносе из пламени
Целлюлозные и			
гидратцеллюлозное			
(хлопковое и			
вискозное)			

Вывод:

Лабораторная работа № 1.3 Идентификация волокон с помощью цветных реакций

Цель работы: определить поведение волокон при действии красителей Реактивы:

- 1. Волокна растительного происхождения;
- 2. Железистосинеродистный калий 10 %-й раствор;
- 3. Хлорцинкйод.

Оборудование и посуда:

- 1. Электронные весы;
- 2. Химические стаканы;
- 3. Стеклянные палочки.

Ход работы:

В небольшую пробу полимера вносят химический реагент (краситель); при этом следят за окраской полученного раствора. Полученные наблюдения заносят в таблицу.

Волокно	Химический реагент	Цвет продуктов
Хлопковое Льняное	Хлорцинкйод	
Хлопковое	В течение 10 минут при 20-25 °C волокна обрабатываются 10 %-м	
Льняное	раствором железистосинеродистного калия	

Вывод:

Лабораторная работа № 1.4 Идентификация волокон с помощью растворителей

Цель работы: определить тип волокна при действии различных растворителей Реактивы:

- 1. Волокна растительного происхождения;
- 2. Едкий натр;
- 3. Азотная кислота конц.;
- 4. Ацетон;
- 5. Серная кислота конц.

Оборудование и посуда:

- 1. Электронные весы;
- 2. Химические стаканы;
- 3. Стеклянные палочки.

Ход работы:

1 г волокна вносят в растворитель; при этом следят за поведением волокна. Полученные наблюдения заносят в таблицу.

		Действие ра	астворителеі	Ă
Волокно	NaOH	НО3 конц	Н2SO4 конц	Ацетон
Льняное				
Хлопковое				

где, P — растворяется; HP — не растворяется; MP — малорастворим.

ЛАБОРАТОРНАЯ РАБОТА № 2 ИДЕНТИФИКАЦИЯ ВОЛОКОН ЖИВОТНОГО ПРОИСХОЖДЕНИЯ

Лабораторная работа № 2.1 Идентификация волокон химическим методом

Цель работы: определить волокна химическим методом

- Реактивы:
- 1. Волокна животного происхождения;
- 2. Серная кислота 3 %-й раствор;
- 3. Едкий натр 3 %-й и 10 %-й раствор;
- 4. Ацетат свинца 10 %-й раствор;
- 5. Азотная кислота конц.

Оборудование и посуда:

- 1. Электронные весы;
- 2. Химические стаканы;
- 3. Капельница;
- 4. Водяная баня;
- 5. Сушильный шкаф.

Ход работы:

Волокно	Химический реагент	Условия проведения	Наблюдения
Шерсть Натуральный шелк	Серная кислота H ₂ SO ₄ 3 %-й раствор	Пропитать раствором, отжать, провести термообработку (102 °C, 20-30 минут в сушильном шкафу)	
Шерсть Натуральный шелк	Едкий натр NaOH 3 %-й раствор	Залить находящиеся в пробирке волокна раствором едкого натра, поместить в кипящую водяную баню на 20-30 минут	
Волокно	Химический реагент	Условия проведения	Наблюдения
Гидролизат шерсти Гидролизат натурального шелка	Ацетат свинца Pb(CH ₃ COO) ₂ 10 %-й раствор	К растворенным образцам шерсти и натурального шелка в 3 %-м растворе NaOH прилить 2-3 капли ацетата свинца	
Шерсть Натуральный шелк	Азотная кислота HNO ₃ конц. раствор	Работать под тягой! Смочить волокна из капельницы концентрированным раствором HNO ₃	

Лабораторная работа № 2.2 Идентификация волокон методом сгорания

Цель работы: определить волокна методом сгорания

Реактивы:

1. Волокна животного происхождения.

Оборудование и посуда:

- 1. Стеклянные палочки;
- 2. Спиртовая горелка.

Ход работы:

Небольшую пробу полимера помещают на стеклянную лопаточку и вносят в синий конус пламени горелки; при этом отмечают поведение полимера, окраску пламени, запах выделяющихся газообразных продуктов. Полученные наблюдения заносят в таблицу.

Волокно	Поведение волокна	Запах продуктов сгорания	Характер остатка при выносе из пламени
Белковые (шерсть и натуральный шелк)			

Вывод:

Лабораторная работа № 2.3 Идентификация волокон с помощью цветных реакций

Цель работы: определить поведение волокон при действии красителей Реактивы:

- 1. Волокна животного происхождения;
- 2. Хлорцинкйод.

Оборудование и посуда:

- 1. Электронные весы;
- 2. Химические стаканы;
- 3. Стеклянные палочки.

Ход работы:

В небольшую пробу полимера вносят химический реагент (краситель); при этом следят за окраской полученного раствора. Полученные наблюдения заносят в таблицу.

Волокно	Химический реагент	Цвет продуктов
Шерсть Шелк	Хлорцинкйод	

Лабораторная работа № 2.4 Идентификация волокон с помощью растворителей

Цель работы: определить тип волокна при действии различных растворителей Реактивы:

- 1. Волокна животного происхождения;
- 2. Едкий натр;
- 3. Азотная кислота конц.;
- 4. Ацетон;
- 5. Серная кислота конц.

Оборудование и посуда:

- 1. Электронные весы;
- 2. Химические стаканы;
- 3. Стеклянные палочки.

Ход работы:

1 г волокна вносят в растворитель; при этом следят за поведением волокна. Полученные наблюдения заносят в таблицу.

	Дейст		астворителеі	й
Волокно	NaOH	НО3 конц	Н2SO4 конц	Ацетон
Шелк				
Шерсть				

где, Р – растворяется; НР – не растворяется; МР – малорастворим.

ЛАБОРАТОРНАЯ РАБОТА № 3 ИДЕНТИФИКАЦИЯ ИСКУССТВЕННЫХ ВОЛОКОН

Лабораторная работа № 3.1 Идентификация волокон химическим методом

Цель работы: определить волокна химическим методом Реактивы:

- 1. Искусственные волокна;
- 2. Серная кислота 3%-й раствор;
- 3. Едкий натр 3%-й и 10%-й раствор;
- 4. Ацетон;
- 5. Азотная кислота конц.

Оборудование и посуда:

- 1. Электронные весы;
- 2. Химические стаканы;
- 3. Капельница;
- 4. Водяная баня;
- 5. Сушильный шкаф.

Ход работы:

Волокно	Химический реагент	Условия проведения	Наблюдения
Вискозное	Серная кислота H ₂ SO ₄ 3 %-й раствор	Пропитать раствором, отжать, провести термообработку (102 °C, 20-30 минут в сушильном шкафу)	
	Едкий натр NaOH 10 %-й раствор	Залить находящиеся в пробирке волокна раствором едкого натра, поместить в кипящую водяную баню на 20-30 минут при 20 °C	
Волокно	Химический реагент	Условия проведения	Наблюдения
	Ацетон	Работать под тягой! Смочить волокна ацетоном	
Вискозное	Едкий натр NaOH 3 %-й раствор	Залить находящиеся в пробирке волокна раствором едкого натра, поместить в кипящую водяную баню на 20-30 минут	

Лабораторная работа № 3.2 Идентификация волокон методом сгорания

Цель работы: определить волокна методом сгорания

Реактивы:

1. Искусственные волокна.

Оборудование и посуда:

- 1. Стеклянные палочки;
- 2. Спиртовая горелка.

Ход работы:

Небольшую пробу полимера помещают на стеклянную лопаточку и вносят в синий конус пламени горелки; при этом отмечают поведение полимера, окраску пламени, запах выделяющихся газообразных продуктов. Полученные наблюдения заносят в таблицу.

Волокно	Поведение волокна	Запах продуктов сгорания	Характер остатка при выносе из пламени
Ацетатное			

Вывод:

Лабораторная работа № 3.3 Идентификация волокон с помощью цветных реакций

Цель работы: определить поведение волокон при действии красителей Реактивы:

- 1. Искусственные волокна;
- 2. Хлорцинкйод;
- 3. Реактив АР.

Оборудование и посуда:

- 1. Электронные весы;
- 2. Химические стаканы;
- 3. Стеклянные палочки.

Ход работы:

В небольшую пробу полимера вносят химический реагент (краситель); при этом следят за окраской полученного раствора. Полученные наблюдения заносят в таблицу.

Волокно	Химический реагент	Цвет продуктов
Вискозное	Реактив АР (смесь равных	
Медно-аммиачное	объемов красителей анилина чисто-голубого ФФ и родамина Б по 1 г/л)	
Ацетатное	F - 7	
Вискозное Медно-аммиачное	Хлорцинкйод	
Ацетатное		

Вывод:

Лабораторная работа № 3.4 Идентификация волокон с помощью растворителей

Цель работы: определить тип волокна при действии различных растворителей Реактивы:

- 1. Искусственные волокна;
- 2. Едкий натр;
- 3. Азотная кислота конц.;
- 4. Ацетон;
- 5. Серная кислота конц.

Оборудование и посуда:

- 1. Электронные весы;
- 2. Химические стаканы;
- 3. Стеклянные палочки.

Ход работы:

1 г волокна вносят в растворитель; при этом следят за поведением волокна. Полученные наблюдения заносят в таблицу.

	Действие растворителей			
Волокно	NaOH	НО3 конц	Н2ЅО4 конц	Ацетон
Вискозное				
Ацетатное				

где, Р – растворяется; НР – не растворяется; МР – малорастворим.

ЛАБОРАТОРНАЯ РАБОТА № 4 ИДЕНТИФИКАЦИЯ СИНТЕТИЧЕСКИХ ВОЛОКОН

Лабораторная работа № 4.1 Идентификация волокон химическим методом

Цель работы: определить волокна химическим методом Реактивы:

- 1. Синтетические волокна;
- 2. Серная кислота 3 %-й раствор;
- 3. Едкий натр 3 %-й раствор;
- 4. Муравьиная кислота 85 %-й раствор.

Оборудование и посуда:

- 1. Электронные весы;
- 2. Химические стаканы;
- 3. Капельница;
- 4. Водяная баня;
- 5. Сушильный шкаф.

Ход работы:

Волокно	Химический	Условия проведения	Наблюдения
	реагент		
ПА		Пропитать раствором, отжать,	
ПЭ	Серная кислота	провести термообработку	
ПАН	H_2SO_4	(102 °C, 20-30 минут в сушильном	
	3 %-й раствор	шкафу)	
ПА		Залить находящиеся в пробирке	
ПЭ	Едкий натр	волокна раствором едкого натра,	
ПАН	NaOH 3 %-й	поместить в кипящую водяную	
	раствор	баню на 20-30 минут.	
		·	
ПА	Муравьиная	Работать под тягой!	
ПЭ	кислота НСООН	Смочить волокна муравьиной	
	85 %-й раствор	кислотой из капельницы	

Вывод:

Лабораторная работа № 4.2 Идентификация волокон методом сгорания

Цель работы: определить волокна методом сгорания

Реактивы:

1. Синтетические волокна.

Оборудование и посуда:

- 1. Стеклянные палочки;
- 2. Спиртовая горелка.

Ход работы:

Небольшую пробу полимера помещают на стеклянную лопаточку и вносят в синий конус пламени горелки; при этом отмечают поведение полимера, окраску пламени, запах выделяющихся газообразных продуктов. Полученные наблюдения заносят в таблицу.

Волокно	Поведение волокна	Запах продуктов сгорания	Характер остатка при выносе из пламени
ПА			
ПЭ			
ПАН			

Вывод:

Лабораторная работа № 4.3 Идентификация волокон с помощью цветных реакций

Цель работы: определить поведение волокон при действии красителей Реактивы:

- 1. Синтетические волокна;
- 2. Хлорцинкйод;
- 3. Едкий натр 3 %-й раствор.

Оборудование и посуда:

- 1. Электронные весы;
- 2. Химические стаканы;
- 3. Стеклянные палочки.

Ход работы:

В небольшую пробу полимера вносят химический реагент (краситель); при этом следят за окраской полученного раствора. Полученные наблюдения заносят в таблицу.

Волокно	Химический реагент	Цвет продуктов
Волокна нитрона	При кипячении в 3 %-м растворе едкого натра NaOH	
Капроновое	Хлорцинкйод	

Лабораторная работа № 4.4 Идентификация волокон с помощью растворителей

Цель работы: определить тип волокна при действии различных растворителей Реактивы:

- 1. Синтетические волокна;
- 2. Едкий натр;
- 3. Азотная кислота конц.;
- 4. Ацетон;
- 5. Серная кислота конц.

Оборудование и посуда:

- 1. Электронные весы;
- 2. Химические стаканы;
- 3. Стеклянные палочки.

Ход работы:

1 г волокна вносят в растворитель; при этом следят за поведением волокна. Полученные наблюдения заносят в таблицу.

	Действие растворителей			
Волокно	NaOH	НО3 конц	Н2SO4 конц	Ацетон
Нейлон				
ПЭ				
ПАН				

где, Р – растворяется; НР – не растворяется; МР – малорастворим.

Вывод:

ЛАБОРАТОРНАЯ РАБОТА № 5 ЗАЧЁТНАЯ РАБОТА

Самостоятельно предложить способ и сформовать волокно в химической лаборатории Б-231.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Осовская, И. И. Дополнительные главы технологии полимерных материалов. Физико-химические свойства хитина, хитозана и волокон на их основе [Текст]: учебное пособие / И. И. Осовская. СПб.: ВШТЭ СПбГУПТД, 2021. 80 с.
- 2. Перепелкин, К. Е. Химические волокна: развитие производства, методы получения, свойства, перспективы [Текст] / К. Е. Перепелкин. СПб.: СПГУТД, 2008.-354 с.
- 3. Буров, Б. А. Материаловедение швейного производства [Текст] / Б. А. Буров, Т. А. Модестова. М.: Легпромбытиздат, 1986. 424 с.
- 4. Мальцева, Е. П. Материаловедение швейного производства [Текст] / Е. П. Мальцева. Изд. 2-е, перераб. и доп. М.: Легкая и пищевая промышленность, 1983.-232 с.
- 5. Осовская, И. И. Хитинглюкановые комплексы [Текст] : учебное пособие / И. И. Осовская, Е. Б. Тарабукина, Л. А. Нудьга. СПб.: СПбГТУРП, 2011. 55 с.
- 6. Осовская, И. И., Гидрофильные свойства растительных полимеров [Текст] : учебное пособие / И. И. Осовская, Г. М. Полторацкий. СПб.: СПбГТУРП, 2005. 55 с.
- 7. Азаров, В. И. Химия древесины и синтетических полимеров [Текст] : учебник для вузов / В. И. Азаров, А. В. Буров, А. В. Оболенская. СПб.: СПбЛТА, 2008. 628 с.
- 8. Папков, С. П. Теоретические основы производства химических волокон [Текст] / С. П. Папков. М.: Химия, 1990. 390 с.
- 9. Роговин, 3. А. Основы химии и технологии химических волокон [Текст] / 3. А. Роговин. Изд. 4-е. М., 1974. Т. 1 2.
- 10. Перепелкин, К. Е. Химические волокна: развитие производства, методы получения, свойства, перспективы [Текст] / К. Е. Перепелкин. СПб.: СПГУТД, 2008.-354 с.
- 11. Цветков, Л. А. Органическая химия [Текст] / Л. А. Цветков. М.: Просвещение, 1988.-239 с.
- 12. Пакшвер, А. Б. Технология производства химических волокон [Текст] / А. Б. Пакшвер. М.: Химия, 1987. 304 с.
- 13. Геллер Б. Э. Состояние и перспективы развития производства полиакрилонитрильных волокон // Химические волокна. -2002. -№3. С. 3 10.
- 14. Фляте, Д. М. Свойства бумаги [Текст] / Д. М. Фляте. М.: Лесная промышленность, 1976.-648 с.
- 15. Pathiraja A. Gunatillake, Raju Adhikari. Biodegrable synthetic polymers fro tissue engineering. European Cells and Mfterials. 2003. 160 p.