Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный университет промышленных технологий и дизайна» Высшая школа технологии и энергетики Кафедра физической и коллоидной химии

ДОПОЛНИТЕЛЬНЫЕ ГЛАВЫ ТЕХНОЛОГИИ ПОЛИМЕРНЫХ МАТЕРИАЛОВ ВОДОРАСТВОРИМЫЕ ПОЛИМЕРЫ

Выполнение лабораторных работ

Методические указания для студентов по направлению подготовки 18.04.01 – Химическая технология

Составители: И. И. Осовская А. И. Мошков

Утверждено на заседании кафедры ФиКХ 24.12.2021 г., протокол № 6

Рецензент А. Н. Евдокимов

Методические указания соответствуют рабочей программе и учебным планам дисциплины «Дополнительные главы технологии полимерных материалов» для студентов, обучающихся по направлению подготовки 18.04.01 «Химическая технология» и содержат описание лабораторных работ по разделам курса, раскрывающие основные физико-химические свойства полимеров.

В методических указаниях представлены рекомендации выполнения и оформления лабораторных работ.

Утверждено Редакционно-издательским советом ВШТЭ СПбГУПТД в качестве методических указаний

Режим доступа: http://publish.sutd.ru/tp_get_file.php?id=202016, по паролю. - Загл. с экрана.

Дата подписания к использованию 15.02.2022 г. Изд. № 5227/21

Высшая школа технологии и энергетики СПб ГУПТД 198095, СПб., ул. Ивана Черных, 4.

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ	4
ЛАБОРАТОРНЫЕ РАБОТЫ	6
Лабораторная работа № 1. Физико-химические свойства агарозы	6
1.1. Определение влажности полимера	6
1.2. Определение влагопоглощения агарозы	7
1.3. Определение зольности агарозы	7
1.4. Определение набухания агарозы	8
Лабораторная работа № 2. Физико-химические свойства желатина	9
2.1. Определение влажности пищевого и медицинского желатина	9
2.2. Определение условной вязкости при различных рН	9
2.3. Влияние рН среды на растворимость желатина	10
2.4. Получение пленок при различных концентрациях желатина	
2.5. Критическая концентрация мицеллообразования	
растворов желатина	11
2.6. Определение изоэлектрической точки желатина	14
Лабораторная работа № 3. Физико-химические свойства	
гуаровой камеди	17
3.1. Определение влажности гуаровой камеди	17
3.2. Определение сорбции паров воды гуаровой камеди	17
3.3. Методика определения условной вязкости	
3.4. Определение поверхностного натяжения. Метод отрыва кольца	
на крутильных весах Дю-Нуи	18
3.5. Определение растворимости гуаровой камеди в различных	
растворителях	19
Лабораторная работа № 4. Физико-химические свойства декстрина	20
4.1. Определение удельного объема и насыпной массы полимера	20
4.2. Фракционирование декстрина	21
4.3. Влияние рН на время растворения 0,1 % водного раствора декстрина	
при различных температурах	
4.4. Влияние рН на условную вязкость водного раствора декстрина	
Лабораторная работа (зачетная работа). Получение и свойства хитозана	23
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	24

ПРЕДИСЛОВИЕ

преобладающее развитие Несмотря на производства химических синтетических полимеров, постоянное возобновление в природе волокнистых материалов, получаемых из растительных источников, делает их особенно привлекательными. На данный момент основными областями применения недревесного растительного сырья (РС) являются медицина и лекарственная промышленность. РС используется в свежем или высушенном виде. Масштабы использования природных полимеров в качестве сырья для применения в медицине, фармакологии с каждым днем набирают высокие темпы. Это обусловлено как сырьевыми, так и экологическими проблемами. Истощение запасов органического сырья из нефтепродуктов стимулирует разработку процессов получения продуктов из природных растительных возобновляемых источников – полисахаридов. Полисахариды широко используются в пищевой промышленности в качестве гелеобразующих агентов. Прежде всего, это производные целлюлозы. Свойства растворов полисахаридов сильно зависят от степени замещения, степени разветвления и молекулярной массы. Целлюлозу можно сделать водорастворимой за счет химического модифицирования. Обычно три гидроксильные группы в-ангидроглюкозы, из которой состоит полимерная цепь целлюлозы, служат местами модифицирования на начальных стадиях процесса. К водорастворимым полисахаридам относится камеди растительного и камеди, продуцируемые бактериями. Камеди являются сложными органическими соединениями, образующиеся в местах различных повреждений коры деревьев (насекомыми, а также в естественных трещинах) или при искусственных воздействиях на растения. Камеди представляют собой набухающие в воде или растворимые в ней полимеры моносахаридов арабинозы, глюкозы, рамнозы, галактозы, уроновых кислот.

Натеки камеди на воздухе постепенно твердеют, приобретая разнообразные формы, величину и окраску. Камедь продуцируют почти все органы растения, включая ствол, корни, ветви, листья и плоды. Таким образом, получается, что камедь – продукт естественного происхождения, а не созданная в научно-исследовательской лаборатории химическая добавка. Камедями являются: камедь карайи, гхатти, гуаровая камедь, камедь рожкового дерева, аравийская камедь (гуммиарабик) и др.

В последние годы полисахариды, продуцируемые бактериями, получили особое внимание, основанное на их широкой области применения не только в качестве наполнителя, но и в качестве функциональной молекулы со многими необходимыми фармацевтическими и терапевтическими свойствами. К биосинтетическим (микробным) относят ксантановую и геллановую камеди, пуллулан.

По растворимости в воде камеди бывают: арабиновые (растворимые в воде), бассориновые (частично растворимые, а частично набухающие в воде) и церазиновые (нерастворимые в воде). Камеди нерастворимы в органических растворителях (спирты, различные эфиры), не горючи, осаждаются из водных

растворов спиртов. Тем самым они отличаются от натеков смол и веществ каучуковой природы. В высушенном состоянии камеди — стеклообразные аморфные массы, с водой дают густые растворы, иногда употребляемые как загустители красок. Камеди не кристаллизуются, с водой дают густые растворы, а при кипячении с кислотами распадаются на сахаристые вещества. Химическая модификация обеспечивает дополнительные источники гидроколлоидов или камедей с улучшенной функциональностью.

Структурное разнообразие также диктует уникальные функциональные свойства, проявляемые каждым полисахаридом. Полисахариды, которые доступны для использования в пищевой и не пищевой промышленности в качестве стабилизаторов, загустителей и гелеобразователей, ингибиторов кристаллизации, инкапсулирующих агентов, также называются гидроколлоидами.

Декстрин, или искусственная камедь, готовится из крахмала, преимущественно картофельного, как более дешевого, иногда пшеничного (чаще более низкие сорта). Декстрин не способен кристаллизоваться; высушенный полимер представляет собой стекловидное бесцветное вещество, способное при растирании давать белый порошок. Он не имеет никакого характерного вкуса и бесцветен. Его растворы нейтральны.

Важнейшим представителем полисахаридов является агар-агар, получаемый из морских водорослей. Агар-агар — сухой гидрофильный коллоидный полисахаридный комплекс. Он содержит $50-80\,\%$ агарозы и агаропектины (кислые полисахариды). При необходимости возможно разделение агара на эти два компонента. В фармацевтической промышленности его используют не как основное вещество, а как вспомогательное при создании фармацевтических препаратов для употребления. Как пролонгатор агар входит в состав препаратов в виде геля, микрокапсул, гранул и таблеток.

ЛАБОРАТОРНЫЕ РАБОТЫ

Лабораторная работа № 1 Физико-химические свойства агарозы

Реактивы и оборудование:

- 1. Агароза.
- 2. Растворители различного класса.
- 3. Химические стаканы.
- 4. Аналитические весы.
- 5. Электрическая плитка.
- 6. 2 пипетки на 10 мл.
- 7. Стеклянная палочка.
- 8. Бюретка с воронкой.
- 9. Стеклянный капиллярный вискозиметр ВПЖ-2 0,56 мм.
- 10. Штатив.
- 11. Термометр.
- 12. Резиновая груша.
- 13. рН-метр.

1.1. Определение влажности полимера

Цель работы: определить влажность полимера.

Реактивы:

- 1. Агароза.
- 2. Вода.

Оборудование и посуда:

- 1. Электронные весы.
- 2. Стеклянные бюксы.
- 3. Шпатель.
- 4. Эксикатор.
- 5. Сушильный шкаф.

Ход работы:

- Масса бюкса = ... г.
- 2. Macca бюкса с 1 Γ полимера = ... Γ .
- 3. Ставят в сушильный шкаф на 60 минут вместе с крышкой в открытом виде.
- 4. Через 60 минут ставят бюкс для охлаждения в эксикатор, извлекая из сушильного шкафа.
- 5. Взвешивают бюкс с полимером после сушки при 60 °С (масса = ... г).
- 6. Вычисляют влажность.

Расчет:

$$W_{\text{влаж}} = \frac{m_{\text{вл}} - m_{\text{а.с.}}}{m_{\text{вл}}} \times 100 \%$$
.

1.2. Определение влагопоглощения агарозы

Цель работы: определить влагопоглощение агарозы.

Реактивы:

- 1. Полимер.
- 2. Вода.

Оборудование и посуда:

- 1. Электронные весы.
- 2. Стеклянные бюксы.
- 3. Шпатель.
- 4. Эксикатор.
- 5. Сушильный шкаф.

Ход работы:

- 1. Высушенный до абсолютно сухой массы полимер в бюксе ставят в эксикатор с водой $(P/P_0=1)$ и водным раствором KCl $(P/P_0=0.84)$. P/P_0 относительное давление насыщенного пара.
- 2. Через 60 минут вынимаем бюкс, закрываем крышку и взвешиваем на весах.

Расчет проводят по формуле:

$$A = \frac{m_{en} - m_{a.c.}}{m_{a.c.}} \times 100 \%,$$

где $m_{\it en}$ — масса влажного полимера, г; $m_{\it a.c.}$ — масса абсолютно-сухого полимера, г.

1.3. Определение зольности агарозы

Зольность определяют расчетным путем по массе остатка, образовавшегося после сгорания полимера при температуре (550 ± 10) °C.

Оборудование и посуда:

- 1. Электронные весы.
- 2. Стеклянные бюксы.
- 3. Шпатель.
- 4. Эксикатор.
- 5. Сушильный шкаф.
- 6. Муфельная печь.

Лабораторная муфельная электропечь состоит из керамического муфеля – это легко заменяемый блок со встроенными нагревателями, эффективной футеровки из волокнистых материалов, износостойкой плитки-подкладки для защиты подовой части муфеля и специальной технологической полки из нержавеющей стали около дверного проема. Это все закрыто металлическим кожухом с полимерным порошковым покрытием. В муфельной печи есть

способность регулировать температуру с цифровой индикацией. Тигли высушивали в предварительно нагретом сушильном шкафу в течение 2-х часов при температуре 105 °C.

Ход работы

Агарозу засыпают в тигли, изготовленные из инертного материала диаметром около 80 мм и глубиной примерно 50 мм, ставят в холодную муфельную печь на 1 час, поднимают температуру до 250 °C, равномерно поднимают температуру до 500 °C, прокаливают полимер 2 часа, отключают нагрев печи и перемещают тигли на металлическую площадку длинными щипцами на 10 минут, ставят тигли в пустой эксикатор для охлаждения, взвешивают тигли с золой и рассчитываем процент зольности по формуле:

$$A = \frac{m_1 - m_2}{m_2} \times 100\%,$$

где m_1 – масса тигля с золой, г; m_2 – масса абсолютно сухой навески агарагара, г. Зольность составила мас. %.

1.4. Определение набухания агарозы

Для исследования набухания необходимо приготовить студни из агара. Для получения студней готовили растворы агара с заданной концентрацией. Температура эксперимента составила 25 °C. Из образовавшихся студней вырезают образцы прямоугольной формы, одинаковые по толщине, их помещают в растворитель (H_2O). Время набухания образцов составляло 15; 30; 60; 120; 180; 240; 300; 360; 1440 мин. Исходные образцы взвешивают через указанные интервалы времени. Количественной характеристикой набухания полимера является степень набухания (α). Степень набухания определяли весовым методом. Она выражается количеством поглощенной образцом полимера воды, отнесенная к единице массы полимера, и определяется по формуле:

$$a = \frac{m - m_0}{m_0},$$

где m – масса первоначальная полимера, Γ ; m_0 – масса набухшего полимера, Γ .

Важной характеристикой агарозы для ее использования в производстве является вязкость, которую определяют по ГОСТ 9070-75.

Сущность метода заключается в растворении навески агарозы массой 1 г в 150 мл дистиллированной воды на водяной бане в течение 50 минут. При 90 °С происходит растворение агарозы. Измеряют вязкость полученного 0,55 %-ого раствора агара на вискозиметре В3-246. Чашу заполняют до краев исследуемой жидкостью и замеряют время прохождения жидкости через сопло размером 0,2 мм

Лабораторная работа № 2 Физико-химические свойства желатина

2.1. Определение влажности пищевого и медицинского желатина

Проводят согласно лабораторной работе 1.1.

2.2. Определение условной вязкости при различных рН

Оборудование и реактивы:

- 1. Пищевой желатин.
- 2. Мерные стаканы на 100 мл.
- 3. Вискозиметр ВЗ-246.
- 4. Аналитические весы.
- 5. Стеклянная палочка.
- 6. Термометр.
- 7. Водяная баня.
- 8. Секундомер.

Ход работы

Условной вязкостью называется время непрерывного истечения раствора из воронки через калиброванное отверстие в секундах. Условную вязкость растворов желатина измеряли на вискозиметре B3-246 (рис. 2.1) через сопла диаметров 2 мм и 6 мм.

Рис. 2.1. Вискозиметр ВЗ-246

Вискозиметр помещают в штатив и устанавливают в горизонтальном положении. Под сопло вискозиметра ставят стакан. Отверстие сопла закрывают пальцем, испытуемый материал наливают в вискозиметр с избытком, чтобы образовался выпуклый мениск над верхним краем вискозиметра. Наполняют вискозиметр раствором желатина медленно, чтобы предотвратить образование

пузырьков воздуха. Открывают отверстие сопла и одновременно с появлением раствора желатина из сопла включают секундомер. В момент первого прерывания струи желатина секундомер останавливают и отсчитывают время истечения. Приготовление растворов для каждого эксперимента происходило в несколько этапов: нагрев до температуры 24 °C, интенсивное перемешивание на электрической мешалке 7 минут.

Таблица 2.1 – Условная вязкость желатина

C (%)	Сопло 6 мм (сек)	Сопло 2 мм (сек)
0,025		
0,05		
0,1		
0,2		
0,4		

2.3. Влияние рН среды на растворимость желатина

Оборудование и реактивы:

- 1. Пищевой желатин.
- 2. Мерные стаканы на 100 мл.
- 3. Аналитические весы.
- 4. Стеклянная палочка.
- 5. Термометр.
- 6. Водяная баня.
- 7. Секундомер.

Ход работы

 $1\ \Gamma$ желатина растворяют в $50\ \Gamma$ дистиллированной воды (pH = 7) при $60\ ^{\circ}$ С. Измеряют время полного растворения. $1\ \Gamma$ желатина растворяют в воде при различных pH. pH проверяют на pH-метре. Необходимые pH создают молочной кислотой и ацетатом натрия. Секундомером измеряют время полного растворения желатина при различных pH. Условия растворения желатина представить в таблице 2.2.

Таблица 2.2 – Время растворения 0,1% раствора желатина в различных

растворителях при различных рН и температурах

pactbophiesis ipi passii iiisix pii ii temitepatypax			
№ п/п	рН	Температура, °С	Время растворения, мин
1	5,0		
2	7,0	60	
3	11,0		

2.4. Получение пленок при различных концентрациях желатина

Оборудование и реактивы:

- 1. Пищевой желатин.
- 2. Мерные стаканы на 100 мл.
- 3. Аналитические весы.
- 4. Стеклянная палочка.
- 5. Термометр.
- 6. Водяная баня.

Ход работы

Готовят растворы желатина в интервале концентраций 1,0-2,0 %. 20 мл. Приготовленные растворы заливают в чашку Петри, сушат на воздухе до образования пленки. Фиксируют время образования пленки при различных концентрациях желатина.

2.5. Критическая концентрация мицеллообразования растворов желатина

Оборудование и реактивы:

- 1. Прибор Дю-Нуи.
- 2. Пищевой желатин.
- 3. Мерные стаканы на 100 мл.
- 4. Платиновое кольцо.
- 5. Кювета с двойным стеклом.
- 6. Аналитические весы.
- 7. Стеклянная палочка.
- 8. Термометр.
- 9. Водяная баня.

Ход работы

Готовят растворы желатина разной концентрации от 0,001 до 0,1% в мерных колбах на 100 мл. Для этого 6 стаканов на 100 мл с рассчитанным количеством дистиллированной воды нагревают до 60°С. Взвешивают 6 разных навесок желатина и добавляют в 6 разных стаканов с разогретой водой. Размешивают, затем методом Дю-Нуи измеряют поверхностное натяжение.

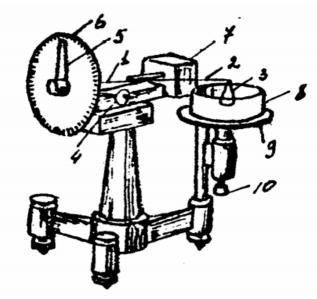


Рис. 2.2. Схематическое изображение Дю-Нуи:

1 — упругая металлическая нить; 2 — коромысло с крючком; 3 — платиновое кольцо; 4 — винт для закручивания нити; 5 — указатель с нониусом; 6 — отсчетный лимб; 7 — винт, соединенный с упругой нитью; 8 — кювета с двойными стенками; 9 — подвижный столик; 10 — винт для движения столика

Поверхностное натяжение водно-щелочных растворов измеряют методом отрыва кольца на приборе Дю-Нуи. Основная часть прибора – металлическая упругая нить 1, натянутая горизонтально. К нити прикреплено коромысло 2 с крючком, на который подвешивается кольцо 3. Отрывающее усилие создается закручиванием упругой нити с помощью винта 4. При вращении винта указатель 5, соединенный с закручиваемым концом нити, перемещается по отсчетному лимбу 6. Указатель имеет нониус, позволяющий определять десятые доли делений шкалы, нанесенный на лимбе. Перед началом работы с помощью винта 4 для закручивания нити указатель 5 с нониусом устанавливают на нулевое деление отсчетного лимба и вращают винт 7, соединенный с упругой нитью до тех пор, пока коромысло с повешенным на нем кольцом 3 не примет горизонтального положения. Исследуемый раствор наливают в кювету 8 с двойными стенками. Кювету помещают на подвижный столик 9, снабженный винтом 10 для перемещения его в вертикальном направлении. Столик поднимают до тех пор, пока кольцо не коснется поверхности раствора. Затем с помощью винта 4 начинают закручивать нить 1. Это надо делать медленно и осторожно, особенно перед отрывом кольца. Отмечают положение указателя на лимбе в момент отрыва кольца от поверхности жидкости. Чтобы возвратить прибор в рабочее положение, с помощью винта 10 опускают столик 9. Вращают винт 4, раскручивают нить. Указатель 5 при этом возвращается к нулю, двигаясь в направлении, обратном направлению при отрывании кольца. Далее помещают кольцо на коромысло и повторяют определение. Кювету перед работой хорошо промывают водой и, прежде всего, измеряют показания шкалы отрыве при кольца

дистиллированной воды.

Поверхностное натяжение исследуемого раствора σ_p рассчитывают по формуле:

$$\frac{\delta_{\mathrm{p}}}{\delta_{\mathrm{0}}} = \frac{n_{\mathrm{p}}}{n_{\mathrm{0}}},$$

где σ_p — поверхностное натяжение воды на границе с воздухом, 10^{-3} H/м; n_0 — показание шкалы лимба при отрыве кольца от поверхности дистиллированной воды; n_p — показание шкалы лимба при отрыве кольца от поверхности исследуемого раствора (среднее из 3-5 определений).

По полученным результатам строится изотерма поверхностного натяжения $\sigma = f(C)$, C – концентрация раствора ПАВ.

ККМ изучаемого вещества (C_p) – это та наименьшая концентрация, при которой образуется насыщенный адсорбционный слой его на поверхности воды, т. е. когда σ становятся постоянными.

Поверхностная активность рассчитывается по формуле:

$$G = \lim_{c \to 0} \frac{d\delta}{dc},\tag{1}$$

где G – поверхностная активность, мДж · м/кг. Составляют таблицу 2.3.

Таблица 2.3 – Показание шкалы лимба при разных концентрациях

Tuotinga 2:5 Tiokasainie inkaisi ininioa nen pasiisin kongenipagisin		
№	Концентрация желатина, %	n_p
1	0,001	
2	0,002	
3	0,005	
4	0,01	
5	0,02	
6	0,05	
7	0,01	

$$n (H_2O) = 17$$

 $\delta (H_2O) = 72.8 \text{ M H/M}$
 $t = 22^{\circ}C.$

По формуле (1) определяют поверхностное натяжение желатина при разных концентрациях, составляют таблицу 2.4.

Таблица 2.4 – Показания шкалы лимба и поверхностного натяжения при разных концентрациях

№	Концентрация желатина, %	n_p	δ_0 , м H /м
1	0,001		
2	0,002		
3	0,005		
4	0,01		
5	0,02		
6	0,05		
7	0,1		

Построить график зависимости поверхностного натяжения от концентрации раствора, определить критическую концентрацию мицелообразования (ККМ). Рассчитать поверхностную активность (G).

2.6. Определение изоэлектрической точки желатина

Цель работы: определить изоэлектрическую точку вискозиметрическим методом и построить потенциометрическую кривую водного раствора желатина.

Оборудование и реактивы:

- 1. Пищевой желатин.
- 2. Водный раствор 0,1 NH₄Cl.
- 3. Водный раствор 0,1 N NaOH.
- 4. Стакан на 1 л.
- 5. Аналитические весы.
- 6. Стакан на 100 мл.
- 7. Электрическая плитка.
- 8. 2 пипетки на 10 мл.
- 9. Стеклянная палочка.
- 10. Бюретка с воронкой.
- 11. Стеклянный капиллярный вискозиметр ВПЖ-2 0,56 мм.
- 12. Штатив.
- 13. Термометр.
- 14. Резиновая груша.
- 15. рН-метр.

Ход работы

Стакан на 1 литр греют до 60 - 70 °C на электрической плитке. Взвешивают 2 г пищевого желатина. Добавляют в нагретый стакан и размешивают. В стакан на 100 мл наливают 40 мл готового раствора желатина, с помощью пипетки на 10 мл в этот же раствор добавляют 10 мл 0,1 NH₄Cl. Далее устанавливают штатив с бюреткой, заполняя ее через воронку 0,1 N раствором NaOH.

Смесь титруют 0,1 N раствором NaOH. Значения pH измеряют с руководством по эксплуатации pH-метра. Измерив первое значение pH раствора [до добавления титранта], прогоняем его через вискозиметр и записываем время истечения. Дальше раствор удаляем из вискозиметра обратно в стакан. Добавляем 0,5 мл титранта и измеряем pH. Далее раствор пропускаем через вискозиметр и записываем время истечения. Потом также раствор удаляем из вискозиметра и добавляем 0,5 мл титранта. Далее повторяют измерение до тех пор, пока значение pH не станет изменяться в пределах 0,1 – 0,15. Но до pH 2,5 – 3 добавляют по 0,5 мл титранта; до pH 3,5 – по 0,25 мл; далее по -0.2 мл.

Затем проделывают такую же работу только на холостой пробе, в которой вместо желатина используют идентичное количество дистиллированной воды.

Т. е. берут 40 мл дистиллированной воды и добавляют 10 мл 0,1 N HCl. Титруют 0,1 N раствором NaOH [12].

Вязкость определяем на стеклянном капиллярном вискозиметре ВПЖ-2 0,56 мм (рис. 2) Измерение вязкости с помощью капиллярного вискозиметра ВПЖ-2 с диаметром капилляра 0,56 мм основано на определении времени истечения через капилляр определенного объема жидкости из измерительного резервуара.

Для измерения времени течения жидкости на отводную трубку 3 надевают резиновую трубку. Далее, зажав пальцем колено 2 и перевернув вискозиметр, опускают колено 1 в сосуд с жидкостью и засасывают ее (с помощью резиновой груши, водоструйного насоса или иным способом) через трубку 3 до метки M_2 , следя за тем, чтобы в жидкости не образовались пузырьки воздуха. В момент, когда уровень жидкости достигает метки M_2 , вискозиметр вынимают из сосуда и быстро переворачивают в нормальное положение. Далее засекают время течения с метки M_1 до метки M_2 .

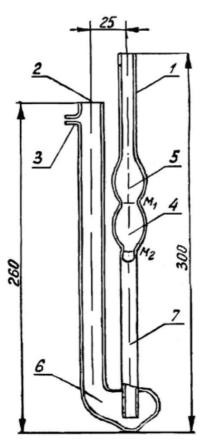


Рис. 2.3. Вискозиметр ВПЖ-2 0,56 мм

По результатам измерений строят зависимость рН от объема титранта и холостой пробы.

Для того чтобы получить приведенную вязкость (η_{np}), нужно рассчитать относительную вязкость:

$$\eta_{
m oth} = rac{ au_{
m p-pa}}{ au_{
m p-ля}}$$
,

где au_{p-pa} — время истечения раствора желатина, с; $au_{p-ля}$ — время истечения растворителя (воды), с.

Далее необходимо определить удельную вязкость по формуле:

$$\eta_{yд} = \eta_{oth} - 1,$$

где $\eta_{yд}$ – удельная вязкость; $\eta_{oтh}$ – относительная вязкость.

Определяем приведенную вязкость:

$$\eta_{\pi p} = \frac{\eta_{yA}}{C}$$
.

Строим зависимость рН желатина и холостой пробы от объема титранта.

Точке эквивалентности соответствует pH =.

Значение рН = соответствует изоэлектрической точке.

Лабораторная работа № 3 Физико-химические свойства гуаровой камеди

3.1. Определение влажности гуаровой камеди

Ход работы

В предварительно взвешенные на аналитических весах бюксы отбирают навеску гуаровой камеди массой 1,005 г и проводят сушку в термостате при температуре (105 °C) до постоянной массы. Относительную влажность образца полимера в % вычисляют по формуле:

$$W = (m_1 - m_2) / (m_1 - m) \cdot 100,$$

где m_1 — масса бюкса с навеской до высушивания, г; m_2 — масса бюкса с навеской после высушивания, г; m_0 — масса пустого бюкса, г.

Таблица 3.1 – Определение влажности модифицированной и немодифицированной гуаровой камеди

Камедь	Влажность, %.
Модифицированная	
Немодифицированная	

3.2. Определение сорбции паров воды гуаровой камеди

Ход работы

В предварительно взвешенные на аналитических весах бюксы отбирают навеску гуаровой камеди массой 1 г и помещают в эксикатор с насыщенным раствором хлорида калия, выдерживают навеску в течение 24 часов.

Сорбцию паров воды образца полимером в % вычисляют по формуле:

$$W = (m_2 - m_1) / m_1 *100,$$

где m_1 — масса полимера до обработки, г; m_2 — масса полимера после обработки, г.

Таблица 3.2 – Определение сорбции паров воды при Р / $P_0 = 0.84$, время – 1час

	· / / 1
Камедь	Относительная
	влажность
	$P/P_0 = 0.84, \%$
Модифицированная	
Немодифицированная	

3.3. Методика определения условной вязкости

Ход работы

Методика определения вязкости изложена в лабораторной работе № 2. Результаты работы заносят в таблицы.

Таблица 3.3 – Условная вязкость немодифицированной гуаровой камеди

C (%)	Сопло 6 мм (сек)	Сопло 2 мм (сек)
0,025		
0,05		
0,1		
0,2		
0,4		

Таблица 3.4 – Условная вязкость модифицированной гуаровой камеди

C (%)	Сопло 6 мм (сек)	Сопло 2 мм (сек)
0,025		
0,05		
0,1		
0,2		
0,4		

3.4. Определение поверхностного натяжения Метод отрыва кольца на крутильных весах Дю-Нуи

Ход работы изложен в лабораторной работе № 2. Полученные результаты заносят в таблицы.

Таблица 3.5 – Измерение поверхностного натяжения раствора немодифицированной гуаровой камеди pH = 6

Концентрация г/100 мл	Показания лимба	Поверхностное натяжение, мН/м
Вода		
0,025		
0,05		
0,1		
0,2		
0,4		
0,5		

Таблица 3.6 – Измерение поверхностного натяжения раствора модифицированной гуаровой камеди pH = 6

Концентрация г/100 мл	Показания лимба	Поверхностное натяжение, мН/м
Вода		
0,025		
0,05		
0,1		
0,2		
0,4		
0,5		

3.5. Определение растворимости гуаровой камеди в различных растворителях

Ход работы

В химических стаканах емкостью 200 мл взвешивают по 0,5 г полимера. В каждый стакан постепенно вливают по 20 мл растворителя. Полимер считают растворенным в данном растворителе, если образуется однородный раствор. Если полимер не растворяется при комнатной температуре, смесь осторожно нагревают до температуры не выше температуры кипения растворителя.

Таблица 3.7 – Определение растворимости гуаровой камеди. T = 23 °C

Растворитель	Растворимость
Этиловый спирт	
Толуол	
Изопропиловый спирт	
Глицерин	
Акриловая кислота	
Ацетон	
Масло	
Вода	
NaOH	

Готовят 2,5 % растворы гуаровой камеди. Растворимость определяют из 5 параллельных опытов. Гуаровая камедь нерастворима в органических растворителях: спиртах, различных эфирах, не горючая, осаждается из водных растворов спиртов. Тем самым она отличаются от натеков смол и веществ каучуковой природы.

Лабораторная работа № 4 Физико-химические свойства декстрина

Реактивы и оборудование:

- 1. Декстрин.
- 2. Растворители различного класса.
- 3. Химические стаканы.
- 4. Аналитические весы.
- 5. Электрическая плитка.
- 6. Стеклянная палочка.
- 7. Бюретка с воронкой.
- 8. Стеклянный капиллярный вискозиметр ВПЖ-2 0,56 мм.
- 9. Резиновая груша.
- 10. рН-метр.
- 11. Вискозиметр.

4.1. Определение удельного объема и насыпной массы полимера

Цель работы: определить насыпную массу заданного полимера.

Оборудование и реактивы:

- 1. Полимер.
- 2. Вода.
- 3. Цилиндр 25 мл.
- 4. Весы электронные.
- 5. Шпатель.

Ход работы:

- 1. Заполняем цилиндр полимером ($m_1 = ...$), излишки срезаем шпателем, взвешиваем цилиндр с полимером ($m_2 = ...$). Определяем массу полимера.
- 2. В предварительно взвешенный цилиндр наливают воду, взвешивают цилиндр с водой ($m_3 = ...$). Плотность воды равна 1 г/см³, поэтому объем цилиндра равен массе воды.
- 3. Насыпную массу (d) определяют по формуле.

Расчет:

$$m_{\text{ц-рa}}\!=\!\dots,\,m_{\text{ц-рa+водa}}\!=\!\dots,\,m_{\text{ц-рa+полим.}}\!=\!\dots\,\Gamma,\,m_{\text{полимер a}}\!=\!\dots$$

$$m_{ ext{воды}}\!=\!\dots,\,
ho_{ ext{воды}}=1$$
 г/см $^3 o V_{ ext{цилиндра.}}\!=m_{ ext{воды}}\!=\!\dots$

$$\mathrm{d} = \frac{\mathrm{m}_{\text{полимера}}}{\mathrm{V}_{\text{цилиндра}}} = \frac{26,08}{41.32} = V_{\mathrm{yd}} = \frac{1}{d} = \dots$$

Насыпная масса	
Удельный объем	

4.2. Фракционирование декстрина

Цель работы: провести фракционирование заданного полимера по размерам гранул. Определить степень дисперсности.

Оборудование и реактивы:

- 1. Полимер.
- 2. Сита с разными диаметрами отверстий.
- 3. Электронные весы.
- 4. Шпатель.

Ход работы:

- 1. 10 г полимера помещаем на предварительно взвешенное сито и ставим на подставку, закрываем крышку.
- 2. Интенсивно просеиваем, пока масса в сите не станет постоянной.
- 3. Сито с оставшимся полимером взвешиваем и определяем его массу.
- 4. Для следующего сита с меньшим диаметром отверстия берется просеянное предыдущее сито и подставки.
- 5. Содержимое остатка на сите определяют по формуле.

Сито № 1

 $m_{cuta} = \dots$

Масса декстрина для просеивания = 10 г, масса сита с полимером после просеивания = ...

Содержание остатка полимера на сите составляет ...

Сито № 2

 $m_{\text{сита}} = \dots$

Масса сита для просеивания = 10 г, масса сита с полимером после просеивания = ...г

Содержание остатка полимера на сите составляет...

Сито № 3

 $m_{cuta} = \dots$

Масса полимера для просеивания = 10 г, масса сита с полимером после просеивания = ...

Содержание остатка полимера на сите № 3 составляет... %

№ Опыта	Фракция с разм. частиц, мм	Масса полимера, %
1	0,9	
2	0,4	
3	0,06	
4	Сумма	
5	Потери	

Вывод: потери составляют — ...

4.3. Влияние рН на время растворения 0,1 % водного раствора декстрина при различных температурах

№ п/п	рН	Температура °C	Время растворения, мин
1	6		
2	4,16	23	
3	10,22		
4	6		
5	4,16	60	
6	10,22		

4.4. Влияние рН на условную вязкость водного раствора декстрина

Концентрация раствора, %	Диаметр капилляра,	Условная вязкость при различных рH, сек.; T=25 °C		
раствора, %	MM	pH=6,5	pH=4,2	pH=10,2
0,1	2,0			
1,0	2,0			
	6,0			

Основные выводы:

Лабораторная работа (зачетная работа) Получение и свойства хитозана

- 1. Провести анализ литературы по получению, свойствам хитина и хитозана.
- 2. На основании анализа литературы разработать способ получения хитина и хитозана в лабораторных условиях.
- 3. Получить хитин и хитозан.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Шишкова, Ю. В. Современные вспомогательные вещества в изготовлении лекарств [Текст] / Ю. В. Шикова и др. М.: Фармация. 2011. № 6. С. 39-42.
- 2. Трегубов, Н. Н. Технология крахмала и крахмалопродуктов [Текст] / Н. Н. Трегубов, Е. Я. Жарова, А. И. Жушман, Е. К. Сидорова. Изд. 5-е, перераб. и доп. М.: Легкая и пищевая промышленность, 1981. 472 с.
- 3. BeMiller, J. N. (Eds). Starch: Chemistry and Technology [Text] / J. N. BeMiller, R. L. Whistler. 3rd edition. Academic Press. Elsevier, 2009. 584 c.
- 4. Золотарева, В. В. Исторический опыт и перспективы использования камеди-смол в медицине и косметологии. Изучение возможностей создания патчей для глаз на основе камеди [Текст] / В. В. Золотарева.— Москва, 2019.— С. 1 48.
- 5. Дзюбенко, Н. И. Гуар Cyamopsis tetragonoloba (L.) Таиb.: характеристика, применение, генетические ресурсы и возможность интродукции в России [Текст] / Н. И. Дзюбенко, Е. А. Дзюбенко, Е. К. Потокина, С. В. Булынцев. // Сельскохозяйственная биология. 2017. № 52. С. 1116 1128.
- 6. Mudgil, D. Guar gum: processing, properties and food applications [Text] / D. Mudgil, S. Barak, B.S. Khatkar. a review. J. Food Sci. Technol., 2014.
- 7. Гуровая камедь, гуар // Агросервер.ru. [Электронный ресурс]. URL: https://agroserver.ru/b/guarovaya-kamed-guar-491048.htm (дата обращения: 29.01.2020).
- 8. Технология будущего Журнал «Сибирская нефть» № 166 // Газпром нефть. [Электронный ресурс]. URL: https://www.gazprom-neft.ru/press-center/sibneft-online/archive/2019-november/3914082/ (дата обращения: 29.01.2020).
- 9. Гуаровая камедь пищевая добавка E412 // Molecularmeal. [Электронный ресурс]. URL:https://molecularmeal.ru/molekulyarnaya-kukhnya/guarovaja-kamed/ (дата обращения: 29.01.2020).
- 10. Осовская, И. И. Полимеры в биотехнологии и биоинженерии [Текст] : учебное пособие / И. И. Осовская, С. А. Горбачев. СПб.: ВШТЭ СПГУПТД., 2019. 70 с.
- 11. Мартьянова, Т. Ф. Разработка экспресс-метода оценки способности желатина к структурированию под действием дубителей [Текст] / Т. Ф. Мартьянова, М. Л. Голова, Л. Л. Кузнецов, П. М. Завлин. Журнал прикладной химии, 1996. Т69 №6. С. 1028 1031.
- 12. Деркач, С. Р. Гелеобразование в желатине [Текст] : учебное пособие / С. Р. Деркач. М.: СПбГУЛиТ, 2004. 97 с.