ЭФФЕКТИВНОСТЬ ЗАЩИТЫ СУДОВ ОТ КОРРОЗИИ
В АРКТИКЕ

Е. Б. Атрушенчик, канд. экон. наук (Высшая школа технологии и энергетики СПбГУПТД), Э. В. Соминская, канд. техн. наук,
Е. С. Хитов (АО «ЦНИИМФ, е-mail: cniimf@cniimf.ru)

Таблица 1
Среднегодовое уменьшение толщины наружной обшивки

<table>
<thead>
<tr>
<th>Категории ледовых усилений</th>
<th>В, мм/год</th>
<th>Район по длине судна</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Носовой и промежуточный (A и A1)</td>
</tr>
<tr>
<td>Ice 1</td>
<td>0,2</td>
<td>Согласно 1.1:5:2</td>
</tr>
<tr>
<td>Ice 2</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>Ice 3</td>
<td>0,3</td>
<td></td>
</tr>
<tr>
<td>Arc 4</td>
<td>0,36</td>
<td>0,26</td>
</tr>
<tr>
<td>Arc 5</td>
<td>0,38</td>
<td>0,28</td>
</tr>
<tr>
<td>Arc 6, Arc 7, Arc 8, Arc 9</td>
<td>0,4</td>
<td>0,3</td>
</tr>
<tr>
<td>Icebreaker 6</td>
<td>0,4</td>
<td>0,3</td>
</tr>
<tr>
<td>Icebreaker 7</td>
<td>0,4</td>
<td>0,35</td>
</tr>
<tr>
<td>Icebreaker 8</td>
<td>0,6</td>
<td>0,4</td>
</tr>
<tr>
<td>Icebreaker 9</td>
<td>0,7</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Примечание: V — среднегодовое уменьшение толщины наружной обшивки вследствие коррозионного износа и истирания. При выполнении мероприятий по защите наружной обшивки от коррозионного износа и истирания (нанесение специальных покрытий, применение пластированных стальных и т. п.) определение величины «V» является предметом специального рассмотрения Регистром.

Надбавка на коррозию/абразивный износ наружной обшивки зависит от наличия или отсутствия эффективных средств защиты от коррозии. В табл. 2 приведены величины надбавок на коррозию/износ, применяемые при определении толщины наружной обшивки для каждого знака полярного класса [2].

При плавании в льдах арктических морей на корпусе появляется новый вид коррозионно-абразивного разрушения, который получил условное наименование "шёлочной коррозия" и характеризуется большой степенью разрушения. Это является результатом взаимодействия металла со льдом, способствующим постоянной механической очистке поверхности металла от продуктов коррозии.

Предполагается, что рельеф коррозионных разрушений (высокая шероховатость и острые выступы) являются результатом катодной поляризации металла, связанной с возникновением статического электрического заряда при взаимодействии корпуса судна с плотным толстым льдом.

На примере, представленном на рис. 1, можно увидеть насколько нанесение специальных покрытий снижает шероховатость наружной обшивки и увеличивает срок эксплуа-
ЗАЩИТА ОТ КОРРОЗИИ

СУДОСТРОЕНИЕ 2'2017

tации. Данные предоставлены компанией International Marine Coating [3].

За счет снижения шероховатости наружного обшивки корпуса улучшается водоходные качества и ледоходность.

К средствам защиты от коррозии подводной части корпуса ледоколов и судов ледового плавания относятся:

- плакированная корпусная сталь,
- ледостойкие лакокрасочные покрытия,
- комбинированные покрытия,
- электрохимическая защита,
- комплексная защита.

Требования к срокам службы средств защиты от коррозии ледоколов и судов ледового плавания установлены в зависимости от типа судна. Для польских судов и ледоколов срок службы составляет 25-40 лет.

Средства защиты должны обеспечивать снижение скорости коррозии обшивки ледоколов и судов ледового плавания до допустимой, определяемой в соответствии с действующими Правилами РС, а также обеспечивать равномерный характер коррозии подводной части корпуса.

Плакированные корпусные стали предназначены для защиты от коррозии ледового пояса морских ледоколов.

Толщина плакирующего коррозионностойкого слоя устанавливается, исходя из расчетного срока службы ледокола, равного расчётной долговечности ледокола.

При применении плакированной стали не допускаются перерывы в работе электрохимической защиты корпуса.

Ледостойкие лакокрасочные покрытия предназначены для окрашивания:

- на ледоколах с плакированной сталью в ледовом поясе — подводной части корпуса ниже ледового пояса;
- на ледоколах, ледовый пояс которых выполнен из неплакированной стали, а также на судах ледового плавания — полностью подводной поверхностью корпуса.

Комбинированные покрытия включают в себя газотермическое (газопламенное или плазменное) покрытие в сочетании со специальными составами или ледостойкими лакокрасочными материалами.

Комбинированные покрытия предназначены для защиты корпусов ледоколов ниже ледового пояса.

Электрохимическая защита предназначена для защиты корпусов ледоколов и судов ледового плавания.

Электрохимическая защита для ледовых условий должна разрабатываться для применения в сочетании с ледостойкими лакокрасочными покрытиями.

Комплексная защита ледоколов в зависимости от ледового класса представлена в табл. 3.

<p>| Таблица 3 |</p>
<table>
<thead>
<tr>
<th>Средства защиты</th>
</tr>
</thead>
<tbody>
<tr>
<td>Категория ледовых усиления</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Icebreaker 9 — Icebreaker 6</td>
</tr>
<tr>
<td>Arc 7, Arc 6, Arc 5</td>
</tr>
<tr>
<td>Arc 4 — Ice1</td>
</tr>
</tbody>
</table>

Комплексная защита судов ледового плавания классов Arc7, Arc6 и Arc5 предусматривает сочетание ледостойкого лакокрасочного покрытия с электрохимической защитой.

Комплексная защита судов ледового плавания классов Arc4 — Ice1 предусматривает применение ледостойкого лакокрасочного покрытия в сочетании с катодной или протекторной защитой.

Возможные способы защиты относятся к эффективным.

Наиболее распространенными способами защиты от коррозии ледовых судов являются специальные защитные покрытия.

К ледостойким покрытиям предъявляются специфические требования, отличающиеся от обычных требований к защитным покрытиям для подводной части корпуса.

Ледостойкие защитные покрытия должны обладать комплексом свойств:

- высокими защитными свойствами в морской воде;
- стойкостью к абразивному/эрозионному износу льдом;
- высокой механической стойкостью к ударным нагрузкам;
- эластичностью в сочетании с высокой твердостью;
- толщиной одного слоя должна быть не менее 500 мкм;
- высоким сухим остатком, предпочтительно выше 96%.

Требования к ледостойким покрытиям в Правилах РС установлены в части XIII «Материалы» в п. 6.5.3, а требования к испытанию покрытий установлены в 2.5 [4].

Ледостойким считается покрытие, которое способно обеспечивать защиту наружной обшивки корпуса судна от внешних воздействий в условиях ледового плавания с характеристиками, удовлетворяющими требованиям табл. 2 [2].

В табл. 4 представлены требования РС к ледостойким покрытиям. В качестве ледостойких покрытий используются:

- эпоксидные лакокрасочные материалы с высоким сухим остатком (около 100%);
ЗАЩИТА ОТ КОРРОЗИИ

Таблица 4

<table>
<thead>
<tr>
<th>Требования РС к ледостойким покрытиям</th>
<th>Для ледоходов всех категорий ледовых условий</th>
<th>Для судов ледового плавания с категорией ледовых условий Арс IV и выше</th>
</tr>
</thead>
<tbody>
<tr>
<td>Наименование покрытия</td>
<td>Большая</td>
<td>Большая</td>
</tr>
<tr>
<td>Долговечность согласно стандарту ИСО 12944-6 для категории коррозионной активности m2 в соответствии со стандартом ИСО 12944-2 (см. 2.5.1)</td>
<td>Не более 3</td>
<td>Не более 3</td>
</tr>
<tr>
<td>Адгезия, определяемая методом резет-</td>
<td>Не более 3</td>
<td>Не более 3</td>
</tr>
<tr>
<td>ных надрезов согласно стандарту</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ИСО 2409 после испытаний на стойкость</td>
<td></td>
<td></td>
</tr>
<tr>
<td>к воздействию низкой температуры</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(см. 2.5.2.3), баллов</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Адгезионная прочность согласно стан-</td>
<td>Не более 10</td>
<td>Более 8</td>
</tr>
<tr>
<td>дарту ИСО 4624 (см. 2.5.3.4), МПа</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Стойкость к истиранию после 10,000</td>
<td>Не более 120</td>
<td>Не более 160</td>
</tr>
<tr>
<td>циклов испытаний на абразивном</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Таберно (колесо CS-17) (см. 2.5.4),</td>
<td></td>
<td></td>
</tr>
<tr>
<td>мг</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Прочность при ударе согласно стан-</td>
<td>Не менее 8</td>
<td>Не менее 5</td>
</tr>
<tr>
<td>дарту ИСО 6272 (см. 2.5.5), Дж</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Стойкость к катодному отклонению</td>
<td>Менее 5 после 3 мес. испытаний</td>
<td>Менее 5 после 3 мес. испытаний</td>
</tr>
<tr>
<td>согласно стандарту ИСО 15711 (метод A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(см. 2.5.6), мм</td>
<td>После 6 мес. испытаний</td>
<td>После 6 мес. испытаний</td>
</tr>
<tr>
<td>Стойкость к механическим повреждениям</td>
<td>Более 90</td>
<td>Совместимо</td>
</tr>
<tr>
<td>Краевой угол смягчения (см. 2.5.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Совместимость с катодной защитой</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(методика производства)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание. Испытания выполняются в соответствии с 2.5 по согласованной с Регистром программы.

Установленные в Стандарте требования к выбору покрытия, подготовке поверхности, инспектированию, а также величина допустимого удельного давления, установлены в соответствии с требованиями к качеству покрытий.

Срок службы экспонированных покрытий составляет 15 лет. Защита от коррозии балластных танков на старых судах по-прежнему стоит очень остро. В условиях судоходства производится качественная очистка поверхности до «белого» металла, что требует большего времени и трудоемкости. Поэтому предпочтение следует отдать модифицированным эпоксидным покрытиям, так называемым «масил». Эти покрытия можно наносить по остается на поверхности.
В настоящее время выполняются исследования с рядом оценочных производителей на базе ФГУП КМ "Прометей".

Эффективная защита от коррозии балластных танков на полярных судах исключает попадание в воду ржавчины при обрастании с судов балластных вод и обеспечивает выполнение требований Международной Конвенции (BWM) 2004.

На полярных судах при выборе покрытия надводных поверхностей также требуется учитывать требования агрессивной среды. Существует ошибочное представление о том, что воздействие солнечных лучей вызывает разрушение покрытий в условиях жаркого, а не холодного климата. Однако качество покрытия быстро разрушается под воздействием УФ-излучения в сочетании с влажным воздухом. Холодная солнечная погода также оказывает чрезвычайно слабое воздействие на покрытие.

На полярных судах для защиты надводных поверхностей эффективно используются полиуретановые и полисилоксановые покрытия, обладающие высокой свето- и цветостойкостью. Однако силоксановые покрытия очень дороги, поэтому их применение ограничено.

На морских судах и платформах широко применяется полиуретановое покрытие HARDTOP FLEXY (фирма JOTUN).

Отечественные производители, такие как ООО «Разноцвет», ОАО «ВМП», ОАО «Кронш-СПб», широко применяют полиуретановые покрытия при окрашивании наружных поверхностей резервуаров в различных климатических зонах, в том числе на Севере. Они могут быть конкурентоспособными, по сравнению с импортными, на полярных судах, но требуют проведения дополнительных исследований.

Контроль обрастания полярных судов часто не придает должного внимания из-за широко распространенного мнения, что опасность обрастания в холодной воде или во льдах так низка, что защита не требуется. Однако практика подтверждает обратное. Исследованиями, проведенными в Баренцевом море, установлено достаточно высокая интенсивность обрастания судов, что снижает их энергоэффективность. В результате в Арктике, в экологически чистой среде повышаются выбросы в атмосферу вредных веществ, а также усиливается миграция неопределенных видов морских животных. Для полярных судов в соответствии с Полярным Кодексом должны применяться покрытия в соответствии с AFS-конвенцией [8].

Заключение. Высокоактивные эффективные защитные покрытия позволяют поддерживать полярные суда в хорошем техническом состоянии, снижают сопротивление трения во льдах, способствуют сохранению энергоэффективности.

Защита полярных судов от коррозии высококачественными покрытиями создает образ профессиональной ответственности и надежной судоходной компании.

Таблица 5

| Технические характеристики покрытия Intershield 163/Inerta 160, Marathon IQ, Ecospread |
|-----------------|-----------------|-----------------|-----------------|
| Наименование показателей | Intershield 163/Inerta 160 Marathon IQ Ecospread |
| Цвет | Красный, черный, ограниченный спектр | Светлосерый, желтовато-белый, черный и др. по RAL |
| Содержание твердого вещества (сухой остаток), % | 95 ± 2 | 98 ± 2 | 98 |
| Толщина сухой пленки, мм | 500 | 500 | 500 |
| Теоретическая кроющая способность, м²/л | 1,9 при толщине сухой пленки 500 мм | 2,0 | 48 |
| Время сушки до полного высушивания, Ч | 48 | 48 | 48 |
| Метод нанесения | Безвоздушное распыление специальными аппаратами | Безвоздушное распыление |

1. Правила классификации и постройки морских судов. Ч. II. Корпус. СПб. Российский морской регистр судоходства, 2015.
2. Правила классификации и постройки морских судов. Часть XVII Дополнительные знаки символа класса и словесные характеристики, определяющие конструктивные или эксклюзивно-особенности судна. СПб. Российский морской регистр судоходства, 2015.
4. Правила технического наблюдения за постройкой судов и изготовлением материалов и изделий для судов. Часть III. Техническое наблюдение за изготовлением материалов. СПб. Российский морской регистр судоходства, 2015 г.
6. Полярный Кодекс МО.
7. Резолюция ИМО 215 (82) и 216 (82).