
Бутлеровские сообщения

ISSN 2074-0212 русскоязычная печатная версия с 2009 года

2023. Том 76. №10-12

Международная версия нашего журнала с 2021 года преобразована в три независимых Online журнала:

Butlerov Communications AAdvances in Organic Chemistry & Technologies

Butlerov Communications BAdvances in Chemistry & Thermophysics

Butlerov Communications CAdvances in Biochemistry & Technologies

International Edition in English from 2009 (Print): **Butlerov Communications**

ISSN 2074-0948

Полная исследовательская публикация

Тематический раздел: Препаративные исследования.

Утверждённая научная специальность ВАК: 1.4.3. Органическая химия; 1.4.4. Физическая химия;

1.4.7. Высокомолекулярные соединения; 2.6.11. Технология и переработка синтетических и природных полимеров и композитов

Дополнительная научная специальность ВАК: 1.4.1. Неорганическая химия; 2.6.17. Материаловедение Идентификатор ссылки на объект – ROI: jbc-01/23-76-12-167

Цифровой идентификатор объекта – DOI: 10.37952/ROI-jbc-01/23-76-12-167 Поступила в редакцию 30 ноября. УДК 544.546+66.095.832.

Аминирование полиглицидилакрилата

© Евдокимов¹ Андрей Николаевич, Курзин² Александр Вячеславович, Липин³ Вадим Аполлонович, Петрова³*+ Юлия Александровна

¹ Кафедра материаловедения и технологии машиностроения; ² Кафедра органической химии; ³ Кафедра физической и коллоидной химии. Высшая школа технологии и энергетики. Санкт-Петербургский государственный университет промышленных технологий и дизайна. ул. Ивана Черных, 4. г. Санкт-Петербург, 198095. Россия. Тел.: ⁺⁾ +7 999 222 5117. E-mail: ⁺⁾ yulia.petrova1997@yandex.ru

*Ведущий направление; +Поддерживающий переписку

Ключевые слова: акриловая кислота, эпихлоргидрин, (поли)глицидилакрилат, аминирование, этилендиамин.

Аннотапия

Исследована возможность получения аминоэфиров на основе крупнотоннажных продуктов органического синтеза — акриловой кислоты, эпихлоргидрина и этилендиамина. Аминирование синтезированного полиглицидилакрилата осуществляли в смеси ацетонитрил-диметилформамид при температуре 70 °C в течение 3 часов и различных соотношениях полиглицидилакрилат:этилендиамин. Полученные продукты могут быть синтезированы в промышленном масштабе, их применение возможно в традиционных областях использования защитных покрытий на основе полиглицидиловых эфиров.

Выходные данные для цитирования русскоязычной печатной версии статьи:

Евдокимов А.Н., Курзин А.В., Липин В.А., Петрова Ю.А. Аминирование полиглицидилакрилата. *Бутлеровские сообщения.* **2023**. Т.76. №12. С.167-170. DOI: 10.37952/ROI-jbc-01/23-76-12-167

Выходные данные для цитирования русскоязычной электронной версии статьи:

Евдокимов А.Н., Курзин А.В., Липин В.А., Петрова Ю.А. Аминирование полиглицидилакрилата. *Бутлеровские сообщения В.* **2023**. Т.6. №4. Id.11. DOI: 10.37952/ROI-jbc-01/23-76-12-167/ROI-jbc-RB/23-6-4-11

Введение

Эпоксидные защитные и декоративные покрытия хорошо известны и имеют промышленное применение в отделочном производстве для сохранения древесных и бетонных материалов; обладая антикоррозийными свойствами — для стальных, алюминиевых и оцинкованных изделий, различных морских конструкций; а кроме того, в архитектуре, авиа- и автомобилестроении [1]. Одни из видов таких материалов производятся в промышленных масштабах на основе (поли)глицидиловых эфиров акриловой и метакриловой кислот, при этом способы получения и свойства метакрилатов наиболее широко изучены, в отличие от акрилатов [2–7]. В литературе имеются многочисленные данные о функционализации полиглицидилметакрилатов [6], а также, например, об аминировании указанных полиэфиров, привитых к полипропилену [8]. Поскольку введение аминогруппы в структуру полиглицидилового эфира акриловой кислоты улучшит его антикоррозийные свойства в составе защитного покрытия [9], в данной работе было исследовано взаимодействие полиглицидилакрилата с представителем диаминов с образованием соответствующих аминоэфиров. Цель работы — аминирование полиглицидилакрилата этилендиамином с получением моно- и дизамещенных продуктов.

Экспериментальная часть

*	
В работе были использованы следующие реактивы без дополнительной очистки: акриловая ки	іслота
(пропеновая кислота, 99%, ООО «НеваРеактив», концентрация ингибитора <i>п</i> -метоксифенола 0.02 % м	иасс.),
Cu ₂ Cl ₂ (98%, ч.д.а, АО «ЛенРеактив»), КОН (ч.д.а., АО «ЛенРеактив»), хлорид тетраметилам	кином

Полная исследовательская публикация ____ Евдокимов А.Н., Курзин А.В., Липин В.А., Петрова Ю.А. (ТМАХ, 98+%, Acros Organics), P_2O_5 (ч., OOO «Октант»), 2,2'-азо-бис-изобутиронитрил (динитрил азо-2-метилпропановой кислоты (ДАК)) (98%, Sigma-Aldrich). Эпихлоргидрин (99.8%, AO «ЛенРеактив») хранили над Na_2SO_4 , этилендиамин (1,2-диаминоэтан, 97%, AO «Экос-1») перегоняли, собирая фракцию при T = 116-117 °C. Тетрагидрофуран (х.ч., OOO «Октант») кипятили в присутствии Cu_2Cl_2 , перегоняли, выдерживали над КОН и вновь перегоняли. Ацетонитрил (99%, AO «ЛенРеактив») кипятили над P_2O_5 и перегоняли. Диметилформамид (х.ч., AO «ЛенРеактив») выдерживали над КОН, затем перегоняли над P_2O_5 и перегоняли. Диметилформамид (х.ч., AO «ЛенРеактив») выдерживали над P_2O_5 и перегоняли при P_2O_5 и перегоняли (у.д.а., OOO «Октант»), P_2O_5 и перегоняли над P_2O_5 и перегоняли над P_2O_5 и перегоняли (у.д.а., OOO «Октант»), P_2O_5 и перегоняли над P_2O_5 и перегоняли при P_2O_5 и перегоняли над P_2O_5 и перегоняли над P_2O_5 и перегоняли над P_2O_5 и перегоняли выдерживали над P_2O_5 и перегоняли выдерживали над P_2O_5 и перегоняли выдерживали над P_2O_5 и перегоняли над P

Синтез глицидилакрилата:

К 72 г (1 моль) акриловой кислоты с помощью капельной воронки добавляли 92.5 г (1 моль) эпихлоргидрина и 1.1 г (0.01 моль) хлорида тетраметиламмония. Полученную смесь нагревали при 80 °C с обратным холодильником при перемешивании в течение 3 ч, контролируя кислотное число и содержание эпокси-групп по методу [10]. Далее реакционную массу отфильтровали от осадка, добавляли к ней 280 мл ацетонитрила, содержащего 100 г K_2CO_3 и кипятили с обратным холодильником при перемешивании в течение 8 ч. По окончании фильтрованием удаляли осадок, а на ротационном испарителе – ацетонитрил. Остаток — маслообразное вещество желтого цвета перегоняли в вакууме при 60 °C/5-6 мм рт. ст. Выход глицидилакрилата составил 97.8 г (81.5%).

Полимеризация глицидилакрилата:

$$H_2C$$
 CH
 CH_2
 CH_2

12 г (0.1 моль) глицидилакрилата смешивали с 100 мл тетрагидрофурана, содержащего 0.5 г 2,2'-азо-бис-изобутиронитрила и нагревали при перемешивании в течение 3 ч при 60 °C. По окончании полимер отделяли от жидкой фазы и инициатора, промывали холодной дистиллированной водой (3 х 100 мл) и сушили в вакууме при 60 °C. 6 г полиглицидилакрилата смешивали с этилендиамином (7.5 г и 2.5 г) в 50 мл смеси ацетонитрил-диметилформамид (1:1, по объему) и полученную реакционную массу нагревали при 70 °C с обратным холодильником в атмосфере азота в течение 3 ч. По окончании добавляли 100 мл дистиллированной воды и нагревали при температуре 90 °C в течение 2 ч с обратным холодильником без применения защитной атмосферы. Далее полимер отделяли от воды и сушили в вакууме при температуре 60 °C в течение 3 ч. Выход аминоэфиров составил 86.3 и 88.5%.

Результаты и их обсуждение

В литературе описаны различные условия синтеза глицидилакрилата и глицидилметакрилата, в особенности это касается выбора катализатора. Известно, что первоначально при взаимодействии акриловой кислоты с эпихлоргидрином преимущественно образуется 3-хлор-2-гидроксипропилакрилат [4, 5, 7], однако мы не выделяли этот промежуточный продукт, а использовали реакционную массу для дальнейшего синтеза глицидилакрилата. Что касается катализатора для осуществления этой стадии, то в работе был выбран хлорид тетраметиламмония, который показал высокую эффективность на аналогичной стадии в синтезе глицидилметакрилата [4]. Исходя из результатов собственных экспериментов можно утверждать, что выбранный катализатор показал такую же эффективность и в синтезе глицидилакрилата. Заметим также, что мы не очищали акриловую кислоту от ингибитора ее полимеризации при синтезе эфиров эпихлоргидрина. Выбор карбоната калия и ацетонитрила в качестве участников второй стадии синтеза глицидилакрилата, то есть образования оксиранового цикла,

также был продиктован, с одной стороны, литературными данными [7], а с другой – доступностью этих реагентов. Установлены высокий выход глицидилакрилата и его стабильность в процессе вакуумной перегонки. В ИК-спектре эфира присутствуют полосы поглощения: 840 и 905 см⁻¹ (оксирановый цикл), 1290 и 1160 см⁻¹ (С-О), 1710 см⁻¹ (С=О), 1635 см⁻¹ (С=С).

Из большого разнообразия инициаторов полимеризации акриловой и метакриловой кислот (пероксиды, амины, некоторые соли, сульфокислоты и др. [11]) был выбран 2,2'-азо-бисизобутиронитрил, который по доступности, безусловно, уступает наиболее часто использующимся персульфатам калия и аммония, однако следует учитывать, что они используются в виде водных растворов, что в данном случае может привести к раскрытию оксиранового цикла (поли)глицидилакрилата.

Аминирование полиглицидилакрилата этилендиамином осуществляли по схеме:

Выводы

Результаты проведенного исследования свидетельствуют о возможности получения аминоглицидиловых эфиров полиакриловой кислоты. Аминирование полиглицидилового эфира этилендиамином осуществлено в смеси ацетонитрил-диметилформамид Подобные аминоэфиры могут быть получены на основе акриловой кислоты и других ди-, а также три- и полиаминов, и использованы в качестве основы смол, применяемых в составах защитных, в том числе антикоррозийных покрытий.

Литература

- [1] B. Ellis. Chemistry and technology of epoxy resins. *Dordrecht: Springer*. **1993**. P.303-325. DOI: 10.1007/978-94-011-2932-9
- [2] D.K. Soni, A. Maithani, P.K. Kamani. Synthesis and characterization of glycidyl esters of acrylic and methacrylic acids for NIPU coatings. *Int. J. Adv. Res. Sci. Commun. Technol.* **2021**. Vol.3. No.12. P.336-342. DOI: 10.48175/ijarsct-2195
- [3] E.I. Muresan, T. Malutan. Studies concerning the anion exchange resins catalyzed esterification of epichlorohydrin with organic acids. *Chem. Ind. Chem. Eng. Q.* **2009**. Vol.15. No.3. P.169-174. DOI: 10.2298/CICEQ0903169M
- [4] *Pat. US* 10087159 B2 (publ. **2018**). Method for producing 3-chloro-2-hydroxypropyl (meth)acrylate and method for producing glycidyl (meth)acrylate.
- [5] Z. Yan, Z. Ma, J. Deng, G. Luo. Mechanism and kinetics of epoxide ring-opening with carboxylic acids catalyzed by the corresponding carboxylates. *Chem. Eng. Sci.* **2021**. Vol.242. ID 116746. DOI: 10.1016/j.ces.2021.116746
- [6] E.M. Muzammil, A. Khan, M.C. Stuparu. Post-polymerization modification reactions of poly(glycidyl methacrylate)s. *RSC Adv.* **2017**. Vol.7. No.88. P.55874-55884. DOI: 10.1039/c7ra11093f

- Полная исследовательская публикация ____ Евдокимов А.Н., Курзин А.В., Липин В.А., Петрова Ю.А.
- [7] A. Bukowska, W. Bukowski, B. Mossety-Leszczak. Synthesis of glycidyl esters. J. Chem. Technol. Biotechnol. 1999. Vol.74. No.12. P.1145-1148. DOI: 10.1002/(SICI)1097-4660(199912)74:12<1145::AID-JCTB162>3.0.CO;2-A
- [8] Бондарь Ю.В., Хан Д.Х. Особенности реакции аминирования цепей полиглицидилметакрилата, привитых на полипропиленовые волокна. *ЖПХ*. **2012**. Т.85. №2. С.283-287. DOI: 10.1134/S1070427212020206].
- [9] H. Gao, M. Elsabahy, E.V. Giger, D. Li., R.E. Prud'homme, J.-C. Leroux. Aminated linear and star-shape poly(glycerol methacrylate)s: synthesis and self-assembling properties. *Biomacromolecules*. **2010**. Vol.11. No.4. P.889-895. DOI: 10.1021/bm901241k
- [10] R.R. Jay. Direct titration of epoxy compounds and aziridines. *Anal. Chem.* **1964**. Vol.36. No.3. P.667-668. DOI: 10.1021/ac60209a037
- [11] K. Ikeda, M. Kida, K. Endo. Polymerization of Methyl Methacrylate with Radical Initiator Immobilized on the Inside Wall of Mesoporous Silica. *Polymer Journal*. **2009**. Vol.41. No.8. P.672-678. DOI: 10.1295/polymj.pj2008332
- [12] Andrey N. Evdokimov, Alexander V. Kurzin, Vadim A. Lipin, Yulia A. Petrova. Amination of polyglycidyl acrylate. *Butlerov Communications B.* **2023**. Vol.6. No.4. Id.11. DOI: 10.37952/ROI-jbc-01/23-76-12-167/ROI-jbc-B/23-6-4-11
- [13] Евдокимов А.Н., Курзин А.В., Липин В.А., Петрова Ю.А. Аминирование полиглицидилакрилата. *Бутлеровские сообщения В.* **2023**. Т.б. №4. Id.11. DOI: 10.37952/ROI-jbc-01/23-76-12-167/ROI-jbc-RB/23-6-4-11

The English version of the article have been published in the international edition of the journal

Butlerov Communications B

Advances in Chemistry & Thermophysics

The Reference Object Identifier – ROI-jbc-B/23-6-4-11
The Digital Object Identifier – DOI: 10.37952/ROI-jbc-01/23-76-12-167/ROI-jbc-B/23-6-4-11

Amination of polyglycidyl acrylate

© Andrey N. Evdokimov, Alexander V. Kurzin, Vadim A. Lipin, Yulia A. Petrova^{3*+}

1 Department of Materials Science and Mechanical Engineering Technology;

2 Department of Organic Chemistry; Department of Physical and Colloid Chemistry.

High School of Technology and Energy. St. Petersburg State University of Industrial Technologies and Design. Ivana Chernikh St., 4. Saint-Petersburg, 198095. Russia.

Phone: ++ 7 999 222 5117. E-mail: ++ yulia.petrova1997@yandex.ru

Keywords: acrylic acid, epichlorohydrin, (poly)glycidyl acrylate, amination, ethylenediamine.

Abstract

The possibility of obtaining amino esters based on large-scale products of organic synthesis - acrylic acid, epichlorohydrin and ethylenediamine – has been studied. Amination of the synthesized polyglycidylacrylate was carried out in a mixture of acetonitrile-dimethylformamide at a temperature of $70~^{\circ}\text{C}$ for 3 hours and various polyglycidylacrylate:ethylenediamine ratios. The resulting products can be synthesized on an industrial scale, and their use is possible in traditional areas of protective coatings based on polyglycidyl ethers.

The output for citing the English version of the article:

Andrey N. Evdokimov, Alexander V. Kurzin, Vadim A. Lipin, Yulia A. Petrova. Amination of polyglycidyl acrylate. *Butlerov Communications B.* **2023**. Vol.6. No.4. Id.11. DOI: 10.37952/ROI-jbc-01/23-76-12-167/ROI-jbc-B/23-6-4-11

^{*}Supervising author; *Corresponding author